mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-08-10 02:25:47 +00:00
* Add documentation
* Split the CleanGCC pass into two passes, a global pass and an IP pass. Before it was just a global pass, but it did illegal things to the module, which broke other passes that were being scheduled with it by gccld. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2224 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@@ -1,4 +1,4 @@
|
|||||||
//===- CleanupGCCOutput.cpp - Cleanup GCC Output ----------------------------=//
|
//===- CleanupGCCOutput.cpp - Cleanup GCC Output --------------------------===//
|
||||||
//
|
//
|
||||||
// This pass is used to cleanup the output of GCC. GCC's output is
|
// This pass is used to cleanup the output of GCC. GCC's output is
|
||||||
// unneccessarily gross for a couple of reasons. This pass does the following
|
// unneccessarily gross for a couple of reasons. This pass does the following
|
||||||
@@ -6,6 +6,8 @@
|
|||||||
//
|
//
|
||||||
// * Eliminate names for GCC types that we know can't be needed by the user.
|
// * Eliminate names for GCC types that we know can't be needed by the user.
|
||||||
// * Eliminate names for types that are unused in the entire translation unit
|
// * Eliminate names for types that are unused in the entire translation unit
|
||||||
|
// * Fix various problems that we might have in PHI nodes and casts
|
||||||
|
// * Link uses of 'void %foo(...)' to 'void %foo(sometypes)'
|
||||||
//
|
//
|
||||||
// Note: This code produces dead declarations, it is a good idea to run DCE
|
// Note: This code produces dead declarations, it is a good idea to run DCE
|
||||||
// after this pass.
|
// after this pass.
|
||||||
@@ -60,194 +62,11 @@ namespace {
|
|||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Pass *createCleanupGCCOutputPass() {
|
||||||
|
return new CleanupGCCOutput();
|
||||||
// ConvertCallTo - Convert a call to a varargs function with no arg types
|
|
||||||
// specified to a concrete nonvarargs function.
|
|
||||||
//
|
|
||||||
static void ConvertCallTo(CallInst *CI, Function *Dest) {
|
|
||||||
const FunctionType::ParamTypes &ParamTys =
|
|
||||||
Dest->getFunctionType()->getParamTypes();
|
|
||||||
BasicBlock *BB = CI->getParent();
|
|
||||||
|
|
||||||
// Get an iterator to where we want to insert cast instructions if the
|
|
||||||
// argument types don't agree.
|
|
||||||
//
|
|
||||||
BasicBlock::iterator BBI = find(BB->begin(), BB->end(), CI);
|
|
||||||
assert(BBI != BB->end() && "CallInst not in parent block?");
|
|
||||||
|
|
||||||
assert(CI->getNumOperands()-1 == ParamTys.size()&&
|
|
||||||
"Function calls resolved funny somehow, incompatible number of args");
|
|
||||||
|
|
||||||
vector<Value*> Params;
|
|
||||||
|
|
||||||
// Convert all of the call arguments over... inserting cast instructions if
|
|
||||||
// the types are not compatible.
|
|
||||||
for (unsigned i = 1; i < CI->getNumOperands(); ++i) {
|
|
||||||
Value *V = CI->getOperand(i);
|
|
||||||
|
|
||||||
if (V->getType() != ParamTys[i-1]) { // Must insert a cast...
|
|
||||||
Instruction *Cast = new CastInst(V, ParamTys[i-1]);
|
|
||||||
BBI = BB->getInstList().insert(BBI, Cast)+1;
|
|
||||||
V = Cast;
|
|
||||||
}
|
|
||||||
|
|
||||||
Params.push_back(V);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Replace the old call instruction with a new call instruction that calls
|
|
||||||
// the real function.
|
|
||||||
//
|
|
||||||
ReplaceInstWithInst(BB->getInstList(), BBI, new CallInst(Dest, Params));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
// PatchUpFunctionReferences - Go over the functions that are in the module and
|
|
||||||
// look for functions that have the same name. More often than not, there will
|
|
||||||
// be things like:
|
|
||||||
// void "foo"(...)
