Add Chapter 8 to the Kaleidoscope tutorial. This chapter adds

a description of how to add debug information using DWARF and
DIBuilder to the language.

Thanks to David Blaikie for his assistance with this tutorial.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223671 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Eric Christopher 2014-12-08 18:00:47 +00:00
parent 72878a54ff
commit 23cf05ab9e
6 changed files with 2179 additions and 228 deletions

View File

@ -1,267 +1,425 @@
======================================================
Kaleidoscope: Conclusion and other useful LLVM tidbits
======================================================
=======================================================
Kaleidoscope: Extending the Language: Debug Information
=======================================================
.. contents::
:local:
Tutorial Conclusion
===================
Chapter 8 Introduction
======================
Welcome to the final chapter of the "`Implementing a language with
LLVM <index.html>`_" tutorial. In the course of this tutorial, we have
grown our little Kaleidoscope language from being a useless toy, to
being a semi-interesting (but probably still useless) toy. :)
Welcome to Chapter 8 of the "`Implementing a language with
LLVM <index.html>`_" tutorial. In chapters 1 through 7, we've built a
decent little programming language with functions and variables.
What happens if something goes wrong though, how do you debug your
program?
It is interesting to see how far we've come, and how little code it has
taken. We built the entire lexer, parser, AST, code generator, and an
interactive run-loop (with a JIT!) by-hand in under 700 lines of
(non-comment/non-blank) code.
Source level debugging uses formatted data that helps a debugger
translate from binary and the state of the machine back to the
source that the programmer wrote. In LLVM we generally use a format
called `DWARF <http://dwarfstd.org>`_. DWARF is a compact encoding
that represents types, source locations, and variable locations.
Our little language supports a couple of interesting features: it
supports user defined binary and unary operators, it uses JIT
compilation for immediate evaluation, and it supports a few control flow
constructs with SSA construction.
The short summary of this chapter is that we'll go through the
various things you have to add to a programming language to
support debug info, and how you translate that into DWARF.
Part of the idea of this tutorial was to show you how easy and fun it
can be to define, build, and play with languages. Building a compiler
need not be a scary or mystical process! Now that you've seen some of
the basics, I strongly encourage you to take the code and hack on it.
For example, try adding:
Caveat: For now we can't debug via the JIT, so we'll need to compile
our program down to something small and standalone. As part of this
we'll make a few modifications to the running of the language and
how programs are compiled. This means that we'll have a source file
with a simple program written in Kaleidoscope rather than the
interactive JIT. It does involve a limitation that we can only
have one "top level" command at a time to reduce the number of
changes necessary.
- **global variables** - While global variables have questional value
in modern software engineering, they are often useful when putting
together quick little hacks like the Kaleidoscope compiler itself.
Fortunately, our current setup makes it very easy to add global
variables: just have value lookup check to see if an unresolved
variable is in the global variable symbol table before rejecting it.
To create a new global variable, make an instance of the LLVM
``GlobalVariable`` class.
- **typed variables** - Kaleidoscope currently only supports variables
of type double. This gives the language a very nice elegance, because
only supporting one type means that you never have to specify types.
Different languages have different ways of handling this. The easiest
way is to require the user to specify types for every variable
definition, and record the type of the variable in the symbol table
along with its Value\*.
- **arrays, structs, vectors, etc** - Once you add types, you can start
extending the type system in all sorts of interesting ways. Simple
arrays are very easy and are quite useful for many different
applications. Adding them is mostly an exercise in learning how the
LLVM `getelementptr <../LangRef.html#i_getelementptr>`_ instruction
works: it is so nifty/unconventional, it `has its own
FAQ <../GetElementPtr.html>`_! If you add support for recursive types
(e.g. linked lists), make sure to read the `section in the LLVM
Programmer's Manual <../ProgrammersManual.html#TypeResolve>`_ that
describes how to construct them.
- **standard runtime** - Our current language allows the user to access
arbitrary external functions, and we use it for things like "printd"
and "putchard". As you extend the language to add higher-level
constructs, often these constructs make the most sense if they are
lowered to calls into a language-supplied runtime. For example, if
you add hash tables to the language, it would probably make sense to
add the routines to a runtime, instead of inlining them all the way.
- **memory management** - Currently we can only access the stack in
Kaleidoscope. It would also be useful to be able to allocate heap
memory, either with calls to the standard libc malloc/free interface
or with a garbage collector. If you would like to use garbage
collection, note that LLVM fully supports `Accurate Garbage
Collection <../GarbageCollection.html>`_ including algorithms that
move objects and need to scan/update the stack.
