Cosmetic change.

Do not use "ValueMap" as a name for a local variable or an argument.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106698 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Devang Patel
2010-06-23 23:55:51 +00:00
parent 71339c965c
commit 29d3dd8a64
7 changed files with 116 additions and 116 deletions

View File

@ -32,7 +32,7 @@ using namespace llvm;
// CloneBasicBlock - See comments in Cloning.h
BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
DenseMap<const Value*, Value*> &ValueMap,
DenseMap<const Value*, Value*> &VMap,
const Twine &NameSuffix, Function *F,
ClonedCodeInfo *CodeInfo) {
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
@ -47,7 +47,7 @@ BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
if (II->hasName())
NewInst->setName(II->getName()+NameSuffix);
NewBB->getInstList().push_back(NewInst);
ValueMap[II] = NewInst; // Add instruction map to value.
VMap[II] = NewInst; // Add instruction map to value.
hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
@ -72,7 +72,7 @@ BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
// ArgMap values.
//
void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
DenseMap<const Value*, Value*> &ValueMap,
DenseMap<const Value*, Value*> &VMap,
SmallVectorImpl<ReturnInst*> &Returns,
const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
assert(NameSuffix && "NameSuffix cannot be null!");
@ -80,17 +80,17 @@ void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
#ifndef NDEBUG
for (Function::const_arg_iterator I = OldFunc->arg_begin(),
E = OldFunc->arg_end(); I != E; ++I)
assert(ValueMap.count(I) && "No mapping from source argument specified!");
assert(VMap.count(I) && "No mapping from source argument specified!");
#endif
// Clone any attributes.
if (NewFunc->arg_size() == OldFunc->arg_size())
NewFunc->copyAttributesFrom(OldFunc);
else {
//Some arguments were deleted with the ValueMap. Copy arguments one by one
//Some arguments were deleted with the VMap. Copy arguments one by one
for (Function::const_arg_iterator I = OldFunc->arg_begin(),
E = OldFunc->arg_end(); I != E; ++I)
if (Argument* Anew = dyn_cast<Argument>(ValueMap[I]))
if (Argument* Anew = dyn_cast<Argument>(VMap[I]))
Anew->addAttr( OldFunc->getAttributes()
.getParamAttributes(I->getArgNo() + 1));
NewFunc->setAttributes(NewFunc->getAttributes()
@ -111,43 +111,43 @@ void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
const BasicBlock &BB = *BI;
// Create a new basic block and copy instructions into it!
BasicBlock *CBB = CloneBasicBlock(&BB, ValueMap, NameSuffix, NewFunc,
BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc,
CodeInfo);
ValueMap[&BB] = CBB; // Add basic block mapping.
VMap[&BB] = CBB; // Add basic block mapping.
if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
Returns.push_back(RI);
}
// Loop over all of the instructions in the function, fixing up operand
// references as we go. This uses ValueMap to do all the hard work.
// references as we go. This uses VMap to do all the hard work.
//
for (Function::iterator BB = cast<BasicBlock>(ValueMap[OldFunc->begin()]),
for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
BE = NewFunc->end(); BB != BE; ++BB)
// Loop over all instructions, fixing each one as we find it...
for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
RemapInstruction(II, ValueMap);
RemapInstruction(II, VMap);
}
/// CloneFunction - Return a copy of the specified function, but without
/// embedding the function into another module. Also, any references specified
/// in the ValueMap are changed to refer to their mapped value instead of the
/// original one. If any of the arguments to the function are in the ValueMap,
/// the arguments are deleted from the resultant function. The ValueMap is
/// in the VMap are changed to refer to their mapped value instead of the
/// original one. If any of the arguments to the function are in the VMap,
/// the arguments are deleted from the resultant function. The VMap is
/// updated to include mappings from all of the instructions and basicblocks in
/// the function from their old to new values.
///
Function *llvm::CloneFunction(const Function *F,
DenseMap<const Value*, Value*> &ValueMap,
DenseMap<const Value*, Value*> &VMap,
ClonedCodeInfo *CodeInfo) {
std::vector<const Type*> ArgTypes;
// The user might be deleting arguments to the function by specifying them in
// the ValueMap. If so, we need to not add the arguments to the arg ty vector
// the VMap. If so, we need to not add the arguments to the arg ty vector
//
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I)
if (ValueMap.count(I) == 0) // Haven't mapped the argument to anything yet?
if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet?
ArgTypes.push_back(I->getType());
// Create a new function type...
