Adding a simple example of how to use the JIT.

Contributed by Valery A. Khamenya. THANKS, Valery!


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15622 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Spencer 2004-08-10 19:14:36 +00:00
parent 869f477f34
commit 26a4ba73d3
6 changed files with 504 additions and 0 deletions

View File

@ -0,0 +1,153 @@
//===--- HowToUseJIT.cpp - An example use of the JIT ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Valery A. Khamenya and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tool provides a single point of access to the LLVM compilation tools.
// It has many options. To discover the options supported please refer to the
// tools' manual page (docs/CommandGuide/html/llvmc.html) or run the tool with
// the --help option.
//
//===------------------------------------------------------------------------===
// Goal:
// The goal of this snippet is to create in the memory
// the LLVM module consisting of two functions as follow:
//
// int add1(int x) {
// return x+1;
// }
//
// int foo() {
// return add1(10);
// }
//
// then compile the module via JIT, then execute the `foo'
// function and return result to a driver, i.e. to a "host program".
//
// Some remarks and questions:
//
// - could we invoke some code using noname functions too?
// e.g. evaluate "foo()+foo()" without fears to introduce
// conflict of temporary function name with some real
// existing function name?
//
#include <iostream>
#include <llvm/Module.h>
#include <llvm/DerivedTypes.h>
#include <llvm/Constants.h>
#include <llvm/Instructions.h>
#include <llvm/ModuleProvider.h>
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
using namespace llvm;
int main() {
// Create some module to put our function into it.
Module *M = new Module("test");
// We are about to create the add1 function:
Function *Add1F;
{
// first create type for the single argument of add1 function:
// the type is 'int ()'
std::vector<const Type*> ArgT(1);
ArgT[0] = Type::IntTy;
// now create full type of the add1 function:
FunctionType *Add1T = FunctionType::get(Type::IntTy, // type of result
ArgT,
/*not vararg*/false);
// Now create the add1 function entry and
// insert this entry into module M
// (By passing a module as the last parameter to the Function constructor,
// it automatically gets appended to the Module.)
Add1F = new Function(Add1T,
Function::ExternalLinkage, // maybe too much
"add1", M);
// Add a basic block to the function... (again, it automatically inserts
// because of the last argument.)
BasicBlock *BB = new BasicBlock("EntryBlock of add1 function", Add1F);
// Get pointers to the constant `1'...
Value *One = ConstantSInt::get(Type::IntTy, 1);
// Get pointers to the integer argument of the add1 function...
assert(Add1F->abegin() != Add1F->aend()); // Make sure there's an arg
Argument &ArgX = Add1F->afront(); // Get the arg
// Create the add instruction... does not insert...
Instruction *Add = BinaryOperator::create(Instruction::Add, One, &ArgX,
"addresult");
// explicitly insert it into the basic block...
BB->getInstList().push_back(Add);
// Create the return instruction and add it to the basic block
BB->getInstList().push_back(new ReturnInst(Add));
// function add1 is ready
}
// now we going to create function `foo':
Function *FooF;
{
// Create the foo function type:
FunctionType *FooT =
FunctionType::get(Type::IntTy, // result has type: 'int ()'
std::vector<const Type*>(), // no arguments
/*not vararg*/false);
// create the entry for function `foo' and insert
// this entry into module M:
FooF =
new Function(FooT,
Function::ExternalLinkage, // too wide?
"foo", M);
// Add a basic block to the FooF function...
BasicBlock *BB = new BasicBlock("EntryBlock of add1 function", FooF);
// Get pointers to the constant `10'...
Value *Ten = ConstantSInt::get(Type::IntTy, 10);
// Put the argument Ten on stack and make call:
// ...
std::vector<Value*> Params;
Params.push_back(Ten);
CallInst * Add1CallRes = new CallInst(Add1F, Params, "add1", BB);
// Create the return instruction and add it to the basic block
BB->getInstList().push_back(new ReturnInst(Add1CallRes));
}
// Now we going to create JIT ??
ExistingModuleProvider* MP = new ExistingModuleProvider(M);
ExecutionEngine* EE = ExecutionEngine::create( MP, true );
// Call the `foo' function with no arguments:
std::vector<GenericValue> noargs;
GenericValue gv = EE->runFunction(FooF, noargs);
// import result of execution:
std::cout << "Result: " << gv.IntVal << std:: endl;
return 0;
}

View File

@ -0,0 +1,15 @@
##===- projects/HowToUseJIT/Makefile -----------------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file was developed by Valery A. Khamenya and is distributed under
# the University of Illinois Open Source License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
LEVEL = ../..
TOOLNAME = HowToUseJIT
USEDLIBS = lli-jit lli-interpreter codegen executionengine x86 selectiondag \
scalaropts analysis.a transformutils.a bcreader target.a vmcore \
support.a
include $(LEVEL)/Makefile.common

