Track register ages more accurately.

Keep track of the last instruction to define each register individually
instead of per DomainValue.  This lets us track more accurately when a
register was last written.

Also track register ages across basic blocks.  When entering a new
basic block, use the least stale predecessor def as a worst case
estimate for register age.

The register age is used to arbitrate between conflicting domains. The
most recently defined register wins.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144601 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jakob Stoklund Olesen 2011-11-15 01:15:25 +00:00
parent d5c469ae1c
commit 2947f730a9

View File

@ -45,7 +45,7 @@ using namespace llvm;
/// DomainValue for each register, but it may contain multiple execution /// DomainValue for each register, but it may contain multiple execution
/// domains. A register value is initially created in a single execution /// domains. A register value is initially created in a single execution
/// domain, but if we were forced to pay the penalty of a domain crossing, we /// domain, but if we were forced to pay the penalty of a domain crossing, we
/// keep track of the fact the the register is now available in multiple /// keep track of the fact that the register is now available in multiple
/// domains. /// domains.
namespace { namespace {
struct DomainValue { struct DomainValue {
@ -57,9 +57,6 @@ struct DomainValue {
// domains where the register is available for free. // domains where the register is available for free.
unsigned AvailableDomains; unsigned AvailableDomains;
// Position of the last defining instruction.
unsigned Dist;
// Pointer to the next DomainValue in a chain. When two DomainValues are // Pointer to the next DomainValue in a chain. When two DomainValues are
// merged, Victim.Next is set to point to Victor, so old DomainValue // merged, Victim.Next is set to point to Victor, so old DomainValue
// references can be updated by folowing the chain. // references can be updated by folowing the chain.
@ -101,13 +98,28 @@ struct DomainValue {
// Clear this DomainValue and point to next which has all its data. // Clear this DomainValue and point to next which has all its data.
void clear() { void clear() {
AvailableDomains = Dist = 0; AvailableDomains = 0;
Next = 0; Next = 0;
Instrs.clear(); Instrs.clear();
} }
}; };
} }
namespace {
/// LiveReg - Information about a live register.
struct LiveReg {
/// Value currently in this register, or NULL when no value is being tracked.
/// This counts as a DomainValue reference.
DomainValue *Value;
/// Instruction that defined this register, relative to the beginning of the
/// current basic block. When a LiveReg is used to represent a live-out
/// register, this value is relative to the end of the basic block, so it
/// will be a negative number.
int Def;
};
} // anonynous namespace
namespace { namespace {
class ExeDepsFix : public MachineFunctionPass { class ExeDepsFix : public MachineFunctionPass {
static char ID; static char ID;
@ -120,10 +132,17 @@ class ExeDepsFix : public MachineFunctionPass {
const TargetRegisterInfo *TRI; const TargetRegisterInfo *TRI;
std::vector<int> AliasMap; std::vector<int> AliasMap;
const unsigned NumRegs; const unsigned NumRegs;
DomainValue **LiveRegs; LiveReg *LiveRegs;
typedef DenseMap<MachineBasicBlock*,DomainValue**> LiveOutMap; typedef DenseMap<MachineBasicBlock*, LiveReg*> LiveOutMap;
LiveOutMap LiveOuts; LiveOutMap LiveOuts;
unsigned Distance;
/// Current instruction number.
/// The first instruction in each basic block is 0.
int CurInstr;
/// True when the current block has a predecessor that hasn't been visited
/// yet.
