Simplify the locking on the Constants tables, and make it more efficient, by pushing it into the ValueMap from the callers.

Document those ValueMap functions that are _not_ locked, so that callers are aware that they need to do the locking themselves.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73628 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Owen Anderson 2009-06-17 20:10:08 +00:00
parent 4306b1a329
commit 31c36f02f2

View File

@ -1183,6 +1183,8 @@ namespace llvm {
AbstractTypeMapTy AbstractTypeMap;
public:
// NOTE: This function is not locked. It is the caller's responsibility
// to enforce proper synchronization.
typename MapTy::iterator map_end() { return Map.end(); }
/// InsertOrGetItem - Return an iterator for the specified element.
@ -1190,6 +1192,8 @@ namespace llvm {
/// entry and Exists=true. If not, the iterator points to the newly
/// inserted entry and returns Exists=false. Newly inserted entries have
/// I->second == 0, and should be filled in.
/// NOTE: This function is not locked. It is the caller's responsibility
// to enforce proper synchronization.
typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
&InsertVal,
bool &Exists) {
@ -1225,37 +1229,85 @@ public:
/// necessary.
ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
MapKey Lookup(Ty, V);
typename MapTy::iterator I = Map.find(Lookup);
// Is it in the map?
if (I != Map.end())
return static_cast<ConstantClass *>(I->second);
if (llvm_is_multithreaded()) {
ConstantClass* Result = 0;
ConstantsLock->reader_acquire();
typename MapTy::iterator I = Map.find(Lookup);
// Is it in the map?
if (I != Map.end())
Result = static_cast<ConstantClass *>(I->second);
ConstantsLock->reader_release();
if (!Result) {
ConstantsLock->writer_acquire();
I = Map.find(Lookup);
// Is it in the map?
if (I != Map.end())
Result = static_cast<ConstantClass *>(I->second);
if (!Result) {
// If no preexisting value, create one now...
Result =
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
// If no preexisting value, create one now...
ConstantClass *Result =
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
assert(Result->getType() == Ty && "Type specified is not correct!");
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
assert(Result->getType() == Ty && "Type specified is not correct!");
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.insert(std::make_pair(Result, I));
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.insert(std::make_pair(Result, I));
// If the type of the constant is abstract, make sure that an entry exists
// for it in the AbstractTypeMap.
if (Ty->isAbstract()) {
typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(Ty);
// If the type of the constant is abstract, make sure that an entry
// exists for it in the AbstractTypeMap.
if (Ty->isAbstract()) {
typename AbstractTypeMapTy::iterator TI =
AbstractTypeMap.find(Ty);
if (TI == AbstractTypeMap.end()) {
// Add ourselves to the ATU list of the type.
cast<DerivedType>(Ty)->addAbstractTypeUser(this);
if (TI == AbstractTypeMap.end()) {
// Add ourselves to the ATU list of the type.
cast<DerivedType>(Ty)->addAbstractTypeUser(this);
AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
}
}
}
ConstantsLock->writer_release();
}
return Result;
} else {
typename MapTy::iterator I = Map.find(Lookup);
// Is it in the map?
if (I != Map.end())
return static_cast<ConstantClass *>(I->second);
// If no preexisting value, create one now...
ConstantClass *Result =
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
assert(Result->getType() == Ty && "Type specified is not correct!");
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.insert(std::make_pair(Result, I));
// If the type of the constant is abstract, make sure that an entry
// exists for it in the AbstractTypeMap.
if (Ty->isAbstract()) {
typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(Ty);
if (TI == AbstractTypeMap.end()) {
// Add ourselves to the ATU list of the type.
cast<DerivedType>(Ty)->addAbstractTypeUser(this);
AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
}
}
return Result;
}
return Result;
}
void remove(ConstantClass *CP) {
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
typename MapTy::iterator I = FindExistingElement(CP);
assert(I != Map.end() && "Constant not found in constant table!");
assert(I->second == CP && "Didn't find correct element?");
@ -1303,12 +1355,16 @@ public:
}
Map.erase(I);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
}
/// MoveConstantToNewSlot - If we are about to change C to be the element
/// specified by I, update our internal data structures to reflect this
/// fact.