|
|
||||||
// void "foo"(int, int)
|
|
||||||
// because of the way things are declared in C. If this is the case, patch
|
|
||||||
// things up.
|
|
||||||
//
|
|
||||||
static bool PatchUpFunctionReferences(Module *M) {
|
|
||||||
SymbolTable *ST = M->getSymbolTable();
|
|
||||||
if (!ST) return false;
|
|
||||||
|
|
||||||
std::map<string, vector<Function*> > Functions;
|
|
||||||
|
|
||||||
// Loop over the entries in the symbol table. If an entry is a func pointer,
|
|
||||||
// then add it to the Functions map. We do a two pass algorithm here to avoid
|
|
||||||
// problems with iterators getting invalidated if we did a one pass scheme.
|
|
||||||
//
|
|
||||||
for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I)
|
|
||||||
if (const PointerType *PT = dyn_cast<PointerType>(I->first))
|
|
||||||
if (isa<FunctionType>(PT->getElementType())) {
|
|
||||||
SymbolTable::VarMap &Plane = I->second;
|
|
||||||
for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end();
|
|
||||||
PI != PE; ++PI) {
|
|
||||||
const string &Name = PI->first;
|
|
||||||
Functions[Name].push_back(cast<Function>(PI->second));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
bool Changed = false;
|
|
||||||
|
|
||||||
// Now we have a list of all functions with a particular name. If there is
|
|
||||||
// more than one entry in a list, merge the functions together.
|
|
||||||
//
|
|
||||||
for (std::map<string, vector<Function*> >::iterator I = Functions.begin(),
|
|
||||||
E = Functions.end(); I != E; ++I) {
|
|
||||||
vector<Function*> &Functions = I->second;
|
|
||||||
Function *Implementation = 0; // Find the implementation
|
|
||||||
Function *Concrete = 0;
|
|
||||||
for (unsigned i = 0; i < Functions.size(); ) {
|
|
||||||
if (!Functions[i]->isExternal()) { // Found an implementation
|
|
||||||
assert(Implementation == 0 && "Multiple definitions of the same"
|
|
||||||
" function. Case not handled yet!");
|
|
||||||
Implementation = Functions[i];
|
|
||||||
} else {
|
|
||||||
// Ignore functions that are never used so they don't cause spurious
|
|
||||||
// warnings... here we will actually DCE the function so that it isn't
|
|
||||||
// used later.
|
|
||||||
//
|
|
||||||
if (Functions[i]->use_size() == 0) {
|
|
||||||
M->getFunctionList().remove(Functions[i]);
|
|
||||||
delete Functions[i];
|
|
||||||
Functions.erase(Functions.begin()+i);
|
|
||||||
Changed = true;
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Functions[i] && (!Functions[i]->getFunctionType()->isVarArg())) {
|
|
||||||
if (Concrete) { // Found two different functions types. Can't choose
|
|
||||||
Concrete = 0;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
Concrete = Functions[i];
|
|
||||||
}
|
|
||||||
++i;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Functions.size() > 1) { // Found a multiply defined function...
|
|
||||||
// We should find exactly one non-vararg function definition, which is
|
|
||||||
// probably the implementation. Change all of the function definitions
|
|
||||||
// and uses to use it instead.
|
|
||||||
//
|
|
||||||
if (!Concrete) {
|
|
||||||
cerr << "Warning: Found functions types that are not compatible:\n";
|
|
||||||
for (unsigned i = 0; i < Functions.size(); ++i) {
|
|
||||||
cerr << "\t" << Functions[i]->getType()->getDescription() << " %"
|
|
||||||
<< Functions[i]->getName() << "\n";
|
|
||||||
}
|
|
||||||
cerr << " No linkage of functions named '" << Functions[0]->getName()
|
|
||||||
<< "' performed!\n";
|
|
||||||
} else {
|
|
||||||
for (unsigned i = 0; i < Functions.size(); ++i)
|
|
||||||
if (Functions[i] != Concrete) {
|
|
||||||
Function *Old = Functions[i];
|
|
||||||
const FunctionType *OldMT = Old->getFunctionType();
|
|
||||||
const FunctionType *ConcreteMT = Concrete->getFunctionType();
|
|
||||||
bool Broken = false;
|
|
||||||
|
|
||||||
assert(Old->getReturnType() == Concrete->getReturnType() &&
|
|
||||||
"Differing return types not handled yet!");
|
|
||||||
assert(OldMT->getParamTypes().size() <=
|
|
||||||
ConcreteMT->getParamTypes().size() &&
|
|
||||||
"Concrete type must have more specified parameters!");
|
|
||||||
|
|
||||||
// Check to make sure that if there are specified types, that they
|
|
||||||
// match...