bool SeenUnknownBackEdge;
public: public:
ExeDepsFix(const TargetRegisterClass *rc) ExeDepsFix(const TargetRegisterClass *rc)
@ -160,10 +179,10 @@ private:
void collapse(DomainValue *dv, unsigned domain); void collapse(DomainValue *dv, unsigned domain);
bool merge(DomainValue *A, DomainValue *B); bool merge(DomainValue *A, DomainValue *B);
bool enterBasicBlock(MachineBasicBlock*); void enterBasicBlock(MachineBasicBlock*);
void leaveBasicBlock(MachineBasicBlock*); void leaveBasicBlock(MachineBasicBlock*);
void visitInstr(MachineInstr*); void visitInstr(MachineInstr*);
void visitGenericInstr(MachineInstr*); void processDefs(MachineInstr*, bool Kill);
void visitSoftInstr(MachineInstr*, unsigned mask); void visitSoftInstr(MachineInstr*, unsigned mask);
void visitHardInstr(MachineInstr*, unsigned domain); void visitHardInstr(MachineInstr*, unsigned domain);
}; };
@ -182,7 +201,6 @@ DomainValue *ExeDepsFix::alloc(int domain) {
DomainValue *dv = Avail.empty() ? DomainValue *dv = Avail.empty() ?
new(Allocator.Allocate()) DomainValue : new(Allocator.Allocate()) DomainValue :
Avail.pop_back_val(); Avail.pop_back_val();
dv->Dist = Distance;
if (domain >= 0) if (domain >= 0)
dv->addDomain(domain); dv->addDomain(domain);
assert(dv->Refs == 0 && "Reference count wasn't cleared"); assert(dv->Refs == 0 && "Reference count wasn't cleared");
@ -231,32 +249,31 @@ DomainValue *ExeDepsFix::resolve(DomainValue *&DVRef) {
/// Set LiveRegs[rx] = dv, updating reference counts. /// Set LiveRegs[rx] = dv, updating reference counts.
void ExeDepsFix::setLiveReg(int rx, DomainValue *dv) { void ExeDepsFix::setLiveReg(int rx, DomainValue *dv) {
assert(unsigned(rx) < NumRegs && "Invalid index"); assert(unsigned(rx) < NumRegs && "Invalid index");
if (!LiveRegs) { assert(LiveRegs && "Must enter basic block first.");
LiveRegs = new DomainValue*[NumRegs];
std::fill(LiveRegs, LiveRegs+NumRegs, (DomainValue*)0);
}
if (LiveRegs[rx] == dv) if (LiveRegs[rx].Value == dv)
return; return;
if (LiveRegs[rx]) if (LiveRegs[rx].Value)
release(LiveRegs[rx]); release(LiveRegs[rx].Value);
LiveRegs[rx] = retain(dv); LiveRegs[rx].Value = retain(dv);
} }
// Kill register rx, recycle or collapse any DomainValue. // Kill register rx, recycle or collapse any DomainValue.
void ExeDepsFix::kill(int rx) { void ExeDepsFix::kill(int rx) {
assert(unsigned(rx) < NumRegs && "Invalid index"); assert(unsigned(rx) < NumRegs && "Invalid index");
if (!LiveRegs || !LiveRegs[rx]) return; assert(LiveRegs && "Must enter basic block first.");
if (!LiveRegs[rx].Value)
return;
release(LiveRegs[rx]); release(LiveRegs[rx].Value);
LiveRegs[rx] = 0; LiveRegs[rx].Value = 0;
} }
/// Force register rx into domain. /// Force register rx into domain.
void ExeDepsFix::force(int rx, unsigned domain) { void ExeDepsFix::force(int rx, unsigned domain) {
assert(unsigned(rx) < NumRegs && "Invalid index"); assert(unsigned(rx) < NumRegs && "Invalid index");
DomainValue *dv; assert(LiveRegs && "Must enter basic block first.");
if (LiveRegs && (dv = LiveRegs[rx])) { if (DomainValue *dv = LiveRegs[rx].Value) {
if (dv->isCollapsed()) if (dv->isCollapsed())
dv->addDomain(domain); dv->addDomain(domain);
else if (dv->hasDomain(domain)) else if (dv->hasDomain(domain))
@ -265,8 +282,8 @@ void ExeDepsFix::force(int rx, unsigned domain) {
// This is an incompatible open DomainValue. Collapse it to whatever and // This is an incompatible open DomainValue. Collapse it to whatever and
// force the new value into domain. This costs a domain crossing. // force the new value into domain. This costs a domain crossing.
collapse(dv, dv->getFirstDomain()); collapse(dv, dv->getFirstDomain());
assert(LiveRegs[rx] && "Not live after collapse?"); assert(LiveRegs[rx].Value && "Not live after collapse?");
LiveRegs[rx]->addDomain(domain); LiveRegs[rx].Value->addDomain(domain);
} }
} else { } else {
// Set up basic collapsed DomainValue. // Set up basic collapsed DomainValue.