- **debugger support** - LLVM supports generation of `DWARF Debug
info <../SourceLevelDebugging.html>`_ which is understood by common
debuggers like GDB. Adding support for debug info is fairly
straightforward. The best way to understand it is to compile some
C/C++ code with "``clang -g -O0``" and taking a look at what it
produces.
- **exception handling support** - LLVM supports generation of `zero
cost exceptions <../ExceptionHandling.html>`_ which interoperate with
code compiled in other languages. You could also generate code by
implicitly making every function return an error value and checking
it. You could also make explicit use of setjmp/longjmp. There are
many different ways to go here.
- **object orientation, generics, database access, complex numbers,
geometric programming, ...** - Really, there is no end of crazy
features that you can add to the language.
- **unusual domains** - We've been talking about applying LLVM to a
domain that many people are interested in: building a compiler for a
specific language. However, there are many other domains that can use
compiler technology that are not typically considered. For example,
LLVM has been used to implement OpenGL graphics acceleration,
translate C++ code to ActionScript, and many other cute and clever
things. Maybe you will be the first to JIT compile a regular
expression interpreter into native code with LLVM?
Here's the sample program we'll be compiling:
Have fun - try doing something crazy and unusual. Building a language
like everyone else always has, is much less fun than trying something a
little crazy or off the wall and seeing how it turns out. If you get
stuck or want to talk about it, feel free to email the `llvmdev mailing
list <http://lists.cs.uiuc.edu/mailman/listinfo/llvmdev>`_: it has lots
of people who are interested in languages and are often willing to help
out.
.. code-block:: python
Before we end this tutorial, I want to talk about some "tips and tricks"
for generating LLVM IR. These are some of the more subtle things that
may not be obvious, but are very useful if you want to take advantage of
LLVM's capabilities.
def fib(x)
if x < 3 then
1
else
fib(x-1)+fib(x-2);
Properties of the LLVM IR
=========================
fib(10)
We have a couple common questions about code in the LLVM IR form - lets
just get these out of the way right now, shall we?
Target Independence
-------------------
Why is this a hard problem?
===========================
Kaleidoscope is an example of a "portable language": any program written
in Kaleidoscope will work the same way on any target that it runs on.
Many other languages have this property, e.g. lisp, java, haskell,
javascript, python, etc (note that while these languages are portable,
not all their libraries are).
Debug information is a hard problem for a few different reasons - mostly
centered around optimized code. First, optimization makes keeping source
locations more difficult. In LLVM IR we keep the original source location
for each IR level instruction on the instruction. Optimization passes
should keep the source locations for newly created instructions, but merged
instructions only get to keep a single location - this can cause jumping
around when stepping through optimized programs. Secondly, optimization
can move variables in ways that are either optimized out, shared in memory
with other variables, or difficult to track. For the purposes of this
tutorial we're going to avoid optimization (as you'll see with one of the
next sets of patches).
One nice aspect of LLVM is that it is often capable of preserving target
independence in the IR: you can take the LLVM IR for a
Kaleidoscope-compiled program and run it on any target that LLVM
supports, even emitting C code and compiling that on targets that LLVM
doesn't support natively. You can trivially tell that the Kaleidoscope
compiler generates target-independent code because it never queries for
any target-specific information when generating code.
Ahead-of-Time Compilation Mode
==============================
The fact that LLVM provides a compact, target-independent,
representation for code gets a lot of people excited. Unfortunately,
these people are usually thinking about C or a language from the C
family when they are asking questions about language portability. I say
"unfortunately", because there is really no way to make (fully general)
C code portable, other than shipping the source code around (and of
course, C source code is not actually portable in general either - ever
port a really old application from 32- to 64-bits?).
To highlight only the aspects of adding debug information to a source
language without needing to worry about the complexities of JIT debugging
we're going to make a few changes to Kaleidoscope to support compiling
the IR emitted by the front end into a simple standalone program that
you can execute, debug, and see results.
The problem with C (again, in its full generality) is that it is heavily
laden with target specific assumptions. As one simple example, the
preprocessor often destructively removes target-independence from the
code when it processes the input text:
First we make our anonymous function that contains our top level
statement be our "main":
.. code-block:: c
.. code-block:: udiff
#ifdef __i386__
int X = 1;
#else
int X = 42;
#endif
- PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+ PrototypeAST *Proto = new PrototypeAST("main", std::vector<std::string>());
While it is possible to engineer more and more complex solutions to
problems like this, it cannot be solved in full generality in a way that
is better than shipping the actual source code.
just with the simple change of giving it a name.