|
|
||||||
//
|
|
||||||
for (unsigned i = 0; i < OldMT->getParamTypes().size(); ++i)
|
|
||||||
if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i]) {
|
|
||||||
cerr << "Parameter types conflict for" << OldMT
|
|
||||||
<< " and " << ConcreteMT;
|
|
||||||
Broken = true;
|
|
||||||
}
|
|
||||||
if (Broken) break; // Can't process this one!
|
|
||||||
|
|
||||||
|
|
||||||
// Attempt to convert all of the uses of the old function to the
|
|
||||||
// concrete form of the function. If there is a use of the fn
|
|
||||||
// that we don't understand here we punt to avoid making a bad
|
|
||||||
// transformation.
|
|
||||||
//
|
|
||||||
// At this point, we know that the return values are the same for
|
|
||||||
// our two functions and that the Old function has no varargs fns
|
|
||||||
// specified. In otherwords it's just <retty> (...)
|
|
||||||
//
|
|
||||||
for (unsigned i = 0; i < Old->use_size(); ) {
|
|
||||||
User *U = *(Old->use_begin()+i);
|
|
||||||
if (CastInst *CI = dyn_cast<CastInst>(U)) {
|
|
||||||
// Convert casts directly
|
|
||||||
assert(CI->getOperand(0) == Old);
|
|
||||||
CI->setOperand(0, Concrete);
|
|
||||||
Changed = true;
|
|
||||||
} else if (CallInst *CI = dyn_cast<CallInst>(U)) {
|
|
||||||
// Can only fix up calls TO the argument, not args passed in.
|
|
||||||
if (CI->getCalledValue() == Old) {
|
|
||||||
ConvertCallTo(CI, Concrete);
|
|
||||||
Changed = true;
|
|
||||||
} else {
|
|
||||||
cerr << "Couldn't cleanup this function call, must be an"
|
|
||||||
<< " argument or something!" << CI;
|
|
||||||
++i;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
cerr << "Cannot convert use of function: " << U << "\n";
|
|
||||||
++i;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return Changed;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
// ShouldNukSymtabEntry - Return true if this module level symbol table entry
|
// ShouldNukSymtabEntry - Return true if this module level symbol table entry
|
||||||
// should be eliminated.
|
// should be eliminated.
|
||||||
@@ -280,13 +99,6 @@ bool CleanupGCCOutput::doInitialization(Module *M) {
|
|||||||
if (M->hasSymbolTable()) {
|
if (M->hasSymbolTable()) {
|
||||||
SymbolTable *ST = M->getSymbolTable();
|
SymbolTable *ST = M->getSymbolTable();
|
||||||
|
|
||||||
// Go over the functions that are in the module and look for methods that
|
|
||||||
// have the same name. More often than not, there will be things like:
|
|
||||||
// void "foo"(...) and void "foo"(int, int) because of the way things are
|
|
||||||
// declared in C. If this is the case, patch things up.
|
|
||||||
//
|
|
||||||
Changed |= PatchUpFunctionReferences(M);
|
|
||||||
|
|
||||||
// Check the symbol table for superfluous type entries...
|
// Check the symbol table for superfluous type entries...
|
||||||
//
|
//
|
||||||
// Grab the 'type' plane of the module symbol...
|
// Grab the 'type' plane of the module symbol...