@ -287,7 +304,7 @@ void ExeDepsFix::collapse(DomainValue *dv, unsigned domain) {
// If there are multiple users, give them new, unique DomainValues. // If there are multiple users, give them new, unique DomainValues.
if (LiveRegs && dv->Refs > 1) if (LiveRegs && dv->Refs > 1)
for (unsigned rx = 0; rx != NumRegs; ++rx) for (unsigned rx = 0; rx != NumRegs; ++rx)
if (LiveRegs[rx] == dv) if (LiveRegs[rx].Value == dv)
setLiveReg(rx, alloc(domain)); setLiveReg(rx, alloc(domain));
} }
@ -303,7 +320,6 @@ bool ExeDepsFix::merge(DomainValue *A, DomainValue *B) {
if (!common) if (!common)
return false; return false;
A->AvailableDomains = common; A->AvailableDomains = common;
A->Dist = std::max(A->Dist, B->Dist);
A->Instrs.append(B->Instrs.begin(), B->Instrs.end()); A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
// Clear the old DomainValue so we won't try to swizzle instructions twice. // Clear the old DomainValue so we won't try to swizzle instructions twice.
@ -312,66 +328,103 @@ bool ExeDepsFix::merge(DomainValue *A, DomainValue *B) {
B->Next = retain(A); B->Next = retain(A);
for (unsigned rx = 0; rx != NumRegs; ++rx) for (unsigned rx = 0; rx != NumRegs; ++rx)
if (LiveRegs[rx] == B) if (LiveRegs[rx].Value == B)
setLiveReg(rx, A); setLiveReg(rx, A);
return true; return true;
} }
// enterBasicBlock - Set up LiveRegs by merging predecessor live-out values. // enterBasicBlock - Set up LiveRegs by merging predecessor live-out values.
// Return true if some predecessor hasn't been processed yet (like on a loop void ExeDepsFix::enterBasicBlock(MachineBasicBlock *MBB) {
// back-edge).
bool ExeDepsFix::enterBasicBlock(MachineBasicBlock *MBB) {
// Detect back-edges from predecessors we haven't processed yet. // Detect back-edges from predecessors we haven't processed yet.
bool seenBackEdge = false; SeenUnknownBackEdge = false;
// Reset instruction counter in each basic block.
CurInstr = 0;
// Set up LiveRegs to represent registers entering MBB.
if (!LiveRegs)
LiveRegs = new LiveReg[NumRegs];
// Default values are 'nothing happened a long time ago'.
for (unsigned rx = 0; rx != NumRegs; ++rx) {
LiveRegs[rx].Value = 0;
LiveRegs[rx].Def = -(1 << 20);
}
// This is the entry block.
if (MBB->pred_empty()) {
for (MachineBasicBlock::livein_iterator i = MBB->livein_begin(),
e = MBB->livein_end(); i != e; ++i) {
int rx = regIndex(*i);
if (rx < 0)
continue;
// Treat function live-ins as if they were defined just before the first
// instruction. Usually, function arguments are set up immediately
// before the call.
