MI-Sched: added tracking of dependent latency for better heuristics.

Heuristics compare the critical path in the scheduled code, called
ExpectedLatency, with the latency of instructions remaining to be
scheduled. There are two ways to look at remaining latency:

(1) Dependent latency includes the latency between unscheduled and
scheduled instructions.

(2) Independent latency is simply the height (bottom-up) or depth
(top-down) of instructions currently in the ready Q.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184029 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Andrew Trick 2013-06-15 04:49:44 +00:00
parent eda39a9d69
commit 2c465a3551

View File

@ -1245,6 +1245,11 @@ public:
// The expected latency of the critical path in this scheduled zone.
unsigned ExpectedLatency;
// The latency of dependence chains leading into this zone.
// For each node scheduled: DLat = max DLat, N.Depth.
// For each cycle scheduled: DLat -= 1.
unsigned DependentLatency;
// Resources used in the scheduled zone beyond this boundary.
SmallVector<unsigned, 16> ResourceCounts;
@ -1274,6 +1279,7 @@ public:
IssueCount = 0;
MinReadyCycle = UINT_MAX;
ExpectedLatency = 0;
DependentLatency = 0;
ResourceCounts.resize(1);
assert(!ResourceCounts[0] && "nonzero count for bad resource");
CritResIdx = 0;
@ -1536,16 +1542,20 @@ bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
/// Compute the remaining latency to determine whether ILP should be increased.
void ConvergingScheduler::SchedBoundary::setLatencyPolicy(CandPolicy &Policy) {
DEBUG(dbgs() << " " << Available.getName()
<< " DependentLatency " << DependentLatency << '\n');
// FIXME: compile time. In all, we visit four queues here one we should only
// need to visit the one that was last popped if we cache the result.
unsigned RemLatency = 0;
unsigned RemLatency = DependentLatency;
for (ReadyQueue::iterator I = Available.begin(), E = Available.end();
I != E; ++I) {
unsigned L = getUnscheduledLatency(*I);
DEBUG(dbgs() << " " << Available.getName()
<< " RemLatency SU(" << (*I)->NodeNum << ") " << L << '\n');
if (L > RemLatency)
if (L > RemLatency) {
DEBUG(dbgs() << " " << Available.getName()
<< " RemLatency SU(" << (*I)->NodeNum << ") " << L << '\n');
RemLatency = L;
}
}
for (ReadyQueue::iterator I = Pending.begin(), E = Pending.end();
I != E; ++I) {
@ -1557,7 +1567,8 @@ void ConvergingScheduler::SchedBoundary::setLatencyPolicy(CandPolicy &Policy) {
DEBUG(dbgs() << " " << Available.getName()
<< " ExpectedLatency " << ExpectedLatency
<< " CP Limit " << CriticalPathLimit << '\n');
if (RemLatency + ExpectedLatency >= CriticalPathLimit
if (RemLatency + std::max(ExpectedLatency, CurrCycle) >= CriticalPathLimit
&& RemLatency > Rem->getMaxRemainingCount(SchedModel)) {
Policy.ReduceLatency = true;
DEBUG(dbgs() << " Increase ILP: " << Available.getName() << '\n');
@ -1592,6 +1603,10 @@ void ConvergingScheduler::SchedBoundary::bumpCycle() {
IssueCount = 0;
NextCycle = MinReadyCycle;
}
if ((NextCycle - CurrCycle) > DependentLatency)
DependentLatency = 0;
else
DependentLatency -= (NextCycle - CurrCycle);
if (!HazardRec->isEnabled()) {
// Bypass HazardRec virtual calls.
@ -1658,14 +1673,12 @@ void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
countResource(PI->ProcResourceIdx, PI->Cycles);
}
}
if (isTop()) {
if (SU->getDepth() > ExpectedLatency)
ExpectedLatency = SU->getDepth();
}
else {
if (SU->getHeight() > ExpectedLatency)
ExpectedLatency = SU->getHeight();
}
unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
if (SU->getDepth() > TopLatency)
TopLatency = SU->getDepth();
if (SU->getHeight() > BotLatency)
BotLatency = SU->getHeight();
IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);