SLPVectorizer: Bring back the insertelement patch (r205965) with fixes

When can't assume a vectorized tree is rooted in an instruction. The IRBuilder
could have constant folded it. When we rebuild the build_vector (the series of
InsertElement instructions) use the last original InsertElement instruction. The
vectorized tree root is guaranteed to be before it.

Also, we can't assume that the n-th InsertElement inserts the n-th element into
a vector.

This reverts r207746 which reverted the revert of the revert of r205018 or so.

Fixes the test case in PR19621.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207939 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Arnold Schwaighofer 2014-05-04 17:10:15 +00:00
parent 8a3751f813
commit 28a739b4dc
3 changed files with 210 additions and 29 deletions

View File

@ -31,6 +31,7 @@
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
@ -357,13 +358,13 @@ public:
/// A negative number means that this is profitable.
int getTreeCost();
/// Construct a vectorizable tree that starts at \p Roots and is possibly
/// used by a reduction of \p RdxOps.
void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
/// Construct a vectorizable tree that starts at \p Roots, ignoring users for
/// the purpose of scheduling and extraction in the \p UserIgnoreLst.
void buildTree(ArrayRef<Value *> Roots,
ArrayRef<Value *> UserIgnoreLst = None);
/// Clear the internal data structures that are created by 'buildTree'.
void deleteTree() {
RdxOps = 0;
VectorizableTree.clear();
ScalarToTreeEntry.clear();
MustGather.clear();
@ -526,8 +527,8 @@ private:
return I.first->second;
}
/// Reduction operators.
ValueSet *RdxOps;
/// List of users to ignore during scheduling and that don't need extracting.
ArrayRef<Value *> UserIgnoreList;
// Analysis and block reference.
Function *F;
@ -542,9 +543,10 @@ private:
IRBuilder<> Builder;
};
void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
ArrayRef<Value *> UserIgnoreLst) {
deleteTree();
RdxOps = Rdx;
UserIgnoreList = UserIgnoreLst;
if (!getSameType(Roots))
return;
buildTree_rec(Roots, 0);
@ -576,8 +578,9 @@ void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
if (!UserInst)
continue;
// Ignore uses that are part of the reduction.
if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
// Ignore users in the user ignore list.
if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
UserIgnoreList.end())
continue;
DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
@ -708,8 +711,9 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
continue;
}
// This user is part of the reduction.
if (RdxOps && RdxOps->count(UI))
// Ignore users in the user ignore list.
if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UI) !=
UserIgnoreList.end())
continue;
// Make sure that we can schedule this unknown user.
@ -1747,8 +1751,9 @@ Value *BoUpSLP::vectorizeTree() {
DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
assert((ScalarToTreeEntry.count(U) ||
// It is legal to replace the reduction users by undef.
(RdxOps && RdxOps->count(U))) &&
// It is legal to replace users in the ignorelist by undef.
(std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
UserIgnoreList.end())) &&
"Replacing out-of-tree value with undef");
}
#endif
@ -1954,8 +1959,11 @@ private:
bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
/// \brief Try to vectorize a list of operands.
/// \@param BuildVector A list of users to ignore for the purpose of
/// scheduling and that don't need extracting.
/// \returns true if a value was vectorized.
bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
ArrayRef<Value *> BuildVector = None);
/// \brief Try to vectorize a chain that may start at the operands of \V;
bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