LiveRegs[rx].Def = -1;
}
DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": entry\n");
return;
}
// Try to coalesce live-out registers from predecessors. // Try to coalesce live-out registers from predecessors.
for (MachineBasicBlock::livein_iterator i = MBB->livein_begin(), for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(),
e = MBB->livein_end(); i != e; ++i) { pe = MBB->pred_end(); pi != pe; ++pi) {
int rx = regIndex(*i); LiveOutMap::const_iterator fi = LiveOuts.find(*pi);
if (rx < 0) continue; if (fi == LiveOuts.end()) {
for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(), SeenUnknownBackEdge = true;
pe = MBB->pred_end(); pi != pe; ++pi) { continue;
LiveOutMap::const_iterator fi = LiveOuts.find(*pi); }
if (fi == LiveOuts.end()) { assert(fi->second && "Can't have NULL entries");
seenBackEdge = true;
for (unsigned rx = 0; rx != NumRegs; ++rx) {
// Use the most recent predecessor def for each register.
LiveRegs[rx].Def = std::max(LiveRegs[rx].Def, fi->second[rx].Def);
DomainValue *pdv = resolve(fi->second[rx].Value);
if (!pdv)
continue; continue;
} if (!LiveRegs[rx].Value) {
if (!fi->second)
continue;
DomainValue *pdv = resolve(fi->second[rx]);
if (!pdv) continue;
if (!LiveRegs || !LiveRegs[rx]) {
setLiveReg(rx, pdv); setLiveReg(rx, pdv);
continue; continue;
} }
// We have a live DomainValue from more than one predecessor. // We have a live DomainValue from more than one predecessor.
if (LiveRegs[rx]->isCollapsed()) { if (LiveRegs[rx].Value->isCollapsed()) {
// We are already collapsed, but predecessor is not. Force him. // We are already collapsed, but predecessor is not. Force him.
unsigned domain = LiveRegs[rx]->getFirstDomain(); unsigned Domain = LiveRegs[rx].Value->getFirstDomain();
if (!pdv->isCollapsed() && pdv->hasDomain(domain)) if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
collapse(pdv, domain); collapse(pdv, Domain);
continue; continue;
} }
// Currently open, merge in predecessor. // Currently open, merge in predecessor.
if (!pdv->isCollapsed()) if (!pdv->isCollapsed())
merge(LiveRegs[rx], pdv); merge(LiveRegs[rx].Value, pdv);
else else
force(rx, pdv->getFirstDomain()); force(rx, pdv->getFirstDomain());
} }
} }
return seenBackEdge; DEBUG(dbgs() << "BB#" << MBB->getNumber()
<< (SeenUnknownBackEdge ? ": incomplete\n" : ": all preds known\n"));
} }
void ExeDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) { void ExeDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) {
assert(LiveRegs && "Must enter basic block first.");
// Save live registers at end of MBB - used by enterBasicBlock(). // Save live registers at end of MBB - used by enterBasicBlock().
// Also use LiveOuts as a visited set to detect back-edges. // Also use LiveOuts as a visited set to detect back-edges.
if (!LiveOuts.insert(std::make_pair(MBB, LiveRegs)).second && LiveRegs) { bool First = LiveOuts.insert(std::make_pair(MBB, LiveRegs)).second;
if (First) {
// LiveRegs was inserted in LiveOuts. Adjust all defs to be relative to
// the end of this block instead of the beginning.
for (unsigned i = 0, e = NumRegs; i != e; ++i)
LiveRegs[i].Def -= CurInstr;
} else {
// Insertion failed, this must be the second pass. // Insertion failed, this must be the second pass.
// Release all the DomainValues instead of keeping them. // Release all the DomainValues instead of keeping them.
for (unsigned i = 0, e = NumRegs; i != e; ++i) for (unsigned i = 0, e = NumRegs; i != e; ++i)
release(LiveRegs[i]); release(LiveRegs[i].Value);
delete[] LiveRegs; delete[] LiveRegs;
} }
LiveRegs = 0; LiveRegs = 0;
@ -380,15 +433,52 @@ void ExeDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) {
void ExeDepsFix::visitInstr(MachineInstr *MI) { void ExeDepsFix::visitInstr(MachineInstr *MI) {
if (MI->isDebugValue()) if (MI->isDebugValue())
return; return;
++Distance;
std::pair<uint16_t, uint16_t> domp = TII->getExecutionDomain(MI); // Update instructions with explicit execution domains.
if (domp.first) std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(MI);
if (domp.second) if (DomP.first) {
visitSoftInstr(MI, domp.second); if (DomP.second)
visitSoftInstr(MI, DomP.second);
else else
visitHardInstr(MI, domp.first); visitHardInstr(MI, DomP.first);
else if (LiveRegs) }
visitGenericInstr(MI);
// Process defs to track register ages, and kill values clobbered by generic
// instructions.
processDefs(MI, !DomP.first);
}
// Update def-ages for registers defined by MI.