That said, there are interesting subsets of C that can be made portable.
If you are willing to fix primitive types to a fixed size (say int =
32-bits, and long = 64-bits), don't care about ABI compatibility with
existing binaries, and are willing to give up some other minor features,
you can have portable code. This can make sense for specialized domains
such as an in-kernel language.
Then we're going to remove the command line code wherever it exists:
Safety Guarantees
-----------------
.. code-block:: udiff
Many of the languages above are also "safe" languages: it is impossible
for a program written in Java to corrupt its address space and crash the
process (assuming the JVM has no bugs). Safety is an interesting
property that requires a combination of language design, runtime
support, and often operating system support.
@@ -1129,7 +1129,6 @@ static void HandleTopLevelExpression() {
/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (1) {
- fprintf(stderr, "ready> ");
switch (CurTok) {
case tok_eof:
return;
@@ -1184,7 +1183,6 @@ int main() {
BinopPrecedence['*'] = 40; // highest.
// Prime the first token.
- fprintf(stderr, "ready> ");
getNextToken();
Lastly we're going to disable all of the optimization passes and the JIT so
that the only thing that happens after we're done parsing and generating
code is that the llvm IR goes to standard error:
It is certainly possible to implement a safe language in LLVM, but LLVM
IR does not itself guarantee safety. The LLVM IR allows unsafe pointer
casts, use after free bugs, buffer over-runs, and a variety of other
problems. Safety needs to be implemented as a layer on top of LLVM and,
conveniently, several groups have investigated this. Ask on the `llvmdev
mailing list <http://lists.cs.uiuc.edu/mailman/listinfo/llvmdev>`_ if
you are interested in more details.
.. code-block:: udiff
Language-Specific Optimizations
-------------------------------
@@ -1108,17 +1108,8 @@ static void HandleExtern() {
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (FunctionAST *F = ParseTopLevelExpr()) {
- if (Function *LF = F->Codegen()) {
- // We're just doing this to make sure it executes.
- TheExecutionEngine->finalizeObject();
- // JIT the function, returning a function pointer.
- void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
-
- // Cast it to the right type (takes no arguments, returns a double) so we
- // can call it as a native function.
- double (*FP)() = (double (*)())(intptr_t)FPtr;
- // Ignore the return value for this.
- (void)FP;
+ if (!F->Codegen()) {
+ fprintf(stderr, "Error generating code for top level expr");
}
} else {
// Skip token for error recovery.
@@ -1439,11 +1459,11 @@ int main() {
// target lays out data structures.
TheModule->setDataLayout(TheExecutionEngine->getDataLayout());
OurFPM.add(new DataLayoutPass());
+#if 0
OurFPM.add(createBasicAliasAnalysisPass());
// Promote allocas to registers.
OurFPM.add(createPromoteMemoryToRegisterPass());
@@ -1218,7 +1210,7 @@ int main() {
OurFPM.add(createGVNPass());
// Simplify the control flow graph (deleting unreachable blocks, etc).
OurFPM.add(createCFGSimplificationPass());
-
+ #endif
OurFPM.doInitialization();
// Set the global so the code gen can use this.
One thing about LLVM that turns off many people is that it does not
solve all the world's problems in one system (sorry 'world hunger',
someone else will have to solve you some other day). One specific
complaint is that people perceive LLVM as being incapable of performing
high-level language-specific optimization: LLVM "loses too much
information".
This relatively small set of changes get us to the point that we can compile
our piece of Kaleidoscope language down to an executable program via this
command line:
Unfortunately, this is really not the place to give you a full and
unified version of "Chris Lattner's theory of compiler design". Instead,
I'll make a few observations:
.. code-block:: bash
First, you're right that LLVM does lose information. For example, as of
this writing, there is no way to distinguish in the LLVM IR whether an
SSA-value came from a C "int" or a C "long" on an ILP32 machine (other
than debug info). Both get compiled down to an 'i32' value and the
information about what it came from is lost. The more general issue
here, is that the LLVM type system uses "structural equivalence" instead
of "name equivalence". Another place this surprises people is if you
have two types in a high-level language that have the same structure
(e.g. two different structs that have a single int field): these types
will compile down into a single LLVM type and it will be impossible to
tell what it came from.