View File

@ -0,0 +1,153 @@
//===--- HowToUseJIT.cpp - An example use of the JIT ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Valery A. Khamenya and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tool provides a single point of access to the LLVM compilation tools.
// It has many options. To discover the options supported please refer to the
// tools' manual page (docs/CommandGuide/html/llvmc.html) or run the tool with
// the --help option.
//
//===------------------------------------------------------------------------===
// Goal:
// The goal of this snippet is to create in the memory
// the LLVM module consisting of two functions as follow:
//
// int add1(int x) {
// return x+1;
// }
//
// int foo() {
// return add1(10);
// }
//
// then compile the module via JIT, then execute the `foo'
// function and return result to a driver, i.e. to a "host program".
//
// Some remarks and questions:
//
// - could we invoke some code using noname functions too?
// e.g. evaluate "foo()+foo()" without fears to introduce
// conflict of temporary function name with some real
// existing function name?
//
#include <iostream>
#include <llvm/Module.h>
#include <llvm/DerivedTypes.h>
#include <llvm/Constants.h>
#include <llvm/Instructions.h>
#include <llvm/ModuleProvider.h>
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
using namespace llvm;
int main() {
// Create some module to put our function into it.
Module *M = new Module("test");
// We are about to create the add1 function:
Function *Add1F;
{
// first create type for the single argument of add1 function:
// the type is 'int ()'
std::vector<const Type*> ArgT(1);
ArgT[0] = Type::IntTy;
// now create full type of the add1 function:
FunctionType *Add1T = FunctionType::get(Type::IntTy, // type of result
ArgT,
/*not vararg*/false);
// Now create the add1 function entry and
// insert this entry into module M
// (By passing a module as the last parameter to the Function constructor,
// it automatically gets appended to the Module.)
Add1F = new Function(Add1T,
Function::ExternalLinkage, // maybe too much
"add1", M);
// Add a basic block to the function... (again, it automatically inserts
// because of the last argument.)
BasicBlock *BB = new BasicBlock("EntryBlock of add1 function", Add1F);
// Get pointers to the constant `1'...
Value *One = ConstantSInt::get(Type::IntTy, 1);
// Get pointers to the integer argument of the add1 function...
assert(Add1F->abegin() != Add1F->aend()); // Make sure there's an arg
Argument &ArgX = Add1F->afront(); // Get the arg
// Create the add instruction... does not insert...
Instruction *Add = BinaryOperator::create(Instruction::Add, One, &ArgX,
"addresult");
// explicitly insert it into the basic block...
BB->getInstList().push_back(Add);
// Create the return instruction and add it to the basic block
BB->getInstList().push_back(new ReturnInst(Add));
// function add1 is ready
}
// now we going to create function `foo':
Function *FooF;
{
// Create the foo function type:
FunctionType *FooT =
FunctionType::get(Type::IntTy, // result has type: 'int ()'
std::vector<const Type*>(), // no arguments
/*not vararg*/false);
// create the entry for function `foo' and insert
// this entry into module M:
FooF =
new Function(FooT,
Function::ExternalLinkage, // too wide?
"foo", M);
// Add a basic block to the FooF function...
BasicBlock *BB = new BasicBlock("EntryBlock of add1 function", FooF);
// Get pointers to the constant `10'...
Value *Ten = ConstantSInt::get(Type::IntTy, 10);
// Put the argument Ten on stack and make call:
// ...
std::vector<Value*> Params;
Params.push_back(Ten);
CallInst * Add1CallRes = new CallInst(Add1F, Params, "add1", BB);
// Create the return instruction and add it to the basic block
BB->getInstList().push_back(new ReturnInst(Add1CallRes));
}
// Now we going to create JIT ??
ExistingModuleProvider* MP = new ExistingModuleProvider(M);
ExecutionEngine* EE = ExecutionEngine::create( MP, true );
// Call the `foo' function with no arguments:
std::vector<GenericValue> noargs;
GenericValue gv = EE->runFunction(FooF, noargs);
// import result of execution:
std::cout << "Result: " << gv.IntVal << std:: endl;
return 0;
}

View File

@ -0,0 +1,15 @@
##===- projects/HowToUseJIT/Makefile -----------------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file was developed by Valery A. Khamenya and is distributed under
# the University of Illinois Open Source License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
LEVEL = ../..
TOOLNAME = HowToUseJIT
USEDLIBS = lli-jit lli-interpreter codegen executionengine x86 selectiondag \
scalaropts analysis.a transformutils.a bcreader target.a vmcore \
support.a
include $(LEVEL)/Makefile.common

