IRCE: generalize to handle loops with decreasing induction variables.

IRCE can now split the iteration space for loops like:

   for (i = n; i >= 0; i--)
     a[i + k] = 42; // bounds check on access



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230618 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Sanjoy Das 2015-02-26 08:19:31 +00:00
parent 19c267aed1
commit 21b2edfeae
5 changed files with 429 additions and 223 deletions

View File

@ -399,6 +399,52 @@ InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI,
namespace { namespace {
// Keeps track of the structure of a loop. This is similar to llvm::Loop,
// except that it is more lightweight and can track the state of a loop through
// changing and potentially invalid IR. This structure also formalizes the
// kinds of loops we can deal with -- ones that have a single latch that is also
// an exiting block *and* have a canonical induction variable.
struct LoopStructure {
const char *Tag;
BasicBlock *Header;
BasicBlock *Latch;
// `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
// successor is `LatchExit', the exit block of the loop.
BranchInst *LatchBr;
BasicBlock *LatchExit;
unsigned LatchBrExitIdx;
Value *IndVarNext;
Value *IndVarStart;
Value *LoopExitAt;
bool IndVarIncreasing;
LoopStructure()
: Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
template <typename M> LoopStructure map(M Map) const {
LoopStructure Result;
Result.Tag = Tag;
Result.Header = cast<BasicBlock>(Map(Header));
Result.Latch = cast<BasicBlock>(Map(Latch));
Result.LatchBr = cast<BranchInst>(Map(LatchBr));
Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
Result.LatchBrExitIdx = LatchBrExitIdx;
Result.IndVarNext = Map(IndVarNext);
Result.IndVarStart = Map(IndVarStart);
Result.LoopExitAt = Map(LoopExitAt);
Result.IndVarIncreasing = IndVarIncreasing;
return Result;
}
static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, Loop &,
const char *&);
};
/// This class is used to constrain loops to run within a given iteration space. /// This class is used to constrain loops to run within a given iteration space.
/// The algorithm this class implements is given a Loop and a range [Begin, /// The algorithm this class implements is given a Loop and a range [Begin,
/// End). The algorithm then tries to break out a "main loop" out of the loop /// End). The algorithm then tries to break out a "main loop" out of the loop
@ -409,51 +455,6 @@ namespace {
/// iterations in which the induction variable is >= End. /// iterations in which the induction variable is >= End.
/// ///
class LoopConstrainer { class LoopConstrainer {
// Keeps track of the structure of a loop. This is similar to llvm::Loop,
// except that it is more lightweight and can track the state of a loop
// through changing and potentially invalid IR. This structure also
// formalizes the kinds of loops we can deal with -- ones that have a single
// latch that is also an exiting block *and* have a canonical induction
// variable.
struct LoopStructure {
const char *Tag;
BasicBlock *Header;
BasicBlock *Latch;
// `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
// successor is `LatchExit', the exit block of the loop.
BranchInst *LatchBr;
BasicBlock *LatchExit;
unsigned LatchBrExitIdx;
// The canonical induction variable. It's value is `CIVStart` on the 0th
// itertion and `CIVNext` for all iterations after that.
PHINode *CIV;
Value *CIVStart;
Value *CIVNext;
LoopStructure() : Tag(""), Header(nullptr), Latch(nullptr),
LatchBr(nullptr), LatchExit(nullptr),
LatchBrExitIdx(-1), CIV(nullptr),
CIVStart(nullptr), CIVNext(nullptr) { }
template <typename M> LoopStructure map(M Map) const {
LoopStructure Result;
Result.Tag = Tag;
Result.Header = cast<BasicBlock>(Map(Header));
Result.Latch = cast<BasicBlock>(Map(Latch));
Result.LatchBr = cast<BranchInst>(Map(LatchBr));
Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
Result.LatchBrExitIdx = LatchBrExitIdx;
Result.CIV = cast<PHINode>(Map(CIV));
Result.CIVNext = Map(CIVNext);
Result.CIVStart = Map(CIVStart);
return Result;
}
};
// The representation of a clone of the original loop we started out with. // The representation of a clone of the original loop we started out with.
struct ClonedLoop { struct ClonedLoop {
// The cloned blocks // The cloned blocks
@ -472,17 +473,22 @@ class LoopConstrainer {
BasicBlock *PseudoExit; BasicBlock *PseudoExit;
BasicBlock *ExitSelector; BasicBlock *ExitSelector;
std::vector<PHINode *> PHIValuesAtPseudoExit; std::vector<PHINode *> PHIValuesAtPseudoExit;
PHINode *IndVarEnd;
RewrittenRangeInfo() : PseudoExit(nullptr), ExitSelector(nullptr) { } RewrittenRangeInfo()
: PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
}; };
// Calculated subranges we restrict the iteration space of the main loop to. // Calculated subranges we restrict the iteration space of the main loop to.
// See the implementation of `calculateSubRanges' for more details on how // See the implementation of `calculateSubRanges' for more details on how
// these fields are computed. `ExitPreLoopAt' is `None' if we don't need a // these fields are computed. `LowLimit` is None if there is no restriction
// pre loop. `ExitMainLoopAt' is `None' if we don't need a post loop. // on low end of the restricted iteration space of the main loop. `HighLimit`
// is None if there is no restriction on high end of the restricted iteration
// space of the main loop.
struct SubRanges { struct SubRanges {
Optional<Value *> ExitPreLoopAt; Optional<const SCEV *> LowLimit;
Optional<Value *> ExitMainLoopAt; Optional<const SCEV *> HighLimit;
}; };
// A utility function that does a `replaceUsesOfWith' on the incoming block // A utility function that does a `replaceUsesOfWith' on the incoming block
@ -491,19 +497,11 @@ class LoopConstrainer {
static void replacePHIBlock(PHINode *PN, BasicBlock *Block, static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
BasicBlock *ReplaceBy); BasicBlock *ReplaceBy);
// Try to "parse" `OriginalLoop' and populate the various out parameters.
