mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-06-12 13:38:21 +00:00
Initial support for anti-dependence breaking. Currently this code does not
introduce any new spilling; it just uses unused registers. Refactor the SUnit topological sort code out of the RRList scheduler and make use of it to help with the post-pass scheduler. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59999 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@ -263,3 +263,204 @@ void ScheduleDAG::VerifySchedule(bool isBottomUp) {
|
||||
"The number of nodes scheduled doesn't match the expected number!");
|
||||
}
|
||||
#endif
|
||||
|
||||
/// InitDAGTopologicalSorting - create the initial topological
|
||||
/// ordering from the DAG to be scheduled.
|
||||
///
|
||||
/// The idea of the algorithm is taken from
|
||||
/// "Online algorithms for managing the topological order of
|
||||
/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
|
||||
/// This is the MNR algorithm, which was first introduced by
|
||||
/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
|
||||
/// "Maintaining a topological order under edge insertions".
|
||||
///
|
||||
/// Short description of the algorithm:
|
||||
///
|
||||
/// Topological ordering, ord, of a DAG maps each node to a topological
|
||||
/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
|
||||
///
|
||||
/// This means that if there is a path from the node X to the node Z,
|
||||
/// then ord(X) < ord(Z).
|
||||
///
|
||||
/// This property can be used to check for reachability of nodes:
|
||||
/// if Z is reachable from X, then an insertion of the edge Z->X would
|
||||
/// create a cycle.
|
||||
///
|
||||
/// The algorithm first computes a topological ordering for the DAG by
|
||||
/// initializing the Index2Node and Node2Index arrays and then tries to keep
|
||||
/// the ordering up-to-date after edge insertions by reordering the DAG.
|
||||
///
|
||||
/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
|
||||
/// the nodes reachable from Y, and then shifts them using Shift to lie
|
||||
/// immediately after X in Index2Node.
|
||||
void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
|
||||
unsigned DAGSize = SUnits.size();
|
||||
std::vector<SUnit*> WorkList;
|
||||
WorkList.reserve(DAGSize);
|
||||
|
||||
Index2Node.resize(DAGSize);
|
||||
Node2Index.resize(DAGSize);
|
||||
|
||||
// Initialize the data structures.
|
||||
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
||||
SUnit *SU = &SUnits[i];
|
||||
int NodeNum = SU->NodeNum;
|
||||
unsigned Degree = SU->Succs.size();
|
||||
// Temporarily use the Node2Index array as scratch space for degree counts.
|
||||
Node2Index[NodeNum] = Degree;
|
||||
|
||||
// Is it a node without dependencies?
|
||||
if (Degree == 0) {
|
||||
assert(SU->Succs.empty() && "SUnit should have no successors");
|
||||
// Collect leaf nodes.
|
||||
WorkList.push_back(SU);
|
||||
}
|
||||
}
|
||||
|
||||
int Id = DAGSize;
|
||||
while (!WorkList.empty()) {
|
||||
SUnit *SU = WorkList.back();
|
||||
WorkList.pop_back();
|
||||
Allocate(SU->NodeNum, --Id);
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
SUnit *SU = I->Dep;
|
||||
if (!--Node2Index[SU->NodeNum])
|
||||
// If all dependencies of the node are processed already,
|
||||
// then the node can be computed now.
|
||||
WorkList.push_back(SU);
|
||||
}
|
||||
}
|
||||
|
||||
Visited.resize(DAGSize);
|
||||
|
||||
#ifndef NDEBUG
|
||||
// Check correctness of the ordering
|
||||
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
||||
SUnit *SU = &SUnits[i];
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] &&
|
||||
"Wrong topological sorting");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/// AddPred - Updates the topological ordering to accomodate an edge
|
||||
/// to be added from SUnit X to SUnit Y.
|
||||
void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
|
||||
int UpperBound, LowerBound;
|
||||
LowerBound = Node2Index[Y->NodeNum];
|
||||
UpperBound = Node2Index[X->NodeNum];
|
||||
bool HasLoop = false;
|
||||
// Is Ord(X) < Ord(Y) ?