@ -2128,7 +2136,8 @@ bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
return tryToVectorizeList(VL, R);
}
bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
ArrayRef<Value *> BuildVector) {
if (VL.size() < 2)
return false;
@ -2178,13 +2187,38 @@ bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
<< "\n");
ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
R.buildTree(Ops);
ArrayRef<Value *> BuildVectorSlice;
if (!BuildVector.empty())
BuildVectorSlice = BuildVector.slice(i, OpsWidth);
R.buildTree(Ops, BuildVectorSlice);
int Cost = R.getTreeCost();
if (Cost < -SLPCostThreshold) {
DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
R.vectorizeTree();
Value *VectorizedRoot = R.vectorizeTree();
// Reconstruct the build vector by extracting the vectorized root. This
// way we handle the case where some elements of the vector are undefined.
// (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
if (!BuildVectorSlice.empty()) {
// The insert point is the last build vector instruction. The vectorized
// root will precede it. This guarantees that we get an instruction. The
// vectorized tree could have been constant folded.
Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
unsigned VecIdx = 0;
for (auto &V : BuildVectorSlice) {
IRBuilder<true, NoFolder> Builder(
++BasicBlock::iterator(InsertAfter));
InsertElementInst *IE = cast<InsertElementInst>(V);
Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
VectorizedRoot, Builder.getInt32(VecIdx++)));
IE->setOperand(1, Extract);
IE->removeFromParent();
IE->insertAfter(Extract);
InsertAfter = IE;
}
}
// Move to the next bundle.
i += VF - 1;
Changed = true;
@ -2293,7 +2327,7 @@ static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
/// *p =
///
class HorizontalReduction {
SmallPtrSet<Value *, 16> ReductionOps;
SmallVector<Value *, 16> ReductionOps;
SmallVector<Value *, 32> ReducedVals;
BinaryOperator *ReductionRoot;
@ -2387,7 +2421,7 @@ public:
// We need to be able to reassociate the adds.
if (!TreeN->isAssociative())
return false;
ReductionOps.insert(TreeN);
ReductionOps.push_back(TreeN);
}
// Retract.
Stack.pop_back();
@ -2424,7 +2458,7 @@ public:
for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
V.buildTree(ValsToReduce, &ReductionOps);
V.buildTree(ValsToReduce, ReductionOps);
// Estimate cost.
int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
@ -2543,13 +2577,16 @@ private:
///
/// Returns true if it matches
///
static bool findBuildVector(InsertElementInst *IE,
SmallVectorImpl<Value *> &Ops) {
if (!isa<UndefValue>(IE->getOperand(0)))
static bool findBuildVector(InsertElementInst *FirstInsertElem,
SmallVectorImpl<Value *> &BuildVector,
SmallVectorImpl<Value *> &BuildVectorOpds) {
if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
return false;
InsertElementInst *IE = FirstInsertElem;
while (true) {
Ops.push_back(IE->getOperand(1));
BuildVector.push_back(IE);
BuildVectorOpds.push_back(IE->getOperand(1));
if (IE->use_empty())
return false;
@ -2720,12 +2757,16 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
}
// Try to vectorize trees that start at insertelement instructions.
if (InsertElementInst *IE = dyn_cast<InsertElementInst>(it)) {
SmallVector<Value *, 8> Ops;
if (!findBuildVector(IE, Ops))
if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
SmallVector<Value *, 16> BuildVector;
SmallVector<Value *, 16> BuildVectorOpds;
if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
continue;
if (tryToVectorizeList(Ops, R)) {
// Vectorize starting with the build vector operands ignoring the
// BuildVector instructions for the purpose of scheduling and user
// extraction.
if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
Changed = true;
it = BB->begin();
e = BB->end();