// Returns true on success, false on failure.
//
bool recognizeLoop(LoopStructure &LoopStructureOut,
const SCEV *&LatchCountOut, BasicBlock *&PreHeaderOut,
const char *&FailureReasonOut) const;
// Compute a safe set of limits for the main loop to run in -- effectively the // Compute a safe set of limits for the main loop to run in -- effectively the
// intersection of `Range' and the iteration space of the original loop. // intersection of `Range' and the iteration space of the original loop.
// Return the header count (1 + the latch taken count) in `HeaderCount'.
// Return None if unable to compute the set of subranges. // Return None if unable to compute the set of subranges.
// //
Optional<SubRanges> calculateSubRanges(Value *&HeaderCount) const; Optional<SubRanges> calculateSubRanges() const;
// Clone `OriginalLoop' and return the result in CLResult. The IR after // Clone `OriginalLoop' and return the result in CLResult. The IR after
// running `cloneLoop' is well formed except for the PHI nodes in CLResult -- // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
@ -542,16 +540,15 @@ class LoopConstrainer {
// The loop denoted by `LS' has `OldPreheader' as its preheader. This // The loop denoted by `LS' has `OldPreheader' as its preheader. This
// function creates a new preheader for `LS' and returns it. // function creates a new preheader for `LS' and returns it.
// //
BasicBlock *createPreheader(const LoopConstrainer::LoopStructure &LS, BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
BasicBlock *OldPreheader, const char *Tag) const; const char *Tag) const;
// `ContinuationBlockAndPreheader' was the continuation block for some call to // `ContinuationBlockAndPreheader' was the continuation block for some call to
// `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
// This function rewrites the PHI nodes in `LS.Header' to start with the // This function rewrites the PHI nodes in `LS.Header' to start with the
// correct value. // correct value.
void rewriteIncomingValuesForPHIs( void rewriteIncomingValuesForPHIs(
LoopConstrainer::LoopStructure &LS, LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
BasicBlock *ContinuationBlockAndPreheader,
const LoopConstrainer::RewrittenRangeInfo &RRI) const; const LoopConstrainer::RewrittenRangeInfo &RRI) const;
// Even though we do not preserve any passes at this time, we at least need to // Even though we do not preserve any passes at this time, we at least need to
@ -570,7 +567,6 @@ class LoopConstrainer {
LoopInfo &OriginalLoopInfo; LoopInfo &OriginalLoopInfo;
const SCEV *LatchTakenCount; const SCEV *LatchTakenCount;
BasicBlock *OriginalPreheader; BasicBlock *OriginalPreheader;
Value *OriginalHeaderCount;
// The preheader of the main loop. This may or may not be different from // The preheader of the main loop. This may or may not be different from
// `OriginalPreheader'. // `OriginalPreheader'.
@ -584,12 +580,12 @@ class LoopConstrainer {
LoopStructure MainLoopStructure; LoopStructure MainLoopStructure;
public: public:
LoopConstrainer(Loop &L, LoopInfo &LI, ScalarEvolution &SE, LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS,
InductiveRangeCheck::Range R) ScalarEvolution &SE, InductiveRangeCheck::Range R)
: F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), SE(SE), : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr), SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
OriginalPreheader(nullptr), OriginalHeaderCount(nullptr), OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R),
MainLoopPreheader(nullptr), Range(R) { } MainLoopStructure(LS) {}
// Entry point for the algorithm. Returns true on success. // Entry point for the algorithm. Returns true on success.
bool run(); bool run();
@ -604,155 +600,246 @@ void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
PN->setIncomingBlock(i, ReplaceBy); PN->setIncomingBlock(i, ReplaceBy);
} }
bool LoopConstrainer::recognizeLoop(LoopStructure &LoopStructureOut, static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
const SCEV *&LatchCountOut, APInt SMax =
BasicBlock *&PreheaderOut, APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
const char *&FailureReason) const { return SE.getSignedRange(S).contains(SMax) &&
using namespace llvm::PatternMatch; SE.getUnsignedRange(S).contains(SMax);
}
assert(OriginalLoop.isLoopSimplifyForm() && static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
"should follow from addRequired<>"); APInt SMin =
APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
return SE.getSignedRange(S).contains(SMin) &&
SE.getUnsignedRange(S).contains(SMin);
}
BasicBlock *Latch = OriginalLoop.getLoopLatch(); Optional<LoopStructure>
if (!OriginalLoop.isLoopExiting(Latch)) { LoopStructure::parseLoopStructure(ScalarEvolution &SE, Loop &L,
const char *&FailureReason) {
assert(L.isLoopSimplifyForm() && "should follow from addRequired<>");
BasicBlock *Latch = L.getLoopLatch();
if (!L.isLoopExiting(Latch)) {
FailureReason = "no loop latch"; FailureReason = "no loop latch";
return false; return None;
} }
PHINode *CIV = OriginalLoop.getCanonicalInductionVariable(); BasicBlock *Header = L.getHeader();
assert(CIV && "precondition"); BasicBlock *Preheader = L.getLoopPreheader();
BasicBlock *Header = OriginalLoop.getHeader();
BasicBlock *Preheader = OriginalLoop.getLoopPreheader();
if (!Preheader) { if (!Preheader) {
FailureReason = "no preheader"; FailureReason = "no preheader";
return false; return None;
} }
Value *CIVNext = CIV->getIncomingValueForBlock(Latch);
Value *CIVStart = CIV->getIncomingValueForBlock(Preheader);
const SCEV *LatchCount = SE.getExitCount(&OriginalLoop, Latch);
if (isa<SCEVCouldNotCompute>(LatchCount)) {
FailureReason = "could not compute latch count";
return false;
}
// While SCEV does most of the analysis for us, we still have to
// modify the latch; and currently we can only deal with certain
// kinds of latches. This can be made more sophisticated as needed.
BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin()); BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin());
if (!LatchBr || LatchBr->isUnconditional()) { if (!LatchBr || LatchBr->isUnconditional()) {
FailureReason = "latch terminator not conditional branch"; FailureReason = "latch terminator not conditional branch";
return false; return None;
} }
// Currently we only support a latch condition of the form: unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
//
// %condition = icmp slt %civNext, %limit
// br i1 %condition, label %header, label %exit
if (LatchBr->getSuccessor(0) != Header) { ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
FailureReason = "unknown latch form (header not first successor)"; if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
return false; FailureReason = "latch terminator branch not conditional on integral icmp";
return None;
} }
Value *CIVComparedTo = nullptr; const SCEV *LatchCount = SE.getExitCount(&L, Latch);
ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; if (isa<SCEVCouldNotCompute>(LatchCount)) {
if (!(match(LatchBr->getCondition(), FailureReason = "could not compute latch count";
m_ICmp(Pred, m_Specific(CIVNext), m_Value(CIVComparedTo))) && return None;
Pred == ICmpInst::ICMP_SLT)) {
FailureReason = "unknown latch form (not slt)";
return false;
} }
// IndVarSimplify will sometimes leave behind (in SCEV's cache) backedge-taken ICmpInst::Predicate Pred = ICI->getPredicate();
// counts that are narrower than the canonical induction variable. These Value *LeftValue = ICI->getOperand(0);
// values are still accurate, and we could probably use them after sign/zero const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
// extension; but for now we just bail out of the transformation to keep IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
// things simple.
const SCEV *CIVComparedToSCEV = SE.getSCEV(CIVComparedTo); Value *RightValue = ICI->getOperand(1);
if (isa<SCEVCouldNotCompute>(CIVComparedToSCEV) || const SCEV *RightSCEV = SE.getSCEV(RightValue);
CIVComparedToSCEV->getType() != LatchCount->getType()) {
FailureReason = "could not relate CIV to latch expression"; // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
return false; if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
if (isa<SCEVAddRecExpr>(RightSCEV)) {
std::swap(LeftSCEV, RightSCEV);
std::swap(LeftValue, RightValue);
Pred = ICmpInst::getSwappedPredicate(Pred);
} else {
FailureReason = "no add recurrences in the icmp";
return None;
}
} }
const SCEV *ShouldBeOne = SE.getMinusSCEV(CIVComparedToSCEV, LatchCount); auto IsInductionVar = [&SE](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
const SCEVConstant *SCEVOne = dyn_cast<SCEVConstant>(ShouldBeOne); if (!AR->isAffine())
if (!SCEVOne || SCEVOne->getValue()->getValue() != 1) { return false;
FailureReason = "unexpected header count in latch";
IntegerType *Ty = cast<IntegerType>(AR->getType());
IntegerType *WideTy =
IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
// Currently we only work with induction variables that have been proved to
// not wrap. This restriction can potentially be lifted in the future.
const SCEVAddRecExpr *ExtendAfterOp =
dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
if (!ExtendAfterOp)
return false;
const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
const SCEV *ExtendedStep =
SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
if (!NoSignedWrap)
return false;
if (const SCEVConstant *StepExpr =
dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
ConstantInt *StepCI = StepExpr->getValue();
if (StepCI->isOne() || StepCI->isMinusOne()) {
IsIncreasing = StepCI->isOne();
return true;
}
}
return false; return false;
};
// `ICI` is interpreted as taking the backedge if the *next* value of the
// induction variable satisfies some constraint.
const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
bool IsIncreasing = false;
if (!IsInductionVar(IndVarNext, IsIncreasing)) {
FailureReason = "LHS in icmp not induction variable";
return None;
} }
unsigned LatchBrExitIdx = 1; ConstantInt *One = ConstantInt::get(IndVarTy, 1);
// TODO: generalize the predicates here to also match their unsigned variants.
if (IsIncreasing) {
bool FoundExpectedPred =
(Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
(Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
if (!FoundExpectedPred) {
FailureReason = "expected icmp slt semantically, found something else";
return None;
}
if (LatchBrExitIdx == 0) {
if (CanBeSMax(SE, RightSCEV)) {
// TODO: this restriction is easily removable -- we just have to
// remember that the icmp was an slt and not an sle.
FailureReason = "limit may overflow when coercing sle to slt";
return None;
}
IRBuilder<> B(&*Preheader->rbegin());
RightValue = B.CreateAdd(RightValue, One);
}
} else {
bool FoundExpectedPred =
(Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
(Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
if (!FoundExpectedPred) {
FailureReason = "expected icmp sgt semantically, found something else";
return None;
}
if (LatchBrExitIdx == 0) {
if (CanBeSMin(SE, RightSCEV)) {
// TODO: this restriction is easily removable -- we just have to
// remember that the icmp was an sgt and not an sge.