Kaleidoscope-Ch8 < fib.ks | & clang -x ir -
Second, while LLVM does lose information, LLVM is not a fixed target: we
continue to enhance and improve it in many different ways. In addition
to adding new features (LLVM did not always support exceptions or debug
info), we also extend the IR to capture important information for
optimization (e.g. whether an argument is sign or zero extended,
information about pointers aliasing, etc). Many of the enhancements are
user-driven: people want LLVM to include some specific feature, so they
go ahead and extend it.
which gives an a.out/a.exe in the current working directory.
Third, it is *possible and easy* to add language-specific optimizations,
and you have a number of choices in how to do it. As one trivial
example, it is easy to add language-specific optimization passes that
"know" things about code compiled for a language. In the case of the C
family, there is an optimization pass that "knows" about the standard C
library functions. If you call "exit(0)" in main(), it knows that it is
safe to optimize that into "return 0;" because C specifies what the
'exit' function does.
Compile Unit
============
In addition to simple library knowledge, it is possible to embed a
variety of other language-specific information into the LLVM IR. If you
have a specific need and run into a wall, please bring the topic up on
the llvmdev list. At the very worst, you can always treat LLVM as if it
were a "dumb code generator" and implement the high-level optimizations
you desire in your front-end, on the language-specific AST.
The top level container for a section of code in DWARF is a compile unit.
This contains the type and function data for an individual translation unit
(read: one file of source code). So the first thing we need to do is
construct one for our fib.ks file.
Tips and Tricks
===============
DWARF Emission Setup
====================
There is a variety of useful tips and tricks that you come to know after
working on/with LLVM that aren't obvious at first glance. Instead of
letting everyone rediscover them, this section talks about some of these
issues.
Similar to the ``IRBuilder`` class we have a
```DIBuilder`` <http://llvm.org/doxygen/classllvm_1_1DIBuilder.html>`_ class
that helps in constructing debug metadata for an llvm IR file. It
corresponds 1:1 similarly to ``IRBuilder`` and llvm IR, but with nicer names.
Using it does require that you be more familiar with DWARF terminology than
you needed to be with ``IRBuilder`` and ``Instruction`` names, but if you
read through the general documentation on the
```Metadata Format`` <http://llvm.org/docs/SourceLevelDebugging.html>`_ it
should be a little more clear. We'll be using this class to construct all
of our IR level descriptions. Construction for it takes a module so we
need to construct it shortly after we construct our module. We've left it
as a global static variable to make it a bit easier to use.
Implementing portable offsetof/sizeof
-------------------------------------
Next we're going to create a small container to cache some of our frequent
data. The first will be our compile unit, but we'll also write a bit of
code for our one type since we won't have to worry about multiple typed
expressions:
One interesting thing that comes up, if you are trying to keep the code
generated by your compiler "target independent", is that you often need
to know the size of some LLVM type or the offset of some field in an
llvm structure. For example, you might need to pass the size of a type
into a function that allocates memory.
.. code-block:: c++
Unfortunately, this can vary widely across targets: for example the
width of a pointer is trivially target-specific. However, there is a
`clever way to use the getelementptr
instruction <http://nondot.org/sabre/LLVMNotes/SizeOf-OffsetOf-VariableSizedStructs.txt>`_
that allows you to compute this in a portable way.
static DIBuilder *DBuilder;
Garbage Collected Stack Frames
------------------------------
struct DebugInfo {
DICompileUnit TheCU;
DIType DblTy;
Some languages want to explicitly manage their stack frames, often so
that they are garbage collected or to allow easy implementation of
closures. There are often better ways to implement these features than
explicit stack frames, but `LLVM does support
them, <http://nondot.org/sabre/LLVMNotes/ExplicitlyManagedStackFrames.txt>`_
if you want. It requires your front-end to convert the code into
`Continuation Passing
Style <http://en.wikipedia.org/wiki/Continuation-passing_style>`_ and
the use of tail calls (which LLVM also supports).
DIType getDoubleTy();
} KSDbgInfo;
DIType DebugInfo::getDoubleTy() {
if (DblTy.isValid())
return DblTy;
DblTy = DBuilder->createBasicType("double", 64, 64, dwarf::DW_ATE_float);
return DblTy;
}
And then later on in ``main`` when we're constructing our module:
.. code-block:: c++
DBuilder = new DIBuilder(*TheModule);
KSDbgInfo.TheCU = DBuilder->createCompileUnit(
dwarf::DW_LANG_C, "fib.ks", ".", "Kaleidoscope Compiler", 0, "", 0);
There are a couple of things to note here. First, while we're producing a
compile unit for a language called Kaleidoscope we used the language
constant for C. This is because a debugger wouldn't necessarily understand
the calling conventions or default ABI for a language it doesn't recognize
and we follow the C ABI in our llvm code generation so it's the closest
thing to accurate. This ensures we can actually call functions from the
debugger and have them execute. Secondly, you'll see the "fib.ks" in the
call to ``createCompileUnit``. This is a default hard coded value since
we're using shell redirection to put our source into the Kaleidoscope
compiler. In a usual front end you'd have an input file name and it would
go there.