|
||||||
@@ -434,10 +246,10 @@ static inline void RefactorPredecessor(BasicBlock *BB, BasicBlock *Pred) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
// fixLocalProblems - Loop through the function and fix problems with the PHI
|
// runOnMethod - Loop through the function and fix problems with the PHI nodes
|
||||||
// nodes in the current function. The problem is that PHI nodes might exist
|
// in the current function. The problem is that PHI nodes might exist with
|
||||||
// with multiple entries for the same predecessor. GCC sometimes generates code
|
// multiple entries for the same predecessor. GCC sometimes generates code that
|
||||||
// that looks like this:
|
// looks like this:
|
||||||
//
|
//
|
||||||
// bb7: br bool %cond1004, label %bb8, label %bb8
|
// bb7: br bool %cond1004, label %bb8, label %bb8
|
||||||
// bb8: %reg119 = phi uint [ 0, %bb7 ], [ 1, %bb7 ]
|
// bb8: %reg119 = phi uint [ 0, %bb7 ], [ 1, %bb7 ]
|
||||||
@@ -450,7 +262,7 @@ static inline void RefactorPredecessor(BasicBlock *BB, BasicBlock *Pred) {
|
|||||||
// bb8: %reg119 = phi uint [ 0, %bbX ], [ 1, %bb7 ]
|
// bb8: %reg119 = phi uint [ 0, %bbX ], [ 1, %bb7 ]
|
||||||
//
|
//
|
||||||
//
|
//
|
||||||
static bool fixLocalProblems(Function *M) {
|
bool CleanupGCCOutput::runOnMethod(Function *M) {
|
||||||
bool Changed = false;
|
bool Changed = false;
|
||||||
// Don't use iterators because invalidation gets messy...
|
// Don't use iterators because invalidation gets messy...
|
||||||
for (unsigned MI = 0; MI < M->size(); ++MI) {
|
for (unsigned MI = 0; MI < M->size(); ++MI) {
|
||||||
@@ -480,19 +292,9 @@ static bool fixLocalProblems(Function *M) {
|
|||||||
return Changed;
|
return Changed;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// runOnFunction - This method simplifies the specified function hopefully.
|
|
||||||
//
|
|
||||||
bool CleanupGCCOutput::runOnMethod(Function *F) {
|
|
||||||
return fixLocalProblems(F);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool CleanupGCCOutput::doFinalization(Module *M) {
|
bool CleanupGCCOutput::doFinalization(Module *M) {
|
||||||
bool Changed = false;
|
bool Changed = false;
|
||||||
|
|
||||||
|
|
||||||
if (M->hasSymbolTable()) {
|
if (M->hasSymbolTable()) {
|
||||||
SymbolTable *ST = M->getSymbolTable();
|
SymbolTable *ST = M->getSymbolTable();
|
||||||
const std::set<const Type *> &UsedTypes =
|
const std::set<const Type *> &UsedTypes =
|
||||||
@@ -523,7 +325,203 @@ bool CleanupGCCOutput::doFinalization(Module *M) {
|
|||||||
return Changed;
|
return Changed;
|
||||||
}
|
}
|
||||||
|
|
||||||
Pass *createCleanupGCCOutputPass() {
|
|
||||||
return new CleanupGCCOutput();
|
//===----------------------------------------------------------------------===//
|
||||||
|
//
|
||||||
|
// FunctionResolvingPass - Go over the functions that are in the module and
|
||||||
|
// look for functions that have the same name. More often than not, there will
|
||||||
|
// be things like:
|
||||||
|
// void "foo"(...)
|
||||||
|
// void "foo"(int, int)
|
||||||
|
// because of the way things are declared in C. If this is the case, patch
|
||||||
|
// things up.
|
||||||
|
//
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
struct FunctionResolvingPass : public Pass {
|
||||||
|
bool run(Module *M);
|
||||||
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ConvertCallTo - Convert a call to a varargs function with no arg types
|
||||||
|
// specified to a concrete nonvarargs function.
|
||||||
|
//
|
||||||
|
static void ConvertCallTo(CallInst *CI, Function *Dest) {
|
||||||
|
const FunctionType::ParamTypes &ParamTys =
|
||||||
|
Dest->getFunctionType()->getParamTypes();
|
||||||
|
BasicBlock *BB = CI->getParent();
|
||||||
|
|
||||||
|
// Get an iterator to where we want to insert cast instructions if the
|
||||||
|
// argument types don't agree.