FailureReason = "limit may overflow when coercing sge to sgt";
return None;
}
IRBuilder<> B(&*Preheader->rbegin());
RightValue = B.CreateSub(RightValue, One);
}
}
const SCEV *StartNext = IndVarNext->getStart();
const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
assert(SE.getLoopDisposition(LatchCount, &OriginalLoop) == assert(SE.getLoopDisposition(LatchCount, &L) ==
ScalarEvolution::LoopInvariant && ScalarEvolution::LoopInvariant &&
"loop variant exit count doesn't make sense!"); "loop variant exit count doesn't make sense!");
assert(!OriginalLoop.contains(LatchExit) && "expected an exit block!"); assert(!L.contains(LatchExit) && "expected an exit block!");
LoopStructureOut.Tag = "main"; Value *IndVarStartV = SCEVExpander(SE, "irce").expandCodeFor(
LoopStructureOut.Header = Header; IndVarStart, IndVarTy, &*Preheader->rbegin());
LoopStructureOut.Latch = Latch; IndVarStartV->setName("indvar.start");
LoopStructureOut.LatchBr = LatchBr;
LoopStructureOut.LatchExit = LatchExit; LoopStructure Result;
LoopStructureOut.LatchBrExitIdx = LatchBrExitIdx;
LoopStructureOut.CIV = CIV; Result.Tag = "main";
LoopStructureOut.CIVNext = CIVNext; Result.Header = Header;
LoopStructureOut.CIVStart = CIVStart; Result.Latch = Latch;
Result.LatchBr = LatchBr;
Result.LatchExit = LatchExit;
Result.LatchBrExitIdx = LatchBrExitIdx;
Result.IndVarStart = IndVarStartV;
Result.IndVarNext = LeftValue;
Result.IndVarIncreasing = IsIncreasing;
Result.LoopExitAt = RightValue;
LatchCountOut = LatchCount;
PreheaderOut = Preheader;
FailureReason = nullptr; FailureReason = nullptr;
return true; return Result;
} }
Optional<LoopConstrainer::SubRanges> Optional<LoopConstrainer::SubRanges>
LoopConstrainer::calculateSubRanges(Value *&HeaderCountOut) const { LoopConstrainer::calculateSubRanges() const {
IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
if (Range.getType() != Ty) if (Range.getType() != Ty)
return None; return None;
SCEVExpander Expander(SE, "irce");
Instruction *InsertPt = OriginalPreheader->getTerminator();
LoopConstrainer::SubRanges Result; LoopConstrainer::SubRanges Result;
// I think we can be more aggressive here and make this nuw / nsw if the // I think we can be more aggressive here and make this nuw / nsw if the
// addition that feeds into the icmp for the latch's terminating branch is nuw // addition that feeds into the icmp for the latch's terminating branch is nuw
// / nsw. In any case, a wrapping 2's complement addition is safe. // / nsw. In any case, a wrapping 2's complement addition is safe.
ConstantInt *One = ConstantInt::get(Ty, 1); ConstantInt *One = ConstantInt::get(Ty, 1);
const SCEV *HeaderCountSCEV = SE.getAddExpr(LatchTakenCount, SE.getSCEV(One)); const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
HeaderCountOut = Expander.expandCodeFor(HeaderCountSCEV, Ty, InsertPt); const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
const SCEV *Zero = SE.getConstant(Ty, 0); bool Increasing = MainLoopStructure.IndVarIncreasing;
// We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the
// range of values the induction variable takes.
const SCEV *Smallest =
Increasing ? Start : SE.getAddExpr(End, SE.getSCEV(One));
const SCEV *Greatest =
Increasing ? End : SE.getAddExpr(Start, SE.getSCEV(One));
auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
};
// In some cases we can prove that we don't need a pre or post loop // In some cases we can prove that we don't need a pre or post loop
bool ProvablyNoPreloop = bool ProvablyNoPreloop =
SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Zero); SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
if (!ProvablyNoPreloop) { if (!ProvablyNoPreloop)
const SCEV *ExitPreLoopAtSCEV = Result.LowLimit = Clamp(Range.getBegin());
SE.getSMinExpr(HeaderCountSCEV, Range.getBegin());
Result.ExitPreLoopAt =
Expander.expandCodeFor(ExitPreLoopAtSCEV, Ty, InsertPt);
}
bool ProvablyNoPostLoop = bool ProvablyNoPostLoop =
SE.isKnownPredicate(ICmpInst::ICMP_SLE, HeaderCountSCEV, Range.getEnd()); SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd());
if (!ProvablyNoPostLoop) { if (!ProvablyNoPostLoop)
const SCEV *ExitMainLoopAtSCEV = Result.HighLimit = Clamp(Range.getEnd());
SE.getSMinExpr(HeaderCountSCEV, Range.getEnd());
Result.ExitMainLoopAt =
Expander.expandCodeFor(ExitMainLoopAtSCEV, Ty, InsertPt);
}
return Result; return Result;
} }
@ -809,7 +896,7 @@ void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
} }
LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
const LoopStructure &LS, BasicBlock *Preheader, Value *ExitLoopAt, const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
BasicBlock *ContinuationBlock) const { BasicBlock *ContinuationBlock) const {
// We start with a loop with a single latch: // We start with a loop with a single latch:
@ -893,32 +980,37 @@ LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
BBInsertLocation); BBInsertLocation);
BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin()); BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin());
bool Increasing = LS.IndVarIncreasing;
IRBuilder<> B(PreheaderJump); IRBuilder<> B(PreheaderJump);
// EnterLoopCond - is it okay to start executing this `LS'? // EnterLoopCond - is it okay to start executing this `LS'?