@ -161,13 +161,13 @@ Function *llvm::CloneFunction(const Function *F,
Function::arg_iterator DestI = NewF->arg_begin();
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I)
if (ValueMap.count(I) == 0) { // Is this argument preserved?
if (VMap.count(I) == 0) { // Is this argument preserved?
DestI->setName(I->getName()); // Copy the name over...
ValueMap[I] = DestI++; // Add mapping to ValueMap
VMap[I] = DestI++; // Add mapping to VMap
}
SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
CloneFunctionInto(NewF, F, ValueMap, Returns, "", CodeInfo);
CloneFunctionInto(NewF, F, VMap, Returns, "", CodeInfo);
return NewF;
}
@ -179,7 +179,7 @@ namespace {
struct PruningFunctionCloner {
Function *NewFunc;
const Function *OldFunc;
DenseMap<const Value*, Value*> &ValueMap;
DenseMap<const Value*, Value*> &VMap;
SmallVectorImpl<ReturnInst*> &Returns;
const char *NameSuffix;
ClonedCodeInfo *CodeInfo;
@ -191,7 +191,7 @@ namespace {
const char *nameSuffix,
ClonedCodeInfo *codeInfo,
const TargetData *td)
: NewFunc(newFunc), OldFunc(oldFunc), ValueMap(valueMap), Returns(returns),
: NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), Returns(returns),
NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
}
@ -202,7 +202,7 @@ namespace {
public:
/// ConstantFoldMappedInstruction - Constant fold the specified instruction,
/// mapping its operands through ValueMap if they are available.
/// mapping its operands through VMap if they are available.
Constant *ConstantFoldMappedInstruction(const Instruction *I);
};
}
@ -211,7 +211,7 @@ namespace {
/// anything that it can reach.
void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
std::vector<const BasicBlock*> &ToClone){
Value *&BBEntry = ValueMap[BB];
Value *&BBEntry = VMap[BB];
// Have we already cloned this block?
if (BBEntry) return;
@ -230,7 +230,7 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
// If this instruction constant folds, don't bother cloning the instruction,
// instead, just add the constant to the value map.
if (Constant *C = ConstantFoldMappedInstruction(II)) {
ValueMap[II] = C;
VMap[II] = C;
continue;
}
@ -238,7 +238,7 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
if (II->hasName())
NewInst->setName(II->getName()+NameSuffix);
NewBB->getInstList().push_back(NewInst);
ValueMap[II] = NewInst; // Add instruction map to value.
VMap[II] = NewInst; // Add instruction map to value.
hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
@ -258,12 +258,12 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
// Or is a known constant in the caller...
if (Cond == 0)
Cond = dyn_cast_or_null<ConstantInt>(ValueMap[BI->getCondition()]);
Cond = dyn_cast_or_null<ConstantInt>(VMap[BI->getCondition()]);
// Constant fold to uncond branch!
if (Cond) {
BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
VMap[OldTI] = BranchInst::Create(Dest, NewBB);
ToClone.push_back(Dest);
TerminatorDone = true;
}
@ -272,10 +272,10 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
// If switching on a value known constant in the caller.
ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
if (Cond == 0) // Or known constant after constant prop in the callee...
Cond = dyn_cast_or_null<ConstantInt>(ValueMap[SI->getCondition()]);
Cond = dyn_cast_or_null<ConstantInt>(VMap[SI->getCondition()]);
if (Cond) { // Constant fold to uncond branch!
BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond));
ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
VMap[OldTI] = BranchInst::Create(Dest, NewBB);
ToClone.push_back(Dest);
TerminatorDone = true;
}
@ -286,7 +286,7 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
if (OldTI->hasName())
NewInst->setName(OldTI->getName()+NameSuffix);
NewBB->getInstList().push_back(NewInst);
ValueMap[OldTI] = NewInst; // Add instruction map to value.
VMap[OldTI] = NewInst; // Add instruction map to value.
// Recursively clone any reachable successor blocks.
const TerminatorInst *TI = BB->getTerminator();
@ -307,13 +307,13 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
}
/// ConstantFoldMappedInstruction - Constant fold the specified instruction,
/// mapping its operands through ValueMap if they are available.
/// mapping its operands through VMap if they are available.
Constant *PruningFunctionCloner::
ConstantFoldMappedInstruction(const Instruction *I) {
SmallVector<Constant*, 8> Ops;
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
ValueMap)))
VMap)))
Ops.push_back(Op);
else
return 0; // All operands not constant!