|
||||
if (LowerBound < UpperBound) {
|
||||
// Update the topological order.
|
||||
Visited.reset();
|
||||
DFS(Y, UpperBound, HasLoop);
|
||||
assert(!HasLoop && "Inserted edge creates a loop!");
|
||||
// Recompute topological indexes.
|
||||
Shift(Visited, LowerBound, UpperBound);
|
||||
}
|
||||
}
|
||||
|
||||
/// RemovePred - Updates the topological ordering to accomodate an
|
||||
/// an edge to be removed from the specified node N from the predecessors
|
||||
/// of the current node M.
|
||||
void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
|
||||
// InitDAGTopologicalSorting();
|
||||
}
|
||||
|
||||
/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
|
||||
/// all nodes affected by the edge insertion. These nodes will later get new
|
||||
/// topological indexes by means of the Shift method.
|
||||
void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, bool& HasLoop) {
|
||||
std::vector<const SUnit*> WorkList;
|
||||
WorkList.reserve(SUnits.size());
|
||||
|
||||
WorkList.push_back(SU);
|
||||
while (!WorkList.empty()) {
|
||||
SU = WorkList.back();
|
||||
WorkList.pop_back();
|
||||
Visited.set(SU->NodeNum);
|
||||
for (int I = SU->Succs.size()-1; I >= 0; --I) {
|
||||
int s = SU->Succs[I].Dep->NodeNum;
|
||||
if (Node2Index[s] == UpperBound) {
|
||||
HasLoop = true;
|
||||
return;
|
||||
}
|
||||
// Visit successors if not already and in affected region.
|
||||
if (!Visited.test(s) && Node2Index[s] < UpperBound) {
|
||||
WorkList.push_back(SU->Succs[I].Dep);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Shift - Renumber the nodes so that the topological ordering is
|
||||
/// preserved.
|
||||
void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
|
||||
int UpperBound) {
|
||||
std::vector<int> L;
|
||||
int shift = 0;
|
||||
int i;
|
||||
|
||||
for (i = LowerBound; i <= UpperBound; ++i) {
|
||||
// w is node at topological index i.
|
||||
int w = Index2Node[i];
|
||||
if (Visited.test(w)) {
|
||||
// Unmark.
|
||||
Visited.reset(w);
|
||||
L.push_back(w);
|
||||
shift = shift + 1;
|
||||
} else {
|
||||
Allocate(w, i - shift);
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned j = 0; j < L.size(); ++j) {
|
||||
Allocate(L[j], i - shift);
|
||||
i = i + 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
|
||||
/// create a cycle.
|
||||
bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
|
||||
if (IsReachable(TargetSU, SU))
|
||||
return true;
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I)
|
||||
if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
/// IsReachable - Checks if SU is reachable from TargetSU.
|
||||
bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, const SUnit *TargetSU) {
|
||||
// If insertion of the edge SU->TargetSU would create a cycle
|
||||
// then there is a path from TargetSU to SU.
|
||||
int UpperBound, LowerBound;
|
||||
LowerBound = Node2Index[TargetSU->NodeNum];
|
||||
UpperBound = Node2Index[SU->NodeNum];
|
||||
bool HasLoop = false;
|
||||
// Is Ord(TargetSU) < Ord(SU) ?
|
||||
if (LowerBound < UpperBound) {
|
||||
Visited.reset();
|
||||
// There may be a path from TargetSU to SU. Check for it.
|
||||
DFS(TargetSU, UpperBound, HasLoop);
|
||||
}
|
||||
return HasLoop;
|
||||
}
|
||||
|
||||
/// Allocate - assign the topological index to the node n.
|
||||
void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
|
||||
Node2Index[n] = index;
|
||||
Index2Node[index] = n;
|
||||
}
|
||||
|
||||
ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
|
||||
std::vector<SUnit> &sunits)
|
||||
: SUnits(sunits) {}
|
||||
|
Reference in New Issue
Block a user