Value *EnterLoopCond = B.CreateICmpSLT(LS.CIVStart, ExitLoopAt); Value *EnterLoopCond = Increasing
? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
: B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
PreheaderJump->eraseFromParent(); PreheaderJump->eraseFromParent();
assert(LS.LatchBrExitIdx == 1 && "generalize this as needed!");
B.SetInsertPoint(LS.LatchBr);
// ContinueCond - is it okay to execute the next iteration in `LS'?
Value *ContinueCond = B.CreateICmpSLT(LS.CIVNext, ExitLoopAt);
LS.LatchBr->setCondition(ContinueCond);
assert(LS.LatchBr->getSuccessor(LS.LatchBrExitIdx) == LS.LatchExit &&
"invariant!");
LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
B.SetInsertPoint(LS.LatchBr);
Value *TakeBackedgeLoopCond =
Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
: B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
Value *CondForBranch = LS.LatchBrExitIdx == 1
? TakeBackedgeLoopCond
: B.CreateNot(TakeBackedgeLoopCond);
LS.LatchBr->setCondition(CondForBranch);
B.SetInsertPoint(RRI.ExitSelector); B.SetInsertPoint(RRI.ExitSelector);
// IterationsLeft - are there any more iterations left, given the original // IterationsLeft - are there any more iterations left, given the original
// upper bound on the induction variable? If not, we branch to the "real" // upper bound on the induction variable? If not, we branch to the "real"
// exit. // exit.
Value *IterationsLeft = B.CreateICmpSLT(LS.CIVNext, OriginalHeaderCount); Value *IterationsLeft = Increasing
? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
: B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
BranchInst *BranchToContinuation = BranchInst *BranchToContinuation =
@ -942,6 +1034,11 @@ LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
RRI.PHIValuesAtPseudoExit.push_back(NewPHI); RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
} }
RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
BranchToContinuation);
RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
// The latch exit now has a branch from `RRI.ExitSelector' instead of // The latch exit now has a branch from `RRI.ExitSelector' instead of
// `LS.Latch'. The PHI nodes need to be updated to reflect that. // `LS.Latch'. The PHI nodes need to be updated to reflect that.
for (Instruction &I : *LS.LatchExit) { for (Instruction &I : *LS.LatchExit) {
@ -955,7 +1052,7 @@ LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
} }
void LoopConstrainer::rewriteIncomingValuesForPHIs( void LoopConstrainer::rewriteIncomingValuesForPHIs(
LoopConstrainer::LoopStructure &LS, BasicBlock *ContinuationBlock, LoopStructure &LS, BasicBlock *ContinuationBlock,
const LoopConstrainer::RewrittenRangeInfo &RRI) const { const LoopConstrainer::RewrittenRangeInfo &RRI) const {
unsigned PHIIndex = 0; unsigned PHIIndex = 0;
@ -970,13 +1067,12 @@ void LoopConstrainer::rewriteIncomingValuesForPHIs(
PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
} }
LS.CIVStart = LS.CIV->getIncomingValueForBlock(ContinuationBlock); LS.IndVarStart = RRI.IndVarEnd;
} }
BasicBlock * BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
LoopConstrainer::createPreheader(const LoopConstrainer::LoopStructure &LS, BasicBlock *OldPreheader,
BasicBlock *OldPreheader, const char *Tag) const {
const char *Tag) const {
BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
BranchInst::Create(LS.Header, Preheader); BranchInst::Create(LS.Header, Preheader);
@ -1004,30 +1100,79 @@ void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
bool LoopConstrainer::run() { bool LoopConstrainer::run() {
BasicBlock *Preheader = nullptr; BasicBlock *Preheader = nullptr;
const char *CouldNotProceedBecause = nullptr; LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
if (!recognizeLoop(MainLoopStructure, LatchTakenCount, Preheader, Preheader = OriginalLoop.getLoopPreheader();
CouldNotProceedBecause)) { assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
DEBUG(dbgs() << "irce: could not recognize loop, " << CouldNotProceedBecause "preconditions!");
<< "\n";);
return false;
}
OriginalPreheader = Preheader; OriginalPreheader = Preheader;
MainLoopPreheader = Preheader; MainLoopPreheader = Preheader;
Optional<SubRanges> MaybeSR = calculateSubRanges(OriginalHeaderCount); Optional<SubRanges> MaybeSR = calculateSubRanges();
if (!MaybeSR.hasValue()) { if (!MaybeSR.hasValue()) {
DEBUG(dbgs() << "irce: could not compute subranges\n"); DEBUG(dbgs() << "irce: could not compute subranges\n");
return false; return false;
} }
SubRanges SR = MaybeSR.getValue(); SubRanges SR = MaybeSR.getValue();
bool Increasing = MainLoopStructure.IndVarIncreasing;
IntegerType *IVTy =
cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
SCEVExpander Expander(SE, "irce");
Instruction *InsertPt = OriginalPreheader->getTerminator();
// It would have been better to make `PreLoop' and `PostLoop' // It would have been better to make `PreLoop' and `PostLoop'
// `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
// constructor. // constructor.