One last thing as part of emitting debug information via DIBuilder is that
we need to "finalize" the debug information. The reasons are part of the
underlying API for DIBuilder, but make sure you do this near the end of
main:
.. code-block:: c++
DBuilder->finalize();
before you dump out the module.
Functions
=========
Now that we have our ``Compile Unit`` and our source locations, we can add
function definitions to the debug info. So in ``PrototypeAST::Codegen`` we
add a few lines of code to describe a context for our subprogram, in this
case the "File", and the actual definition of the function itself.
So the context:
.. code-block:: c++
DIFile Unit = DBuilder->createFile(KSDbgInfo.TheCU.getFilename(),
KSDbgInfo.TheCU.getDirectory());
giving us a DIFile and asking the ``Compile Unit`` we created above for the
directory and filename where we are currently. Then, for now, we use some
source locations of 0 (since our AST doesn't currently have source location
information) and construct our function definition:
.. code-block:: c++
DIDescriptor FContext(Unit);
unsigned LineNo = 0;
unsigned ScopeLine = 0;
DISubprogram SP = DBuilder->createFunction(
FContext, Name, StringRef(), Unit, LineNo,
CreateFunctionType(Args.size(), Unit), false /* internal linkage */,
true /* definition */, ScopeLine, DIDescriptor::FlagPrototyped, false, F);
and we now have a DISubprogram that contains a reference to all of our metadata
for the function.
Source Locations
================
The most important thing for debug information is accurate source location -
this makes it possible to map your source code back. We have a problem though,
Kaleidoscope really doesn't have any source location information in the lexer
or parser so we'll need to add it.
.. code-block:: c++
struct SourceLocation {
int Line;
int Col;
};
static SourceLocation CurLoc;
static SourceLocation LexLoc = {1, 0};
static int advance() {
int LastChar = getchar();
if (LastChar == '\n' || LastChar == '\r') {
LexLoc.Line++;
LexLoc.Col = 0;
} else
LexLoc.Col++;
return LastChar;
}
In this set of code we've added some functionality on how to keep track of the
line and column of the "source file". As we lex every token we set our current
current "lexical location" to the assorted line and column for the beginning
of the token. We do this by overriding all of the previous calls to
``getchar()`` with our new ``advance()`` that keeps track of the information
and then we have added to all of our AST classes a source location:
.. code-block:: c++
class ExprAST {
SourceLocation Loc;
public:
int getLine() const { return Loc.Line; }
int getCol() const { return Loc.Col; }
ExprAST(SourceLocation Loc = CurLoc) : Loc(Loc) {}
virtual std::ostream &dump(std::ostream &out, int ind) {
return out << ':' << getLine() << ':' << getCol() << '\n';
}
that we pass down through when we create a new expression:
.. code-block:: c++
LHS = new BinaryExprAST(BinLoc, BinOp, LHS, RHS);
giving us locations for each of our expressions and variables.
From this we can make sure to tell ``DIBuilder`` when we're at a new source
location so it can use that when we generate the rest of our code and make
sure that each instruction has source location information. We do this
by constructing another small function:
.. code-block:: c++
void DebugInfo::emitLocation(ExprAST *AST) {
DIScope *Scope;
if (LexicalBlocks.empty())
Scope = &TheCU;
else
Scope = LexicalBlocks.back();
Builder.SetCurrentDebugLocation(
DebugLoc::get(AST->getLine(), AST->getCol(), DIScope(*Scope)));
}
that both tells the main ``IRBuilder`` where we are, but also what scope
we're in. Since we've just created a function above we can either be in
the main file scope (like when we created our function), or now we can be
in the function scope we just created. To represent this we create a stack
of scopes:
.. code-block:: c++
std::vector<DIScope *> LexicalBlocks;
std::map<const PrototypeAST *, DIScope> FnScopeMap;
and keep a map of each function to the scope that it represents (a DISubprogram
is also a DIScope).
Then we make sure to:
.. code-block:: c++
KSDbgInfo.emitLocation(this);
emit the location every time we start to generate code for a new AST, and
also:
.. code-block:: c++
KSDbgInfo.FnScopeMap[this] = SP;
store the scope (function) when we create it and use it:
KSDbgInfo.LexicalBlocks.push_back(&KSDbgInfo.FnScopeMap[Proto]);
when we start generating the code for each function.