// If Kill is set, also kill off DomainValues clobbered by the defs.
void ExeDepsFix::processDefs(MachineInstr *MI, bool Kill) {
assert(!MI->isDebugValue() && "Won't process debug values");
const MCInstrDesc &MCID = MI->getDesc();
for (unsigned i = 0,
e = MCID.isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
if (MO.isImplicit())
break;
if (MO.isUse())
continue;
int rx = regIndex(MO.getReg());
if (rx < 0)
continue;
// This instruction explicitly defines rx.
DEBUG(dbgs() << TRI->getName(RC->getRegister(rx)) << ":\t" << CurInstr
<< '\t' << *MI);
LiveRegs[rx].Def = CurInstr;
// Kill off domains redefined by generic instructions.
if (Kill)
kill(rx);
}
++CurInstr;
} }
// A hard instruction only works in one domain. All input registers will be // A hard instruction only works in one domain. All input registers will be
@ -430,7 +520,7 @@ void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
if (!mo.isReg()) continue; if (!mo.isReg()) continue;
int rx = regIndex(mo.getReg()); int rx = regIndex(mo.getReg());
if (rx < 0) continue; if (rx < 0) continue;
if (DomainValue *dv = LiveRegs[rx]) { if (DomainValue *dv = LiveRegs[rx].Value) {
// Bitmask of domains that dv and available have in common. // Bitmask of domains that dv and available have in common.
unsigned common = dv->getCommonDomains(available); unsigned common = dv->getCommonDomains(available);
// Is it possible to use this collapsed register for free? // Is it possible to use this collapsed register for free?
@ -459,52 +549,53 @@ void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
// Kill off any remaining uses that don't match available, and build a list of // Kill off any remaining uses that don't match available, and build a list of
// incoming DomainValues that we want to merge. // incoming DomainValues that we want to merge.
SmallVector<DomainValue*,4> doms; SmallVector<LiveReg, 4> Regs;
for (SmallVector<int, 4>::iterator i=used.begin(), e=used.end(); i!=e; ++i) { for (SmallVector<int, 4>::iterator i=used.begin(), e=used.end(); i!=e; ++i) {
int rx = *i; int rx = *i;
DomainValue *dv = LiveRegs[rx]; const LiveReg &LR = LiveRegs[rx];
// This useless DomainValue could have been missed above. // This useless DomainValue could have been missed above.
if (!dv->getCommonDomains(available)) { if (!LR.Value->getCommonDomains(available)) {
kill(*i); kill(rx);
continue; continue;
} }
// sorted, uniqued insert. // Sorted insertion.
bool inserted = false; bool Inserted = false;
for (SmallVector<DomainValue*,4>::iterator i = doms.begin(), e = doms.end(); for (SmallVector<LiveReg, 4>::iterator i = Regs.begin(), e = Regs.end();
i != e && !inserted; ++i) { i != e && !Inserted; ++i) {
if (dv == *i) if (LR.Def < i->Def) {
inserted = true; Inserted = true;
else if (dv->Dist < (*i)->Dist) { Regs.insert(i, LR);
inserted = true;
doms.insert(i, dv);
} }
} }
if (!inserted) if (!Inserted)
doms.push_back(dv); Regs.push_back(LR);
} }
// doms are now sorted in order of appearance. Try to merge them all, giving // doms are now sorted in order of appearance. Try to merge them all, giving
// priority to the latest ones. // priority to the latest ones.