ClonedLoop PreLoop, PostLoop; ClonedLoop PreLoop, PostLoop;
bool NeedsPreLoop = SR.ExitPreLoopAt.hasValue(); bool NeedsPreLoop =
bool NeedsPostLoop = SR.ExitMainLoopAt.hasValue(); Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
bool NeedsPostLoop =
Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
Value *ExitPreLoopAt = nullptr;
Value *ExitMainLoopAt = nullptr;
const SCEVConstant *MinusOneS =
cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
if (NeedsPreLoop) {
const SCEV *ExitPreLoopAtSCEV = nullptr;
if (Increasing)
ExitPreLoopAtSCEV = *SR.LowLimit;
else {
if (CanBeSMin(SE, *SR.HighLimit)) {
DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
<< "preloop exit limit. HighLimit = " << *(*SR.HighLimit)
<< "\n");
return false;
}
ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
}
ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
ExitPreLoopAt->setName("exit.preloop.at");
}
if (NeedsPostLoop) {
const SCEV *ExitMainLoopAtSCEV = nullptr;
if (Increasing)
ExitMainLoopAtSCEV = *SR.HighLimit;
else {
if (CanBeSMin(SE, *SR.LowLimit)) {
DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
<< "mainloop exit limit. LowLimit = " << *(*SR.LowLimit)
<< "\n");
return false;
}
ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
}
ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
ExitMainLoopAt->setName("exit.mainloop.at");
}
// We clone these ahead of time so that we don't have to deal with changing // We clone these ahead of time so that we don't have to deal with changing
// and temporarily invalid IR as we transform the loops. // and temporarily invalid IR as we transform the loops.
@ -1044,9 +1189,8 @@ bool LoopConstrainer::run() {
MainLoopPreheader = MainLoopPreheader =
createPreheader(MainLoopStructure, Preheader, "mainloop"); createPreheader(MainLoopStructure, Preheader, "mainloop");
PreLoopRRI = PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
changeIterationSpaceEnd(PreLoop.Structure, Preheader, ExitPreLoopAt, MainLoopPreheader);
SR.ExitPreLoopAt.getValue(), MainLoopPreheader);
rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
PreLoopRRI); PreLoopRRI);
} }
@ -1058,8 +1202,7 @@ bool LoopConstrainer::run() {
PostLoopPreheader = PostLoopPreheader =
createPreheader(PostLoop.Structure, Preheader, "postloop"); createPreheader(PostLoop.Structure, Preheader, "postloop");
PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
SR.ExitMainLoopAt.getValue(), ExitMainLoopAt, PostLoopPreheader);
PostLoopPreheader);
rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
PostLoopRRI); PostLoopRRI);
} }
@ -1179,13 +1322,6 @@ bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
ScalarEvolution &SE = getAnalysis<ScalarEvolution>(); ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>(); BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>();
PHINode *CIV = L->getCanonicalInductionVariable();
if (!CIV) {
DEBUG(dbgs() << "irce: loop has no canonical induction variable\n");
return false;
}
const SCEVAddRecExpr *IndVar = cast<SCEVAddRecExpr>(SE.getSCEV(CIV));
for (auto BBI : L->getBlocks()) for (auto BBI : L->getBlocks())
if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
if (InductiveRangeCheck *IRC = if (InductiveRangeCheck *IRC =
@ -1202,6 +1338,21 @@ bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
IRC->print(dbgs()); IRC->print(dbgs());
); );
const char *FailureReason = nullptr;
Optional<LoopStructure> MaybeLoopStructure =
LoopStructure::parseLoopStructure(SE, *L, FailureReason);
if (!MaybeLoopStructure.hasValue()) {
DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
<< "\n";);
return false;
}
LoopStructure LS = MaybeLoopStructure.getValue();
bool Increasing = LS.IndVarIncreasing;
const SCEV *MinusOne =
SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
const SCEVAddRecExpr *IndVar =
cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
Optional<InductiveRangeCheck::Range> SafeIterRange; Optional<InductiveRangeCheck::Range> SafeIterRange;
Instruction *ExprInsertPt = Preheader->getTerminator(); Instruction *ExprInsertPt = Preheader->getTerminator();
@ -1223,8 +1374,8 @@ bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