One interesting thing to note at this point is that various debuggers have
assumptions based on how code and debug information was generated for them
in the past. In this case we need to do a little bit of a hack to avoid
generating line information for the function prologue so that the debugger
knows to skip over those instructions when setting a breakpoint. So in
``FunctionAST::CodeGen`` we add a couple of lines:
.. code-block:: c++
// Unset the location for the prologue emission (leading instructions with no
// location in a function are considered part of the prologue and the debugger
// will run past them when breaking on a function)
KSDbgInfo.emitLocation(nullptr);
and then emit a new location when we actually start generating code for the
body of the function:
.. code-block:: c++
KSDbgInfo.emitLocation(Body);
also, don't forget to pop the scope back off of your scope stack at the
end of the code generation for the function:
.. code-block:: c++
// Pop off the lexical block for the function since we added it
// unconditionally.
KSDbgInfo.LexicalBlocks.pop_back();
Full Code Listing
=================
Here is the complete code listing for our running example, enhanced with
debug information. To build this example, use:
.. code-block:: bash
# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core jit native` -O3 -o toy
# Run
./toy
Here is the code:
.. literalinclude:: ../../examples/Kaleidoscope/Chapter8/toy.cpp
:language: c++
`Next: Conclusion and other useful LLVM tidbits <LangImpl9.html>`_

267
docs/tutorial/LangImpl9.rst Normal file
View File

@ -0,0 +1,267 @@
======================================================
Kaleidoscope: Conclusion and other useful LLVM tidbits
======================================================
.. contents::
:local:
Tutorial Conclusion
===================
Welcome to the final chapter of the "`Implementing a language with
LLVM <index.html>`_" tutorial. In the course of this tutorial, we have
grown our little Kaleidoscope language from being a useless toy, to
being a semi-interesting (but probably still useless) toy. :)
It is interesting to see how far we've come, and how little code it has
taken. We built the entire lexer, parser, AST, code generator, and an
interactive run-loop (with a JIT!) by-hand in under 700 lines of
(non-comment/non-blank) code.
Our little language supports a couple of interesting features: it
supports user defined binary and unary operators, it uses JIT
compilation for immediate evaluation, and it supports a few control flow
constructs with SSA construction.
Part of the idea of this tutorial was to show you how easy and fun it
can be to define, build, and play with languages. Building a compiler
need not be a scary or mystical process! Now that you've seen some of
the basics, I strongly encourage you to take the code and hack on it.
For example, try adding:
- **global variables** - While global variables have questional value
in modern software engineering, they are often useful when putting
together quick little hacks like the Kaleidoscope compiler itself.
Fortunately, our current setup makes it very easy to add global
variables: just have value lookup check to see if an unresolved
variable is in the global variable symbol table before rejecting it.
To create a new global variable, make an instance of the LLVM
``GlobalVariable`` class.
- **typed variables** - Kaleidoscope currently only supports variables
of type double. This gives the language a very nice elegance, because
only supporting one type means that you never have to specify types.
Different languages have different ways of handling this. The easiest
way is to require the user to specify types for every variable
definition, and record the type of the variable in the symbol table
along with its Value\*.
- **arrays, structs, vectors, etc** - Once you add types, you can start
extending the type system in all sorts of interesting ways. Simple
arrays are very easy and are quite useful for many different
applications. Adding them is mostly an exercise in learning how the
LLVM `getelementptr <../LangRef.html#i_getelementptr>`_ instruction
works: it is so nifty/unconventional, it `has its own
FAQ <../GetElementPtr.html>`_! If you add support for recursive types
(e.g. linked lists), make sure to read the `section in the LLVM
Programmer's Manual <../ProgrammersManual.html#TypeResolve>`_ that
describes how to construct them.
- **standard runtime** - Our current language allows the user to access
arbitrary external functions, and we use it for things like "printd"
and "putchard". As you extend the language to add higher-level
constructs, often these constructs make the most sense if they are
lowered to calls into a language-supplied runtime. For example, if
you add hash tables to the language, it would probably make sense to
add the routines to a runtime, instead of inlining them all the way.
- **memory management** - Currently we can only access the stack in
Kaleidoscope. It would also be useful to be able to allocate heap
memory, either with calls to the standard libc malloc/free interface
or with a garbage collector. If you would like to use garbage
collection, note that LLVM fully supports `Accurate Garbage
Collection <../GarbageCollection.html>`_ including algorithms that
move objects and need to scan/update the stack.
