Make LCSSA insert proper Phi nodes throughout the rest of the CFG by computing

the iterated Dominance Frontier of the loop-closure Phi's.  This is the
second phase of the LCSSA pass.  The third phase (coming soon) will be to
update all uses of loop variables to use the loop-closure Phi's instead.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28524 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Owen Anderson 2006-05-27 18:47:11 +00:00
parent 8d8d6530b1
commit 2f21e07915

View File

@ -36,12 +36,13 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/CFG.h"
#include <algorithm>
#include <map>
#include <vector>
using namespace llvm;
namespace {
static Statistic<> NumLCSSA("lcssa", "Number of times LCSSA was applied");
static Statistic<> NumLCSSA("lcssa", "Number of live out of a loop");
class LCSSA : public FunctionPass {
public:
@ -64,8 +65,7 @@ namespace {
AU.addPreservedID(LoopSimplifyID);
AU.addRequired<LoopInfo>();
AU.addPreserved<LoopInfo>();
AU.addRequired<DominatorTree>(); // Not sure if this one will actually
// be needed.
AU.addRequired<DominatorTree>();
AU.addRequired<DominanceFrontier>();
}
private:
@ -105,6 +105,11 @@ bool LCSSA::visitSubloop(Loop* L) {
std::vector<BasicBlock*> exitBlocks;
L->getExitBlocks(exitBlocks);
// Phi nodes that need to be IDF-processed
std::vector<PHINode*> workList;
// Iterate over all affected values for this loop and insert Phi nodes
// for them in the appropriate exit blocks
for (std::set<Instruction*>::iterator I = AffectedValues.begin(),
E = AffectedValues.end(); I != E; ++I) {
++NumLCSSA; // We are applying the transformation
@ -112,20 +117,58 @@ bool LCSSA::visitSubloop(Loop* L) {
BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
PHINode *phi = new PHINode((*I)->getType(), "lcssa");
(*BBI)->getInstList().insert((*BBI)->front(), phi);
workList.push_back(phi);
// Since LoopSimplify has been run, we know that all of these predecessors
// are in the loop, so just hook them up in the obvious manner.
for (pred_iterator PI = pred_begin(*BBI), PE = pred_end(*BBI); PI != PE;
++PI)
phi->addIncoming(*I, *PI);
}
for (Value::use_iterator UI = (*I)->use_begin(), UE = (*I)->use_end();
UI != UE; ++UI) {
BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
if (!std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), UserBB))
; // FIXME: This should update the SSA form.
}
}
// Calculate the IDF of these LCSSA Phi nodes, inserting new Phi's where
// necessary. Keep track of these new Phi's in DFPhis.
std::map<BasicBlock*, PHINode*> DFPhis;
for (std::vector<PHINode*>::iterator I = workList.begin(),
E = workList.end(); I != E; ++I) {
// Get the current Phi's DF, and insert Phi nodes. Add these new
// nodes to our worklist.
DominanceFrontier::const_iterator it = DF->find((*I)->getParent());
if (it != DF->end()) {
const DominanceFrontier::DomSetType &S = it->second;
for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
PE = S.end(); P != PE; ++P) {
if (DFPhis[*P] == 0) {
// Still doesn't have operands...
PHINode *phi = new PHINode((*I)->getType(), "lcssa");
(*P)->getInstList().insert((*P)->front(), phi);
DFPhis[*P] = phi;
workList.push_back(phi);
}
}
}
// Get the predecessor blocks of the current Phi, and use them to hook up
// the operands of the current Phi to any members of DFPhis that dominate
// it. This is a nop for the Phis inserted directly in the exit blocks,
// since they are not dominated by any members of DFPhis.
for (pred_iterator PI = pred_begin((*I)->getParent()),
E = pred_end((*I)->getParent()); PI != E; ++PI)
for (std::map<BasicBlock*, PHINode*>::iterator MI = DFPhis.begin(),
ME = DFPhis.end(); MI != ME; ++MI)
if (DT->getNode((*MI).first)->dominates(DT->getNode(*PI))) {
(*I)->addIncoming((*MI).second, *PI);
// Since dominate() is not cheap, don't do it more than we have to.
break;
}
}
// FIXME: Should update all uses.
return true; // FIXME: Should be more intelligent in our return value.
}