if (!SafeIterRange.hasValue()) if (!SafeIterRange.hasValue())
return false; return false;
LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), SE, LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS,
SafeIterRange.getValue()); SE, SafeIterRange.getValue());
bool Changed = LC.run(); bool Changed = LC.run();
if (Changed) { if (Changed) {

View File

@ -0,0 +1,43 @@
; RUN: opt -irce -S < %s | FileCheck %s
define void @decrementing_loop(i32 *%arr, i32 *%a_len_ptr, i32 %n) {
entry:
%len = load i32* %a_len_ptr, !range !0
%first.itr.check = icmp sgt i32 %n, 0
%start = sub i32 %n, 1
br i1 %first.itr.check, label %loop, label %exit
loop:
%idx = phi i32 [ %start, %entry ] , [ %idx.dec, %in.bounds ]
%idx.dec = sub i32 %idx, 1
%abc.high = icmp slt i32 %idx, %len
%abc.low = icmp sge i32 %idx, 0
%abc = and i1 %abc.low, %abc.high
br i1 %abc, label %in.bounds, label %out.of.bounds, !prof !1
in.bounds:
%addr = getelementptr i32* %arr, i32 %idx
store i32 0, i32* %addr
%next = icmp sgt i32 %idx.dec, -1
br i1 %next, label %loop, label %exit
out.of.bounds:
ret void
exit:
ret void
; CHECK: loop.preheader:
; CHECK: [[indvar_start:[^ ]+]] = add i32 %n, -1
; CHECK: [[not_len:[^ ]+]] = sub i32 -1, %len
; CHECK: [[not_n:[^ ]+]] = sub i32 -1, %n
; CHECK: [[not_len_hiclamp_cmp:[^ ]+]] = icmp sgt i32 [[not_len]], [[not_n]]
; CHECK: [[not_len_hiclamp:[^ ]+]] = select i1 [[not_len_hiclamp_cmp]], i32 [[not_len]], i32 [[not_n]]
; CHECK: [[len_hiclamp:[^ ]+]] = sub i32 -1, [[not_len_hiclamp]]
; CHECK: [[not_exit_preloop_at_cmp:[^ ]+]] = icmp sgt i32 [[len_hiclamp]], 0
; CHECK: [[not_exit_preloop_at:[^ ]+]] = select i1 [[not_exit_preloop_at_cmp]], i32 [[len_hiclamp]], i32 0
; CHECK: %exit.preloop.at = add i32 [[not_exit_preloop_at]], -1
}
!0 = !{i32 0, i32 2147483647}
!1 = !{!"branch_weights", i32 64, i32 4}

View File

@ -42,9 +42,11 @@ define void @multiple_access_no_preloop(
; CHECK: [[smax_not_len_cond:[^ ]+]] = icmp sgt i32 [[not_len_b]], [[not_len_a]] ; CHECK: [[smax_not_len_cond:[^ ]+]] = icmp sgt i32 [[not_len_b]], [[not_len_a]]
; CHECK: [[smax_not_len:[^ ]+]] = select i1 [[smax_not_len_cond]], i32 [[not_len_b]], i32 [[not_len_a]] ; CHECK: [[smax_not_len:[^ ]+]] = select i1 [[smax_not_len_cond]], i32 [[not_len_b]], i32 [[not_len_a]]
; CHECK: [[not_n:[^ ]+]] = sub i32 -1, %n ; CHECK: [[not_n:[^ ]+]] = sub i32 -1, %n
; CHECK: [[not_upper_limit_cond:[^ ]+]] = icmp sgt i32 [[smax_not_len]], [[not_n]] ; CHECK: [[not_upper_limit_cond_loclamp:[^ ]+]] = icmp sgt i32 [[smax_not_len]], [[not_n]]
; CHECK: [[not_upper_limit:[^ ]+]] = select i1 [[not_upper_limit_cond]], i32 [[smax_not_len]], i32 [[not_n]] ; CHECK: [[not_upper_limit_loclamp:[^ ]+]] = select i1 [[not_upper_limit_cond_loclamp]], i32 [[smax_not_len]], i32 [[not_n]]
; CHECK: [[upper_limit:[^ ]+]] = sub i32 -1, [[not_upper_limit]] ; CHECK: [[upper_limit_loclamp:[^ ]+]] = sub i32 -1, [[not_upper_limit_loclamp]]
; CHECK: [[upper_limit_cmp:[^ ]+]] = icmp sgt i32 [[upper_limit_loclamp]], 0
; CHECK: [[upper_limit:[^ ]+]] = select i1 [[upper_limit_cmp]], i32 [[upper_limit_loclamp]], i32 0
; CHECK-LABEL: loop: ; CHECK-LABEL: loop:
; CHECK: br i1 true, label %in.bounds.a, label %out.of.bounds ; CHECK: br i1 true, label %in.bounds.a, label %out.of.bounds

View File

@ -36,6 +36,7 @@ define void @single_access_no_preloop_no_offset(i32 *%arr, i32 *%a_len_ptr, i32
; CHECK-LABEL: main.pseudo.exit: ; CHECK-LABEL: main.pseudo.exit:
; CHECK-NEXT: %idx.copy = phi i32 [ 0, %loop.preheader ], [ %idx.next, %main.exit.selector ] ; CHECK-NEXT: %idx.copy = phi i32 [ 0, %loop.preheader ], [ %idx.next, %main.exit.selector ]
; CHECK-NEXT: %indvar.end = phi i32 [ 0, %loop.preheader ], [ %idx.next, %main.exit.selector ]
; CHECK-NEXT: br label %postloop ; CHECK-NEXT: br label %postloop
; CHECK-LABEL: postloop: ; CHECK-LABEL: postloop:
@ -85,17 +86,19 @@ define void @single_access_no_preloop_with_offset(i32 *%arr, i32 *%a_len_ptr, i3
; CHECK-LABEL: loop.preheader: ; CHECK-LABEL: loop.preheader:
; CHECK: [[not_n:[^ ]+]] = sub i32 -1, %n ; CHECK: [[not_n:[^ ]+]] = sub i32 -1, %n
; CHECK: [[not_safe_range_end:[^ ]+]] = sub i32 3, %len ; CHECK: [[not_safe_range_end:[^ ]+]] = sub i32 3, %len