- **debugger support** - LLVM supports generation of `DWARF Debug
info <../SourceLevelDebugging.html>`_ which is understood by common
debuggers like GDB. Adding support for debug info is fairly
straightforward. The best way to understand it is to compile some
C/C++ code with "``clang -g -O0``" and taking a look at what it
produces.
- **exception handling support** - LLVM supports generation of `zero
cost exceptions <../ExceptionHandling.html>`_ which interoperate with
code compiled in other languages. You could also generate code by
implicitly making every function return an error value and checking
it. You could also make explicit use of setjmp/longjmp. There are
many different ways to go here.
- **object orientation, generics, database access, complex numbers,
geometric programming, ...** - Really, there is no end of crazy
features that you can add to the language.
- **unusual domains** - We've been talking about applying LLVM to a
domain that many people are interested in: building a compiler for a
specific language. However, there are many other domains that can use
compiler technology that are not typically considered. For example,
LLVM has been used to implement OpenGL graphics acceleration,
translate C++ code to ActionScript, and many other cute and clever
things. Maybe you will be the first to JIT compile a regular
expression interpreter into native code with LLVM?
Have fun - try doing something crazy and unusual. Building a language
like everyone else always has, is much less fun than trying something a
little crazy or off the wall and seeing how it turns out. If you get
stuck or want to talk about it, feel free to email the `llvmdev mailing
list <http://lists.cs.uiuc.edu/mailman/listinfo/llvmdev>`_: it has lots
of people who are interested in languages and are often willing to help
out.
Before we end this tutorial, I want to talk about some "tips and tricks"
for generating LLVM IR. These are some of the more subtle things that
may not be obvious, but are very useful if you want to take advantage of
LLVM's capabilities.
Properties of the LLVM IR
=========================
We have a couple common questions about code in the LLVM IR form - lets
just get these out of the way right now, shall we?
Target Independence
-------------------
Kaleidoscope is an example of a "portable language": any program written
in Kaleidoscope will work the same way on any target that it runs on.
Many other languages have this property, e.g. lisp, java, haskell,
javascript, python, etc (note that while these languages are portable,
not all their libraries are).
One nice aspect of LLVM is that it is often capable of preserving target
independence in the IR: you can take the LLVM IR for a
Kaleidoscope-compiled program and run it on any target that LLVM
supports, even emitting C code and compiling that on targets that LLVM
doesn't support natively. You can trivially tell that the Kaleidoscope
compiler generates target-independent code because it never queries for
any target-specific information when generating code.
The fact that LLVM provides a compact, target-independent,
representation for code gets a lot of people excited. Unfortunately,
these people are usually thinking about C or a language from the C
family when they are asking questions about language portability. I say
"unfortunately", because there is really no way to make (fully general)
C code portable, other than shipping the source code around (and of
course, C source code is not actually portable in general either - ever
port a really old application from 32- to 64-bits?).
The problem with C (again, in its full generality) is that it is heavily
laden with target specific assumptions. As one simple example, the
preprocessor often destructively removes target-independence from the
code when it processes the input text:
.. code-block:: c
#ifdef __i386__
int X = 1;
#else
int X = 42;
#endif
While it is possible to engineer more and more complex solutions to
problems like this, it cannot be solved in full generality in a way that
is better than shipping the actual source code.
That said, there are interesting subsets of C that can be made portable.
If you are willing to fix primitive types to a fixed size (say int =
32-bits, and long = 64-bits), don't care about ABI compatibility with
existing binaries, and are willing to give up some other minor features,
you can have portable code. This can make sense for specialized domains
such as an in-kernel language.
Safety Guarantees
-----------------
Many of the languages above are also "safe" languages: it is impossible
for a program written in Java to corrupt its address space and crash the
process (assuming the JVM has no bugs). Safety is an interesting
property that requires a combination of language design, runtime
support, and often operating system support.
It is certainly possible to implement a safe language in LLVM, but LLVM
IR does not itself guarantee safety. The LLVM IR allows unsafe pointer
casts, use after free bugs, buffer over-runs, and a variety of other
problems. Safety needs to be implemented as a layer on top of LLVM and,
conveniently, several groups have investigated this. Ask on the `llvmdev
mailing list <http://lists.cs.uiuc.edu/mailman/listinfo/llvmdev>`_ if
you are interested in more details.
Language-Specific Optimizations
-------------------------------
One thing about LLVM that turns off many people is that it does not
solve all the world's problems in one system (sorry 'world hunger',
someone else will have to solve you some other day). One specific
complaint is that people perceive LLVM as being incapable of performing
high-level language-specific optimization: LLVM "loses too much
information".