@ -363,7 +363,7 @@ static MDNode *UpdateInlinedAtInfo(MDNode *InsnMD, MDNode *TheCallMD) {
/// dead. Since this doesn't produce an exact copy of the input, it can't be
/// used for things like CloneFunction or CloneModule.
void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
DenseMap<const Value*, Value*> &ValueMap,
DenseMap<const Value*, Value*> &VMap,
SmallVectorImpl<ReturnInst*> &Returns,
const char *NameSuffix,
ClonedCodeInfo *CodeInfo,
@ -374,10 +374,10 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
#ifndef NDEBUG
for (Function::const_arg_iterator II = OldFunc->arg_begin(),
E = OldFunc->arg_end(); II != E; ++II)
assert(ValueMap.count(II) && "No mapping from source argument specified!");
assert(VMap.count(II) && "No mapping from source argument specified!");
#endif
PruningFunctionCloner PFC(NewFunc, OldFunc, ValueMap, Returns,
PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, Returns,
NameSuffix, CodeInfo, TD);
// Clone the entry block, and anything recursively reachable from it.
@ -397,14 +397,14 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
SmallVector<const PHINode*, 16> PHIToResolve;
for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
BI != BE; ++BI) {
BasicBlock *NewBB = cast_or_null<BasicBlock>(ValueMap[BI]);
BasicBlock *NewBB = cast_or_null<BasicBlock>(VMap[BI]);
if (NewBB == 0) continue; // Dead block.
// Add the new block to the new function.
NewFunc->getBasicBlockList().push_back(NewBB);
// Loop over all of the instructions in the block, fixing up operand
// references as we go. This uses ValueMap to do all the hard work.
// references as we go. This uses VMap to do all the hard work.
//
BasicBlock::iterator I = NewBB->begin();
@ -455,7 +455,7 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
I->setMetadata(DbgKind, 0);
}
}
RemapInstruction(I, ValueMap);
RemapInstruction(I, VMap);
}
}
@ -465,19 +465,19 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
const PHINode *OPN = PHIToResolve[phino];
unsigned NumPreds = OPN->getNumIncomingValues();
const BasicBlock *OldBB = OPN->getParent();
BasicBlock *NewBB = cast<BasicBlock>(ValueMap[OldBB]);
BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
// Map operands for blocks that are live and remove operands for blocks
// that are dead.
for (; phino != PHIToResolve.size() &&
PHIToResolve[phino]->getParent() == OldBB; ++phino) {
OPN = PHIToResolve[phino];
PHINode *PN = cast<PHINode>(ValueMap[OPN]);
PHINode *PN = cast<PHINode>(VMap[OPN]);
for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
if (BasicBlock *MappedBlock =
cast_or_null<BasicBlock>(ValueMap[PN->getIncomingBlock(pred)])) {
cast_or_null<BasicBlock>(VMap[PN->getIncomingBlock(pred)])) {
Value *InVal = MapValue(PN->getIncomingValue(pred),
ValueMap);
VMap);
assert(InVal && "Unknown input value?");
PN->setIncomingValue(pred, InVal);
PN->setIncomingBlock(pred, MappedBlock);
@ -531,15 +531,15 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
while ((PN = dyn_cast<PHINode>(I++))) {
Value *NV = UndefValue::get(PN->getType());
PN->replaceAllUsesWith(NV);
assert(ValueMap[OldI] == PN && "ValueMap mismatch");
ValueMap[OldI] = NV;
assert(VMap[OldI] == PN && "VMap mismatch");
VMap[OldI] = NV;
PN->eraseFromParent();
++OldI;
}
}
// NOTE: We cannot eliminate single entry phi nodes here, because of
// ValueMap. Single entry phi nodes can have multiple ValueMap entries
// pointing at them. Thus, deleting one would require scanning the ValueMap
// VMap. Single entry phi nodes can have multiple VMap entries
// pointing at them. Thus, deleting one would require scanning the VMap
// to update any entries in it that would require that. This would be
// really slow.
}
@ -548,14 +548,14 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
// and zap unconditional fall-through branches. This happen all the time when
// specializing code: code specialization turns conditional branches into
// uncond branches, and this code folds them.
Function::iterator I = cast<BasicBlock>(ValueMap[&OldFunc->getEntryBlock()]);
Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]);
while (I != NewFunc->end()) {
BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
if (!BI || BI->isConditional()) { ++I; continue; }
// Note that we can't eliminate uncond branches if the destination has
// single-entry PHI nodes. Eliminating the single-entry phi nodes would
// require scanning the ValueMap to update any entries that point to the phi
// require scanning the VMap to update any entries that point to the phi
// node.
BasicBlock *Dest = BI->getSuccessor(0);
if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) {