/// NOTE: This function is not locked. It is the responsibility of the
/// caller to enforce proper synchronization if using this method.
void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
// First, remove the old location of the specified constant in the map.
typename MapTy::iterator OldI = FindExistingElement(C);
@ -1338,6 +1394,7 @@ public:
}
void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
typename AbstractTypeMapTy::iterator I =
AbstractTypeMap.find(cast<Type>(OldTy));
@ -1355,12 +1412,16 @@ public:
I = AbstractTypeMap.find(cast<Type>(OldTy));
} while (I != AbstractTypeMap.end());
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
}
// If the type became concrete without being refined to any other existing
// type, we just remove ourselves from the ATU list.
void typeBecameConcrete(const DerivedType *AbsTy) {
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
AbsTy->removeAbstractTypeUser(this);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
}
void dump() const {
@ -1402,19 +1463,16 @@ static char getValType(ConstantAggregateZero *CPZ) { return 0; }
ConstantAggregateZero *ConstantAggregateZero::get(const Type *Ty) {
assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
"Cannot create an aggregate zero of non-aggregate type!");
ConstantAggregateZero* result = 0;
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
result = AggZeroConstants->getOrCreate(Ty, 0);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
// Implicitly locked.
return AggZeroConstants->getOrCreate(Ty, 0);
}
/// destroyConstant - Remove the constant from the constant table...
///
void ConstantAggregateZero::destroyConstant() {
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
// Implicitly locked.
AggZeroConstants->remove(this);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
destroyConstantImpl();
}
@ -1451,20 +1509,18 @@ static ManagedStatic<ArrayConstantsTy> ArrayConstants;
Constant *ConstantArray::get(const ArrayType *Ty,
const std::vector<Constant*> &V) {
// If this is an all-zero array, return a ConstantAggregateZero object
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
if (!V.empty()) {
Constant *C = V[0];
if (!C->isNullValue()) {
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
// Implicitly locked.
return ArrayConstants->getOrCreate(Ty, V);
}
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C) {
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
// Implicitly locked.
return ArrayConstants->getOrCreate(Ty, V);
}
}
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return ConstantAggregateZero::get(Ty);
}
@ -1472,9 +1528,7 @@ Constant *ConstantArray::get(const ArrayType *Ty,
/// destroyConstant - Remove the constant from the constant table...
///
void ConstantArray::destroyConstant() {
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
ArrayConstants->remove(this);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
destroyConstantImpl();
}
@ -1583,14 +1637,10 @@ static std::vector<Constant*> getValType(ConstantStruct *CS) {
Constant *ConstantStruct::get(const StructType *Ty,
const std::vector<Constant*> &V) {
// Create a ConstantAggregateZero value if all elements are zeros...
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (!V[i]->isNullValue()) {
Constant* result = StructConstants->getOrCreate(Ty, V);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
}
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
if (!V[i]->isNullValue())
// Implicitly locked.
return StructConstants->getOrCreate(Ty, V);
return ConstantAggregateZero::get(Ty);
}
@ -1606,9 +1656,7 @@ Constant *ConstantStruct::get(const std::vector<Constant*> &V, bool packed) {
// destroyConstant - Remove the constant from the constant table...
//
void ConstantStruct::destroyConstant() {
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
StructConstants->remove(this);
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
destroyConstantImpl();
}
@ -1662,10 +1710,9 @@ Constant *ConstantVector::get(const VectorType *Ty,
return ConstantAggregateZero::get(Ty);
if (isUndef)
return UndefValue::get(Ty);
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
Constant* result = VectorConstants->getOrCreate(Ty, V);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
// Implicitly locked.
return VectorConstants->getOrCreate(Ty, V);
}
Constant *ConstantVector::get(const std::vector<Constant*> &V) {
@ -1742,10 +1789,8 @@ static char getValType(ConstantPointerNull *) {
ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
ConstantPointerNull* result = NullPtrConstants->getOrCreate(Ty, 0);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
// Implicitly locked.
return NullPtrConstants->getOrCreate(Ty, 0);
}
// destroyConstant - Remove the constant from the constant table...