Unfortunately, this is really not the place to give you a full and
unified version of "Chris Lattner's theory of compiler design". Instead,
I'll make a few observations:
First, you're right that LLVM does lose information. For example, as of
this writing, there is no way to distinguish in the LLVM IR whether an
SSA-value came from a C "int" or a C "long" on an ILP32 machine (other
than debug info). Both get compiled down to an 'i32' value and the
information about what it came from is lost. The more general issue
here, is that the LLVM type system uses "structural equivalence" instead
of "name equivalence". Another place this surprises people is if you
have two types in a high-level language that have the same structure
(e.g. two different structs that have a single int field): these types
will compile down into a single LLVM type and it will be impossible to
tell what it came from.
Second, while LLVM does lose information, LLVM is not a fixed target: we
continue to enhance and improve it in many different ways. In addition
to adding new features (LLVM did not always support exceptions or debug
info), we also extend the IR to capture important information for
optimization (e.g. whether an argument is sign or zero extended,
information about pointers aliasing, etc). Many of the enhancements are
user-driven: people want LLVM to include some specific feature, so they
go ahead and extend it.
Third, it is *possible and easy* to add language-specific optimizations,
and you have a number of choices in how to do it. As one trivial
example, it is easy to add language-specific optimization passes that
"know" things about code compiled for a language. In the case of the C
family, there is an optimization pass that "knows" about the standard C
library functions. If you call "exit(0)" in main(), it knows that it is
safe to optimize that into "return 0;" because C specifies what the
'exit' function does.
In addition to simple library knowledge, it is possible to embed a
variety of other language-specific information into the LLVM IR. If you
have a specific need and run into a wall, please bring the topic up on
the llvmdev list. At the very worst, you can always treat LLVM as if it
were a "dumb code generator" and implement the high-level optimizations
you desire in your front-end, on the language-specific AST.
Tips and Tricks
===============
There is a variety of useful tips and tricks that you come to know after
working on/with LLVM that aren't obvious at first glance. Instead of
letting everyone rediscover them, this section talks about some of these
issues.
Implementing portable offsetof/sizeof
-------------------------------------
One interesting thing that comes up, if you are trying to keep the code
generated by your compiler "target independent", is that you often need
to know the size of some LLVM type or the offset of some field in an
llvm structure. For example, you might need to pass the size of a type
into a function that allocates memory.
Unfortunately, this can vary widely across targets: for example the
width of a pointer is trivially target-specific. However, there is a
`clever way to use the getelementptr
instruction <http://nondot.org/sabre/LLVMNotes/SizeOf-OffsetOf-VariableSizedStructs.txt>`_
that allows you to compute this in a portable way.
Garbage Collected Stack Frames
------------------------------
Some languages want to explicitly manage their stack frames, often so
that they are garbage collected or to allow easy implementation of
closures. There are often better ways to implement these features than
explicit stack frames, but `LLVM does support
them, <http://nondot.org/sabre/LLVMNotes/ExplicitlyManagedStackFrames.txt>`_
if you want. It requires your front-end to convert the code into
`Continuation Passing
Style <http://en.wikipedia.org/wiki/Continuation-passing_style>`_ and
the use of tail calls (which LLVM also supports).

View File

@ -0,0 +1,17 @@
set(LLVM_LINK_COMPONENTS
Analysis
Core
ExecutionEngine
InstCombine
MC
ScalarOpts
Support
TransformUtils
nativecodegen
)
set(LLVM_REQUIRES_RTTI 1)
add_llvm_example(Kaleidoscope-Ch8
toy.cpp
)

View File

@ -0,0 +1,16 @@
##===- examples/Kaleidoscope/Chapter7/Makefile -------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
LEVEL = ../../..
TOOLNAME = Kaleidoscope-Ch8
EXAMPLE_TOOL = 1
REQUIRES_RTTI := 1
LINK_COMPONENTS := core mcjit native
include $(LEVEL)/Makefile.common

File diff suppressed because it is too large Load Diff

View File

@ -10,6 +10,6 @@ LEVEL=../..
include $(LEVEL)/Makefile.config
PARALLEL_DIRS:= Chapter2 Chapter3 Chapter4 Chapter5 Chapter6 Chapter7
PARALLEL_DIRS:= Chapter2 Chapter3 Chapter4 Chapter5 Chapter6 Chapter7 Chapter8
include $(LEVEL)/Makefile.common