View File

@ -195,6 +195,30 @@ define <4 x float> @simple_select_partial_vector(<4 x float> %a, <4 x float> %b,
ret <4 x float> %rb
}
; Make sure that vectorization happens even if insertelements operations
; must be rescheduled. The case here is from compiling Julia.
define <4 x float> @reschedule_extract(<4 x float> %a, <4 x float> %b) {
; CHECK-LABEL: @reschedule_extract(
; CHECK: %1 = fadd <4 x float> %a, %b
%a0 = extractelement <4 x float> %a, i32 0
%b0 = extractelement <4 x float> %b, i32 0
%c0 = fadd float %a0, %b0
%v0 = insertelement <4 x float> undef, float %c0, i32 0
%a1 = extractelement <4 x float> %a, i32 1
%b1 = extractelement <4 x float> %b, i32 1
%c1 = fadd float %a1, %b1
%v1 = insertelement <4 x float> %v0, float %c1, i32 1
%a2 = extractelement <4 x float> %a, i32 2
%b2 = extractelement <4 x float> %b, i32 2
%c2 = fadd float %a2, %b2
%v2 = insertelement <4 x float> %v1, float %c2, i32 2
%a3 = extractelement <4 x float> %a, i32 3
%b3 = extractelement <4 x float> %b, i32 3
%c3 = fadd float %a3, %b3
%v3 = insertelement <4 x float> %v2, float %c3, i32 3
ret <4 x float> %v3
}
; Check that cost model for vectorization takes credit for
; instructions that are erased.
define <4 x float> @take_credit(<4 x float> %a, <4 x float> %b) {
@ -219,4 +243,40 @@ define <4 x float> @take_credit(<4 x float> %a, <4 x float> %b) {
ret <4 x float> %v3
}
; Make sure we handle multiple trees that feed one build vector correctly.
define <4 x double> @multi_tree(double %w, double %x, double %y, double %z) {
entry:
%t0 = fadd double %w , 0.000000e+00
%t1 = fadd double %x , 1.000000e+00
%t2 = fadd double %y , 2.000000e+00
%t3 = fadd double %z , 3.000000e+00
%t4 = fmul double %t0, 1.000000e+00
%i1 = insertelement <4 x double> undef, double %t4, i32 3
%t5 = fmul double %t1, 1.000000e+00
%i2 = insertelement <4 x double> %i1, double %t5, i32 2
%t6 = fmul double %t2, 1.000000e+00
%i3 = insertelement <4 x double> %i2, double %t6, i32 1
%t7 = fmul double %t3, 1.000000e+00
%i4 = insertelement <4 x double> %i3, double %t7, i32 0
ret <4 x double> %i4
}
; CHECK-LABEL: @multi_tree
; CHECK-DAG: %[[V0:.+]] = insertelement <2 x double> undef, double %w, i32 0
; CHECK-DAG: %[[V1:.+]] = insertelement <2 x double> %[[V0]], double %x, i32 1
; CHECK-DAG: %[[V2:.+]] = fadd <2 x double> %[[V1]], <double 0.000000e+00, double 1.000000e+00>
; CHECK-DAG: %[[V3:.+]] = insertelement <2 x double> undef, double %y, i32 0
; CHECK-DAG: %[[V4:.+]] = insertelement <2 x double> %[[V3]], double %z, i32 1
; CHECK-DAG: %[[V5:.+]] = fadd <2 x double> %[[V4]], <double 2.000000e+00, double 3.000000e+00>
; CHECK-DAG: %[[V6:.+]] = fmul <2 x double> <double 1.000000e+00, double 1.000000e+00>, %[[V2]]
; CHECK-DAG: %[[V7:.+]] = extractelement <2 x double> %[[V6]], i32 0
; CHECK-DAG: %[[I1:.+]] = insertelement <4 x double> undef, double %[[V7]], i32 3
; CHECK-DAG: %[[V8:.+]] = extractelement <2 x double> %[[V6]], i32 1
; CHECK-DAG: %[[I2:.+]] = insertelement <4 x double> %[[I1]], double %[[V8]], i32 2
; CHECK-DAG: %[[V9:.+]] = fmul <2 x double> <double 1.000000e+00, double 1.000000e+00>, %[[V5]]
; CHECK-DAG: %[[V10:.+]] = extractelement <2 x double> %[[V9]], i32 0
; CHECK-DAG: %[[I3:.+]] = insertelement <4 x double> %i2, double %[[V10]], i32 1
; CHECK-DAG: %[[V11:.+]] = extractelement <2 x double> %[[V9]], i32 1
; CHECK-DAG: %[[I4:.+]] = insertelement <4 x double> %i3, double %[[V11]], i32 0
; CHECK: ret <4 x double> %[[I4]]
attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"="true" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }

View File

@ -0,0 +1,80 @@
; RUN: opt -slp-vectorizer < %s -S -mtriple="x86_64-grtev3-linux-gnu" -mcpu=corei7-avx | FileCheck %s
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-grtev3-linux-gnu"
; We used to crash on this example because we were building a constant
; expression during vectorization and the vectorizer expects instructions
; as elements of the vectorized tree.
; CHECK-LABEL: @test
; PR19621
define void @test() {
bb279:
br label %bb283
bb283:
%Av.sroa.8.0 = phi float [ undef, %bb279 ], [ %tmp315, %exit ]
%Av.sroa.5.0 = phi float [ undef, %bb279 ], [ %tmp319, %exit ]
%Av.sroa.3.0 = phi float [ undef, %bb279 ], [ %tmp307, %exit ]
%Av.sroa.0.0 = phi float [ undef, %bb279 ], [ %tmp317, %exit ]
br label %bb284
bb284:
%tmp7.i = fpext float %Av.sroa.3.0 to double
%tmp8.i = fsub double %tmp7.i, undef
%tmp9.i = fsub double %tmp8.i, undef
%tmp17.i = fpext float %Av.sroa.8.0 to double
%tmp19.i = fsub double %tmp17.i, undef
%tmp20.i = fsub double %tmp19.i, undef
br label %bb21.i
bb21.i:
br i1 undef, label %bb22.i, label %exit
bb22.i:
%tmp24.i = fadd double undef, %tmp9.i
%tmp26.i = fadd double undef, %tmp20.i
br label %bb32.i
bb32.i:
%xs.0.i = phi double [ %tmp24.i, %bb22.i ], [ 0.000000e+00, %bb32.i ]
%ys.0.i = phi double [ %tmp26.i, %bb22.i ], [ 0.000000e+00, %bb32.i ]
br i1 undef, label %bb32.i, label %bb21.i
exit:
%tmp303 = fpext float %Av.sroa.0.0 to double
%tmp304 = fmul double %tmp303, undef
%tmp305 = fadd double undef, %tmp304
%tmp306 = fadd double %tmp305, undef
%tmp307 = fptrunc double %tmp306 to float
%tmp311 = fpext float %Av.sroa.5.0 to double
%tmp312 = fmul double %tmp311, 0.000000e+00
%tmp313 = fadd double undef, %tmp312
%tmp314 = fadd double %tmp313, undef
%tmp315 = fptrunc double %tmp314 to float
%tmp317 = fptrunc double undef to float
%tmp319 = fptrunc double undef to float
br label %bb283
}
; Make sure that we probably handle constant folded vectorized trees. The
; vectorizer starts at the type (%t2, %t3) and wil constant fold the tree.
; The code that handles insertelement instructions must handle this.
define <4 x double> @constant_folding() {
entry:
%t0 = fadd double 1.000000e+00 , 0.000000e+00
%t1 = fadd double 1.000000e+00 , 1.000000e+00
%t2 = fmul double %t0, 1.000000e+00
%i1 = insertelement <4 x double> undef, double %t2, i32 1
%t3 = fmul double %t1, 1.000000e+00
%i2 = insertelement <4 x double> %i1, double %t3, i32 0
ret <4 x double> %i2
}
; CHECK-LABEL: @constant_folding
; CHECK: %[[V0:.+]] = extractelement <2 x double> <double 1.000000e+00, double 2.000000e+00>, i32 0
; CHECK: %[[V1:.+]] = insertelement <4 x double> undef, double %[[V0]], i32 1
; CHECK: %[[V2:.+]] = extractelement <2 x double> <double 1.000000e+00, double 2.000000e+00>, i32 1
; CHECK: %[[V3:.+]] = insertelement <4 x double> %[[V1]], double %[[V2]], i32 0
; CHECK: ret <4 x double> %[[V3]]