Convert comments to Doxygen style

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3507 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner
2002-08-25 22:54:55 +00:00
parent 969c4ad65d
commit 2619905926
12 changed files with 366 additions and 359 deletions

View File

@ -1,20 +1,22 @@
//===-- llvm/BasicBlock.h - Represent a basic block in the VM ----*- C++ -*--=//
//
// This file contains the declaration of the BasicBlock class, which represents
// a single basic block in the VM.
//
// Note that basic blocks themselves are Value's, because they are referenced
// by instructions like branches and can go in switch tables and stuff...
//
//===----------------------------------------------------------------------===//
//
// Note that well formed basic blocks are formed of a list of instructions
// followed by a single TerminatorInst instruction. TerminatorInst's may not
// occur in the middle of basic blocks, and must terminate the blocks.
//
// This code allows malformed basic blocks to occur, because it may be useful
// in the intermediate stage of analysis or modification of a program.
//
///
/// \class BasicBlock
///
/// This file contains the declaration of the BasicBlock class, which represents
/// a single basic block in the VM.
///
/// Note that basic blocks themselves are Value's, because they are referenced
/// by instructions like branches and can go in switch tables and stuff...
///
///===---------------------------------------------------------------------===//
///
/// Note that well formed basic blocks are formed of a list of instructions
/// followed by a single TerminatorInst instruction. TerminatorInst's may not
/// occur in the middle of basic blocks, and must terminate the blocks.
///
/// This code allows malformed basic blocks to occur, because it may be useful
/// in the intermediate stage modification to a program.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_BASICBLOCK_H
@ -74,10 +76,10 @@ public:
BasicBlock *getPrev() { return Prev; }
const BasicBlock *getPrev() const { return Prev; }
// getTerminator() - If this is a well formed basic block, then this returns
// a pointer to the terminator instruction. If it is not, then you get a null
// pointer back.
//
/// getTerminator() - If this is a well formed basic block, then this returns
/// a pointer to the terminator instruction. If it is not, then you get a
/// null pointer back.
///
TerminatorInst *getTerminator();
const TerminatorInst *const getTerminator() const;
@ -111,57 +113,57 @@ public:
inline const Instruction &back() const { return InstList.back(); }
inline Instruction &back() { return InstList.back(); }
// getInstList() - Return the underlying instruction list container. You need
// to access it directly if you want to modify it currently.
//
/// getInstList() - Return the underlying instruction list container. You
/// need to access it directly if you want to modify it currently.
///
const InstListType &getInstList() const { return InstList; }
InstListType &getInstList() { return InstList; }
virtual void print(std::ostream &OS) const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const BasicBlock *BB) { return true; }
static inline bool classof(const Value *V) {
return V->getValueType() == Value::BasicBlockVal;
}
// hasConstantReferences() - This predicate is true if there is a
// reference to this basic block in the constant pool for this method. For
// example, if a block is reached through a switch table, that table resides
// in the constant pool, and the basic block is reference from it.
//
/// hasConstantReferences() - This predicate is true if there is a
/// reference to this basic block in the constant pool for this method. For
/// example, if a block is reached through a switch table, that table resides
/// in the constant pool, and the basic block is reference from it.
///
bool hasConstantReferences() const;
// dropAllReferences() - This function causes all the subinstructions to "let
// go" of all references that they are maintaining. This allows one to
// 'delete' a whole class at a time, even though there may be circular
// references... first all references are dropped, and all use counts go to
// zero. Then everything is delete'd for real. Note that no operations are
// valid on an object that has "dropped all references", except operator
// delete.
//
/// dropAllReferences() - This function causes all the subinstructions to "let
/// go" of all references that they are maintaining. This allows one to
/// 'delete' a whole class at a time, even though there may be circular
/// references... first all references are dropped, and all use counts go to
/// zero. Then everything is delete'd for real. Note that no operations are
/// valid on an object that has "dropped all references", except operator
/// delete.
///
void dropAllReferences();
// removePredecessor - This method is used to notify a BasicBlock that the
// specified Predecessor of the block is no longer able to reach it. This is
// actually not used to update the Predecessor list, but is actually used to
// update the PHI nodes that reside in the block. Note that this should be
// called while the predecessor still refers to this block.
//
/// removePredecessor - This method is used to notify a BasicBlock that the
/// specified Predecessor of the block is no longer able to reach it. This is
/// actually not used to update the Predecessor list, but is actually used to
/// update the PHI nodes that reside in the block. Note that this should be
/// called while the predecessor still refers to this block.
///
void removePredecessor(BasicBlock *Pred);
// splitBasicBlock - This splits a basic block into two at the specified
// instruction. Note that all instructions BEFORE the specified iterator stay
// as part of the original basic block, an unconditional branch is added to
// the new BB, and the rest of the instructions in the BB are moved to the new
// BB, including the old terminator. The newly formed BasicBlock is returned.
// This function invalidates the specified iterator.
//
// Note that this only works on well formed basic blocks (must have a
// terminator), and 'I' must not be the end of instruction list (which would
// cause a degenerate basic block to be formed, having a terminator inside of
// the basic block).
//
/// splitBasicBlock - This splits a basic block into two at the specified
/// instruction. Note that all instructions BEFORE the specified iterator
/// stay as part of the original basic block, an unconditional branch is added
/// to the new BB, and the rest of the instructions in the BB are moved to the
/// new BB, including the old terminator. The newly formed BasicBlock is
/// returned. This function invalidates the specified iterator.
///
/// Note that this only works on well formed basic blocks (must have a
/// terminator), and 'I' must not be the end of instruction list (which would
/// cause a degenerate basic block to be formed, having a terminator inside of
/// the basic block).
///
BasicBlock *splitBasicBlock(iterator I);
};