; CHECK: [[not_exit_main_loop_at_cmp:[^ ]+]] = icmp sgt i32 [[not_n]], [[not_safe_range_end]] ; CHECK: [[not_exit_main_loop_at_hiclamp_cmp:[^ ]+]] = icmp sgt i32 [[not_n]], [[not_safe_range_end]]
; CHECK: [[not_exit_main_loop_at:[^ ]+]] = select i1 [[not_exit_main_loop_at_cmp]], i32 [[not_n]], i32 [[not_safe_range_end]] ; CHECK: [[not_exit_main_loop_at_hiclamp:[^ ]+]] = select i1 [[not_exit_main_loop_at_hiclamp_cmp]], i32 [[not_n]], i32 [[not_safe_range_end]]
; CHECK: [[exit_main_loop_at:[^ ]+]] = sub i32 -1, [[not_exit_main_loop_at]] ; CHECK: [[exit_main_loop_at_hiclamp:[^ ]+]] = sub i32 -1, [[not_exit_main_loop_at_hiclamp]]
; CHECK: [[enter_main_loop:[^ ]+]] = icmp slt i32 0, [[exit_main_loop_at]] ; CHECK: [[exit_main_loop_at_loclamp_cmp:[^ ]+]] = icmp sgt i32 [[exit_main_loop_at_hiclamp]], 0
; CHECK: [[exit_main_loop_at_loclamp:[^ ]+]] = select i1 [[exit_main_loop_at_loclamp_cmp]], i32 [[exit_main_loop_at_hiclamp]], i32 0
; CHECK: [[enter_main_loop:[^ ]+]] = icmp slt i32 0, [[exit_main_loop_at_loclamp]]
; CHECK: br i1 [[enter_main_loop]], label %loop, label %main.pseudo.exit ; CHECK: br i1 [[enter_main_loop]], label %loop, label %main.pseudo.exit
; CHECK-LABEL: loop: ; CHECK-LABEL: loop:
; CHECK: br i1 true, label %in.bounds, label %out.of.bounds ; CHECK: br i1 true, label %in.bounds, label %out.of.bounds
; CHECK-LABEL: in.bounds: ; CHECK-LABEL: in.bounds:
; CHECK: [[continue_main_loop:[^ ]+]] = icmp slt i32 %idx.next, [[exit_main_loop_at]] ; CHECK: [[continue_main_loop:[^ ]+]] = icmp slt i32 %idx.next, [[exit_main_loop_at_loclamp]]
; CHECK: br i1 [[continue_main_loop]], label %loop, label %main.exit.selector ; CHECK: br i1 [[continue_main_loop]], label %loop, label %main.exit.selector
; CHECK-LABEL: main.pseudo.exit: ; CHECK-LABEL: main.pseudo.exit:

View File

@ -31,14 +31,21 @@ define void @single_access_with_preloop(i32 *%arr, i32 *%a_len_ptr, i32 %n, i32
; CHECK-LABEL: loop.preheader: ; CHECK-LABEL: loop.preheader:
; CHECK: [[not_safe_start:[^ ]+]] = add i32 %offset, -1 ; CHECK: [[not_safe_start:[^ ]+]] = add i32 %offset, -1
; CHECK: [[not_n:[^ ]+]] = sub i32 -1, %n ; CHECK: [[not_n:[^ ]+]] = sub i32 -1, %n
; CHECK: [[not_exit_preloop_at_cond:[^ ]+]] = icmp sgt i32 [[not_safe_start]], [[not_n]] ; CHECK: [[not_exit_preloop_at_cond_loclamp:[^ ]+]] = icmp sgt i32 [[not_safe_start]], [[not_n]]
; CHECK: [[not_exit_preloop_at:[^ ]+]] = select i1 [[not_exit_preloop_at_cond]], i32 [[not_safe_start]], i32 [[not_n]] ; CHECK: [[not_exit_preloop_at_loclamp:[^ ]+]] = select i1 [[not_exit_preloop_at_cond_loclamp]], i32 [[not_safe_start]], i32 [[not_n]]
; CHECK: [[exit_preloop_at:[^ ]+]] = sub i32 -1, [[not_exit_preloop_at]] ; CHECK: [[exit_preloop_at_loclamp:[^ ]+]] = sub i32 -1, [[not_exit_preloop_at_loclamp]]
; CHECK: [[exit_preloop_at_cond:[^ ]+]] = icmp sgt i32 [[exit_preloop_at_loclamp]], 0
; CHECK: [[exit_preloop_at:[^ ]+]] = select i1 [[exit_preloop_at_cond]], i32 [[exit_preloop_at_loclamp]], i32 0
; CHECK: [[not_safe_start_2:[^ ]+]] = add i32 %offset, -1
; CHECK: [[not_safe_end:[^ ]+]] = sub i32 [[not_safe_start_2]], %len
; CHECK: [[not_exit_mainloop_at_cond_loclamp:[^ ]+]] = icmp sgt i32 [[not_safe_end]], [[not_n]]
; CHECK: [[not_exit_mainloop_at_loclamp:[^ ]+]] = select i1 [[not_exit_mainloop_at_cond_loclamp]], i32 [[not_safe_end]], i32 [[not_n]]
; CHECK: [[exit_mainloop_at_loclamp:[^ ]+]] = sub i32 -1, [[not_exit_mainloop_at_loclamp]]
; CHECK: [[exit_mainloop_at_cmp:[^ ]+]] = icmp sgt i32 [[exit_mainloop_at_loclamp]], 0
; CHECK: [[exit_mainloop_at:[^ ]+]] = select i1 [[exit_mainloop_at_cmp]], i32 [[exit_mainloop_at_loclamp]], i32 0
; CHECK: [[not_safe_end:[^ ]+]] = sub i32 [[not_safe_start]], %len
; CHECK: [[not_exit_mainloop_at_cond:[^ ]+]] = icmp sgt i32 [[not_safe_end]], [[not_n]]
; CHECK: [[not_exit_mainloop_at:[^ ]+]] = select i1 [[not_exit_mainloop_at_cond]], i32 [[not_safe_end]], i32 [[not_n]]
; CHECK: [[exit_mainloop_at:[^ ]+]] = sub i32 -1, [[not_exit_mainloop_at]]
; CHECK-LABEL: in.bounds: ; CHECK-LABEL: in.bounds:
; CHECK: [[continue_mainloop_cond:[^ ]+]] = icmp slt i32 %idx.next, [[exit_mainloop_at]] ; CHECK: [[continue_mainloop_cond:[^ ]+]] = icmp slt i32 %idx.next, [[exit_mainloop_at]]