@ -1790,18 +1835,15 @@ static char getValType(UndefValue *) {
UndefValue *UndefValue::get(const Type *Ty) {
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
UndefValue* result = UndefValueConstants->getOrCreate(Ty, 0);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
// Implicitly locked.
return UndefValueConstants->getOrCreate(Ty, 0);
}
// destroyConstant - Remove the constant from the constant table.
//
void UndefValue::destroyConstant() {
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
// Implicitly locked.
UndefValueConstants->remove(this);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
destroyConstantImpl();
}
@ -2055,10 +2097,8 @@ static inline Constant *getFoldedCast(
std::vector<Constant*> argVec(1, C);
ExprMapKeyType Key(opc, argVec);
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
Constant* result = ExprConstants->getOrCreate(Ty, Key);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
// Implicitly locked.
return ExprConstants->getOrCreate(Ty, Key);
}
Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
@ -2318,10 +2358,9 @@ Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
ExprMapKeyType Key(Opcode, argVec);
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
Constant* result = ExprConstants->getOrCreate(ReqTy, Key);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
// Implicitly locked.
return ExprConstants->getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getCompareTy(unsigned short predicate,
@ -2432,10 +2471,9 @@ Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
argVec[1] = V1;
argVec[2] = V2;
ExprMapKeyType Key(Instruction::Select, argVec);
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
Constant* result = ExprConstants->getOrCreate(ReqTy, Key);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
// Implicitly locked.
return ExprConstants->getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
@ -2458,10 +2496,9 @@ Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
for (unsigned i = 0; i != NumIdx; ++i)
ArgVec.push_back(cast<Constant>(Idxs[i]));
const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
Constant *result = ExprConstants->getOrCreate(ReqTy, Key);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
// Implicitly locked.
return ExprConstants->getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
@ -2495,10 +2532,9 @@ ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
ArgVec.push_back(RHS);
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
Constant* result = ExprConstants->getOrCreate(Type::Int1Ty, Key);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
// Implicitly locked.
return ExprConstants->getOrCreate(Type::Int1Ty, Key);
}
Constant *
@ -2515,10 +2551,9 @@ ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
ArgVec.push_back(RHS);
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
Constant* result = ExprConstants->getOrCreate(Type::Int1Ty, Key);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
// Implicitly locked.
return ExprConstants->getOrCreate(Type::Int1Ty, Key);
}
Constant *
@ -2563,10 +2598,9 @@ ConstantExpr::getVICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
ArgVec.push_back(RHS);
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::VICmp, ArgVec, pred);
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
Constant* result = ExprConstants->getOrCreate(LHS->getType(), Key);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
// Implicitly locked.
return ExprConstants->getOrCreate(LHS->getType(), Key);
}
Constant *
@ -2613,10 +2647,9 @@ ConstantExpr::getVFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
ArgVec.push_back(RHS);
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::VFCmp, ArgVec, pred);
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
Constant* result = ExprConstants->getOrCreate(ResultTy, Key);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
// Implicitly locked.
return ExprConstants->getOrCreate(ResultTy, Key);
}
Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
@ -2627,10 +2660,9 @@ Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
std::vector<Constant*> ArgVec(1, Val);
ArgVec.push_back(Idx);
const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
Constant* result = ExprConstants->getOrCreate(ReqTy, Key);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
// Implicitly locked.
return ExprConstants->getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
@ -2651,10 +2683,9 @@ Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
ArgVec.push_back(Elt);
ArgVec.push_back(Idx);
const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
Constant* result = ExprConstants->getOrCreate(ReqTy, Key);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
// Implicitly locked.
return ExprConstants->getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
@ -2677,10 +2708,9 @@ Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
ArgVec.push_back(V2);
ArgVec.push_back(Mask);
const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
if (llvm_is_multithreaded()) ConstantsLock->writer_acquire();
Constant* result = ExprConstants->getOrCreate(ReqTy, Key);
if (llvm_is_multithreaded()) ConstantsLock->writer_release();
return result;
// Implicitly locked.
return ExprConstants->getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,