|
||||||
|
//
|
||||||
|
BasicBlock::iterator BBI = find(BB->begin(), BB->end(), CI);
|
||||||
|
assert(BBI != BB->end() && "CallInst not in parent block?");
|
||||||
|
|
||||||
|
assert(CI->getNumOperands()-1 == ParamTys.size()&&
|
||||||
|
"Function calls resolved funny somehow, incompatible number of args");
|
||||||
|
|
||||||
|
vector<Value*> Params;
|
||||||
|
|
||||||
|
// Convert all of the call arguments over... inserting cast instructions if
|
||||||
|
// the types are not compatible.
|
||||||
|
for (unsigned i = 1; i < CI->getNumOperands(); ++i) {
|
||||||
|
Value *V = CI->getOperand(i);
|
||||||
|
|
||||||
|
if (V->getType() != ParamTys[i-1]) { // Must insert a cast...
|
||||||
|
Instruction *Cast = new CastInst(V, ParamTys[i-1]);
|
||||||
|
BBI = BB->getInstList().insert(BBI, Cast)+1;
|
||||||
|
V = Cast;
|
||||||
|
}
|
||||||
|
|
||||||
|
Params.push_back(V);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Replace the old call instruction with a new call instruction that calls
|
||||||
|
// the real function.
|
||||||
|
//
|
||||||
|
ReplaceInstWithInst(BB->getInstList(), BBI, new CallInst(Dest, Params));
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
bool FunctionResolvingPass::run(Module *M) {
|
||||||
|
SymbolTable *ST = M->getSymbolTable();
|
||||||
|
if (!ST) return false;
|
||||||
|
|
||||||
|
std::map<string, vector<Function*> > Functions;
|
||||||
|
|
||||||
|
// Loop over the entries in the symbol table. If an entry is a func pointer,
|
||||||
|
// then add it to the Functions map. We do a two pass algorithm here to avoid
|
||||||
|
// problems with iterators getting invalidated if we did a one pass scheme.
|
||||||
|
//
|
||||||
|
for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I)
|
||||||
|
if (const PointerType *PT = dyn_cast<PointerType>(I->first))
|
||||||
|
if (isa<FunctionType>(PT->getElementType())) {
|
||||||
|
SymbolTable::VarMap &Plane = I->second;
|
||||||
|
for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end();
|
||||||
|
PI != PE; ++PI) {
|
||||||
|
const string &Name = PI->first;
|
||||||
|
Functions[Name].push_back(cast<Function>(PI->second));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
bool Changed = false;
|
||||||
|
|
||||||
|
// Now we have a list of all functions with a particular name. If there is
|
||||||
|
// more than one entry in a list, merge the functions together.
|
||||||
|
//
|
||||||
|
for (std::map<string, vector<Function*> >::iterator I = Functions.begin(),
|
||||||
|
E = Functions.end(); I != E; ++I) {
|
||||||
|
vector<Function*> &Functions = I->second;
|
||||||
|
Function *Implementation = 0; // Find the implementation
|
||||||
|
Function *Concrete = 0;
|
||||||
|
for (unsigned i = 0; i < Functions.size(); ) {
|
||||||
|
if (!Functions[i]->isExternal()) { // Found an implementation
|
||||||
|
assert(Implementation == 0 && "Multiple definitions of the same"
|
||||||
|
" function. Case not handled yet!");
|
||||||
|
Implementation = Functions[i];
|
||||||
|
} else {
|
||||||
|
// Ignore functions that are never used so they don't cause spurious
|
||||||
|
// warnings... here we will actually DCE the function so that it isn't
|
||||||
|
// used later.
|
||||||
|
//
|
||||||
|
if (Functions[i]->use_size() == 0) {
|
||||||
|
M->getFunctionList().remove(Functions[i]);
|
||||||
|
delete Functions[i];
|
||||||
|
Functions.erase(Functions.begin()+i);
|
||||||
|
Changed = true;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Functions[i] && (!Functions[i]->getFunctionType()->isVarArg())) {
|
||||||
|
if (Concrete) { // Found two different functions types. Can't choose
|
||||||
|
Concrete = 0;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
Concrete = Functions[i];
|
||||||
|
}
|
||||||
|
++i;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Functions.size() > 1) { // Found a multiply defined function...