DomainValue *dv = 0; DomainValue *dv = 0;
while (!doms.empty()) { while (!Regs.empty()) {
if (!dv) { if (!dv) {
dv = doms.pop_back_val(); dv = Regs.pop_back_val().Value;
continue; continue;
} }
DomainValue *latest = doms.pop_back_val(); DomainValue *Latest = Regs.pop_back_val().Value;
if (merge(dv, latest)) continue; // Skip already merged values.
if (Latest == dv || Latest->Next)
continue;
if (merge(dv, Latest))
continue;
// If latest didn't merge, it is useless now. Kill all registers using it. // If latest didn't merge, it is useless now. Kill all registers using it.
for (SmallVector<int,4>::iterator i=used.begin(), e=used.end(); i != e; ++i) for (SmallVector<int,4>::iterator i=used.begin(), e=used.end(); i != e; ++i)
if (LiveRegs[*i] == latest) if (LiveRegs[*i].Value == Latest)
kill(*i); kill(*i);
} }
// dv is the DomainValue we are going to use for this instruction. // dv is the DomainValue we are going to use for this instruction.
if (!dv) if (!dv)
dv = alloc(); dv = alloc();
dv->Dist = Distance;
dv->AvailableDomains = available; dv->AvailableDomains = available;
dv->Instrs.push_back(mi); dv->Instrs.push_back(mi);
@ -514,32 +605,23 @@ void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
if (!mo.isReg()) continue; if (!mo.isReg()) continue;
int rx = regIndex(mo.getReg()); int rx = regIndex(mo.getReg());
if (rx < 0) continue; if (rx < 0) continue;
if (!LiveRegs || !LiveRegs[rx] || (mo.isDef() && LiveRegs[rx]!=dv)) { if (!LiveRegs[rx].Value || (mo.isDef() && LiveRegs[rx].Value != dv)) {
kill(rx); kill(rx);
setLiveReg(rx, dv); setLiveReg(rx, dv);
} }
} }
} }
void ExeDepsFix::visitGenericInstr(MachineInstr *mi) {
// Process explicit defs, kill any relevant registers redefined.
for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg()) continue;
int rx = regIndex(mo.getReg());
if (rx < 0) continue;
kill(rx);
}
}
bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) { bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
MF = &mf; MF = &mf;
TII = MF->getTarget().getInstrInfo(); TII = MF->getTarget().getInstrInfo();
TRI = MF->getTarget().getRegisterInfo(); TRI = MF->getTarget().getRegisterInfo();
LiveRegs = 0; LiveRegs = 0;
Distance = 0;
assert(NumRegs == RC->getNumRegs() && "Bad regclass"); assert(NumRegs == RC->getNumRegs() && "Bad regclass");
DEBUG(dbgs() << "********** FIX EXECUTION DEPENDENCIES: "
<< RC->getName() << " **********\n");
// If no relevant registers are used in the function, we can skip it // If no relevant registers are used in the function, we can skip it
// completely. // completely.
bool anyregs = false; bool anyregs = false;
@ -567,7 +649,8 @@ bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) { MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
MachineBasicBlock *MBB = *MBBI; MachineBasicBlock *MBB = *MBBI;
if (enterBasicBlock(MBB)) enterBasicBlock(MBB);
if (SeenUnknownBackEdge)
Loops.push_back(MBB); Loops.push_back(MBB);
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
++I) ++I)
@ -590,8 +673,8 @@ bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
if (FI == LiveOuts.end() || !FI->second) if (FI == LiveOuts.end() || !FI->second)
continue; continue;
for (unsigned i = 0, e = NumRegs; i != e; ++i) for (unsigned i = 0, e = NumRegs; i != e; ++i)
if (FI->second[i]) if (FI->second[i].Value)
release(FI->second[i]); release(FI->second[i].Value);
delete[] FI->second; delete[] FI->second;
} }
LiveOuts.clear(); LiveOuts.clear();