signficant cleanups to EmitGlobalConstant (including streamerization

of int initializers), change some methods to be static functions,
use raw_ostream::write_hex instead of a smallstring dance with 
APValue::toStringUnsigned(S, 16).


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93991 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2010-01-20 07:11:32 +00:00
parent 3bcda49b35
commit 2dd245c469
3 changed files with 68 additions and 106 deletions

View File

@ -427,8 +427,6 @@ namespace llvm {
private:
void EmitLLVMUsedList(Constant *List);
void EmitXXStructorList(Constant *List);
void EmitGlobalConstantLargeInt(const ConstantInt* CI, unsigned AddrSpace);
void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace);
GCMetadataPrinter *GetOrCreateGCPrinter(GCStrategy *C);
};
}

View File

@ -1098,16 +1098,16 @@ static void EmitGlobalConstantStruct(const ConstantStruct *CS,
// Print the fields in successive locations. Pad to align if needed!
const TargetData *TD = AP.TM.getTargetData();
unsigned Size = TD->getTypeAllocSize(CS->getType());
const StructLayout *cvsLayout = TD->getStructLayout(CS->getType());
const StructLayout *Layout = TD->getStructLayout(CS->getType());
uint64_t SizeSoFar = 0;
for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
const Constant *field = CS->getOperand(i);
// Check if padding is needed and insert one or more 0s.
uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
- cvsLayout->getElementOffset(i)) - fieldSize;
SizeSoFar += fieldSize + padSize;
uint64_t FieldSize = TD->getTypeAllocSize(field->getType());
uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
- Layout->getElementOffset(i)) - FieldSize;
SizeSoFar += FieldSize + PadSize;
// Now print the actual field value.
AP.EmitGlobalConstant(field, AddrSpace);
@ -1115,36 +1115,36 @@ static void EmitGlobalConstantStruct(const ConstantStruct *CS,
// Insert padding - this may include padding to increase the size of the
// current field up to the ABI size (if the struct is not packed) as well
// as padding to ensure that the next field starts at the right offset.
AP.OutStreamer.EmitZeros(padSize, AddrSpace);
AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
}
assert(SizeSoFar == cvsLayout->getSizeInBytes() &&
assert(SizeSoFar == Layout->getSizeInBytes() &&
"Layout of constant struct may be incorrect!");
}
void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
unsigned AddrSpace) {
static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
AsmPrinter &AP) {
// FP Constants are printed as integer constants to avoid losing
// precision.
if (CFP->getType()->isDoubleTy()) {
if (VerboseAsm) {
if (AP.VerboseAsm) {
double Val = CFP->getValueAPF().convertToDouble(); // for comment only
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " double " << Val << '\n';
AP.O.PadToColumn(AP.MAI->getCommentColumn());
AP.O << AP.MAI->getCommentString() << " double " << Val << '\n';
}
uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
OutStreamer.EmitIntValue(i, 8, AddrSpace);
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
return;
}
if (CFP->getType()->isFloatTy()) {
if (VerboseAsm) {
if (AP.VerboseAsm) {
float Val = CFP->getValueAPF().convertToFloat(); // for comment only
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " float " << Val << '\n';
AP.O.PadToColumn(AP.MAI->getCommentColumn());
AP.O << AP.MAI->getCommentString() << " float " << Val << '\n';
}
OutStreamer.EmitIntValue(CFP->getValueAPF().bitcastToAPInt().getZExtValue(),
4, AddrSpace);
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
return;
}
@ -1153,29 +1153,29 @@ void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
// api needed to prevent premature destruction
APInt API = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = API.getRawData();
if (VerboseAsm) {
if (AP.VerboseAsm) {
// Convert to double so we can print the approximate val as a comment.
APFloat DoubleVal = CFP->getValueAPF();
bool ignored;
DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
&ignored);
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " x86_fp80 ~= "
<< DoubleVal.convertToDouble() << '\n';
AP.O.PadToColumn(AP.MAI->getCommentColumn());
AP.O << AP.MAI->getCommentString() << " x86_fp80 ~= "
<< DoubleVal.convertToDouble() << '\n';
}
if (TM.getTargetData()->isBigEndian()) {
OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
if (AP.TM.getTargetData()->isBigEndian()) {
AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
} else {
OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
}
// Emit the tail padding for the long double.
const TargetData &TD = *TM.getTargetData();
OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
TD.getTypeStoreSize(CFP->getType()), AddrSpace);
const TargetData &TD = *AP.TM.getTargetData();
AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
TD.getTypeStoreSize(CFP->getType()), AddrSpace);
return;
}
@ -1185,18 +1185,18 @@ void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
// premature destruction.
APInt API = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = API.getRawData();
if (TM.getTargetData()->isBigEndian()) {
OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
if (AP.TM.getTargetData()->isBigEndian()) {
AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
} else {
OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
}
}
void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
static void EmitGlobalConstantLargeInt(const ConstantInt *CI,
unsigned AddrSpace, AsmPrinter &AP) {
const TargetData *TD = AP.TM.getTargetData();
unsigned BitWidth = CI->getBitWidth();
assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
@ -1205,51 +1205,38 @@ void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
// quantities at a time.
const uint64_t *RawData = CI->getValue().getRawData();
for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
uint64_t Val;
if (TD->isBigEndian())
Val = RawData[e - i - 1];
else
Val = RawData[i];
if (MAI->getData64bitsDirective(AddrSpace)) {
O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n';
continue;
}
// Emit two 32-bit chunks, order depends on endianness.
unsigned FirstChunk = unsigned(Val), SecondChunk = unsigned(Val >> 32);
const char *FirstName = " least", *SecondName = " most";
if (TD->isBigEndian()) {
std::swap(FirstChunk, SecondChunk);
std::swap(FirstName, SecondName);
}
O << MAI->getData32bitsDirective(AddrSpace) << FirstChunk;
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< FirstName << " significant half of i64 " << Val;
}
O << '\n';
O << MAI->getData32bitsDirective(AddrSpace) << SecondChunk;
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< SecondName << " significant half of i64 " << Val;
}
O << '\n';
uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
}
}
/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
const Type *type = CV->getType();
unsigned Size = TD->getTypeAllocSize(type);
if (CV->isNullValue() || isa<UndefValue>(CV))
if (CV->isNullValue() || isa<UndefValue>(CV)) {
uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
return OutStreamer.EmitZeros(Size, AddrSpace);
}
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
unsigned Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
switch (Size) {
case 1:
case 2:
case 4:
case 8:
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " 0x";
O.write_hex(CI->getZExtValue());
O << '\n';
}
OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
return;
default:
EmitGlobalConstantLargeInt(CI, AddrSpace, *this);
return;
}
}
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
return EmitGlobalConstantArray(CVA, AddrSpace, *this);
@ -1258,36 +1245,13 @@ void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
return EmitGlobalConstantStruct(CVS, AddrSpace, *this);
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
return EmitGlobalConstantFP(CFP, AddrSpace);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
// If we can directly emit an 8-byte constant, do it.
if (Size == 8)
if (const char *Data64Dir = MAI->getData64bitsDirective(AddrSpace)) {
O << Data64Dir << CI->getZExtValue() << '\n';
return;
}
// Small integers are handled below; large integers are handled here.
if (Size > 4) {
EmitGlobalConstantLargeInt(CI, AddrSpace);
return;
}
}
return EmitGlobalConstantFP(CFP, AddrSpace, *this);
if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
return EmitGlobalConstantVector(V, AddrSpace, *this);
printDataDirective(type, AddrSpace);
printDataDirective(CV->getType(), AddrSpace);
EmitConstantValueOnly(CV);
if (VerboseAsm) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
SmallString<40> S;
CI->getValue().toStringUnsigned(S, 16);
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " 0x" << S.str();
}
}
O << '\n';
}

View File

@ -1,4 +1,4 @@
; RUN: llc < %s -march=x86 -mtriple=i686-pc-linux-gnu | grep 18446744073709551615 | count 14
; RUN: llc < %s -march=x86 -mtriple=i686-pc-linux-gnu | grep -- -1 | count 14
; These static initializers are too big to hand off to assemblers
; as monolithic blobs.