|
||||||
|
// We should find exactly one non-vararg function definition, which is
|
||||||
|
// probably the implementation. Change all of the function definitions
|
||||||
|
// and uses to use it instead.
|
||||||
|
//
|
||||||
|
if (!Concrete) {
|
||||||
|
cerr << "Warning: Found functions types that are not compatible:\n";
|
||||||
|
for (unsigned i = 0; i < Functions.size(); ++i) {
|
||||||
|
cerr << "\t" << Functions[i]->getType()->getDescription() << " %"
|
||||||
|
<< Functions[i]->getName() << "\n";
|
||||||
|
}
|
||||||
|
cerr << " No linkage of functions named '" << Functions[0]->getName()
|
||||||
|
<< "' performed!\n";
|
||||||
|
} else {
|
||||||
|
for (unsigned i = 0; i < Functions.size(); ++i)
|
||||||
|
if (Functions[i] != Concrete) {
|
||||||
|
Function *Old = Functions[i];
|
||||||
|
const FunctionType *OldMT = Old->getFunctionType();
|
||||||
|
const FunctionType *ConcreteMT = Concrete->getFunctionType();
|
||||||
|
bool Broken = false;
|
||||||
|
|
||||||
|
assert(Old->getReturnType() == Concrete->getReturnType() &&
|
||||||
|
"Differing return types not handled yet!");
|
||||||
|
assert(OldMT->getParamTypes().size() <=
|
||||||
|
ConcreteMT->getParamTypes().size() &&
|
||||||
|
"Concrete type must have more specified parameters!");
|
||||||
|
|
||||||
|
// Check to make sure that if there are specified types, that they
|
||||||
|
// match...
|
||||||
|
//
|
||||||
|
for (unsigned i = 0; i < OldMT->getParamTypes().size(); ++i)
|
||||||
|
if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i]) {
|
||||||
|
cerr << "Parameter types conflict for" << OldMT
|
||||||
|
<< " and " << ConcreteMT;
|
||||||
|
Broken = true;
|
||||||
|
}
|
||||||
|
if (Broken) break; // Can't process this one!
|
||||||
|
|
||||||
|
|
||||||
|
// Attempt to convert all of the uses of the old function to the
|
||||||
|
// concrete form of the function. If there is a use of the fn
|
||||||
|
// that we don't understand here we punt to avoid making a bad
|
||||||
|
// transformation.
|
||||||
|
//
|
||||||
|
// At this point, we know that the return values are the same for
|
||||||
|
// our two functions and that the Old function has no varargs fns
|
||||||
|
// specified. In otherwords it's just <retty> (...)
|
||||||
|
//
|
||||||
|
for (unsigned i = 0; i < Old->use_size(); ) {
|
||||||
|
User *U = *(Old->use_begin()+i);
|
||||||
|
if (CastInst *CI = dyn_cast<CastInst>(U)) {
|
||||||
|
// Convert casts directly
|
||||||
|
assert(CI->getOperand(0) == Old);
|
||||||
|
CI->setOperand(0, Concrete);
|
||||||
|
Changed = true;
|
||||||
|
} else if (CallInst *CI = dyn_cast<CallInst>(U)) {
|
||||||
|
// Can only fix up calls TO the argument, not args passed in.
|
||||||
|
if (CI->getCalledValue() == Old) {
|
||||||
|
ConvertCallTo(CI, Concrete);
|
||||||
|
Changed = true;
|
||||||
|
} else {
|
||||||
|
cerr << "Couldn't cleanup this function call, must be an"
|
||||||
|
<< " argument or something!" << CI;
|
||||||
|
++i;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
cerr << "Cannot convert use of function: " << U << "\n";
|
||||||
|
++i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return Changed;
|
||||||
|
}
|
||||||
|
|
||||||
|
Pass *createFunctionResolvingPass() {
|
||||||
|
return new FunctionResolvingPass();
|
||||||
|
}
|
||||||
|
Reference in New Issue
Block a user