View File

@ -0,0 +1,153 @@
//===--- HowToUseJIT.cpp - An example use of the JIT ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Valery A. Khamenya and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tool provides a single point of access to the LLVM compilation tools.
// It has many options. To discover the options supported please refer to the
// tools' manual page (docs/CommandGuide/html/llvmc.html) or run the tool with
// the --help option.
//
//===------------------------------------------------------------------------===
// Goal:
// The goal of this snippet is to create in the memory
// the LLVM module consisting of two functions as follow:
//
// int add1(int x) {
// return x+1;
// }
//
// int foo() {
// return add1(10);
// }
//
// then compile the module via JIT, then execute the `foo'
// function and return result to a driver, i.e. to a "host program".
//
// Some remarks and questions:
//
// - could we invoke some code using noname functions too?
// e.g. evaluate "foo()+foo()" without fears to introduce
// conflict of temporary function name with some real
// existing function name?
//
#include <iostream>
#include <llvm/Module.h>
#include <llvm/DerivedTypes.h>
#include <llvm/Constants.h>
#include <llvm/Instructions.h>
#include <llvm/ModuleProvider.h>
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
using namespace llvm;
int main() {
// Create some module to put our function into it.
Module *M = new Module("test");
// We are about to create the add1 function:
Function *Add1F;
{
// first create type for the single argument of add1 function:
// the type is 'int ()'
std::vector<const Type*> ArgT(1);
ArgT[0] = Type::IntTy;
// now create full type of the add1 function:
FunctionType *Add1T = FunctionType::get(Type::IntTy, // type of result
ArgT,
/*not vararg*/false);
// Now create the add1 function entry and
// insert this entry into module M
// (By passing a module as the last parameter to the Function constructor,
// it automatically gets appended to the Module.)
Add1F = new Function(Add1T,
Function::ExternalLinkage, // maybe too much
"add1", M);
// Add a basic block to the function... (again, it automatically inserts
// because of the last argument.)
BasicBlock *BB = new BasicBlock("EntryBlock of add1 function", Add1F);
// Get pointers to the constant `1'...
Value *One = ConstantSInt::get(Type::IntTy, 1);
// Get pointers to the integer argument of the add1 function...
assert(Add1F->abegin() != Add1F->aend()); // Make sure there's an arg
Argument &ArgX = Add1F->afront(); // Get the arg
// Create the add instruction... does not insert...
Instruction *Add = BinaryOperator::create(Instruction::Add, One, &ArgX,
"addresult");
// explicitly insert it into the basic block...
BB->getInstList().push_back(Add);
// Create the return instruction and add it to the basic block
BB->getInstList().push_back(new ReturnInst(Add));
// function add1 is ready
}
// now we going to create function `foo':
Function *FooF;
{
// Create the foo function type:
FunctionType *FooT =
FunctionType::get(Type::IntTy, // result has type: 'int ()'
std::vector<const Type*>(), // no arguments
/*not vararg*/false);
// create the entry for function `foo' and insert
// this entry into module M:
FooF =
new Function(FooT,
Function::ExternalLinkage, // too wide?
"foo", M);
// Add a basic block to the FooF function...
BasicBlock *BB = new BasicBlock("EntryBlock of add1 function", FooF);
// Get pointers to the constant `10'...
Value *Ten = ConstantSInt::get(Type::IntTy, 10);
// Put the argument Ten on stack and make call:
// ...
std::vector<Value*> Params;
Params.push_back(Ten);
CallInst * Add1CallRes = new CallInst(Add1F, Params, "add1", BB);
// Create the return instruction and add it to the basic block
BB->getInstList().push_back(new ReturnInst(Add1CallRes));
}
// Now we going to create JIT ??
ExistingModuleProvider* MP = new ExistingModuleProvider(M);
ExecutionEngine* EE = ExecutionEngine::create( MP, true );
// Call the `foo' function with no arguments:
std::vector<GenericValue> noargs;
GenericValue gv = EE->runFunction(FooF, noargs);
// import result of execution:
std::cout << "Result: " << gv.IntVal << std:: endl;
return 0;
}

View File

@ -0,0 +1,15 @@
##===- projects/HowToUseJIT/Makefile -----------------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file was developed by Valery A. Khamenya and is distributed under
# the University of Illinois Open Source License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
LEVEL = ../..
TOOLNAME = HowToUseJIT
USEDLIBS = lli-jit lli-interpreter codegen executionengine x86 selectiondag \
scalaropts analysis.a transformutils.a bcreader target.a vmcore \
support.a
include $(LEVEL)/Makefile.common