InstCombine: simplify comparisons to zero of (shl %x, Cst) or (mul %x, Cst)

This simplification happens at 2 places :
 - using the nsw attribute when the shl / mul is used by a sign test
 - when the shl / mul is compared for (in)equality to zero

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177856 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Arnaud A. de Grandmaison 2013-03-25 09:48:49 +00:00
parent f0a15d88af
commit 35763b1ee7
2 changed files with 225 additions and 0 deletions

View File

@ -139,6 +139,42 @@ static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
} }
} }
/// Returns true if the exploded icmp can be expressed as a comparison to zero
/// and update the predicate accordingly. The signedness of the comparison is
static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
if (!ICmpInst::isSigned(pred))
return false;
if (RHS->isZero())
return true;
if (RHS->isOne())
switch (pred) {
case ICmpInst::ICMP_SGE:
pred = ICmpInst::ICMP_SGT;
return true;
case ICmpInst::ICMP_SLT:
pred = ICmpInst::ICMP_SLE;
return true;
default:
return false;
}
if (RHS->isAllOnesValue())
switch (pred) {
case ICmpInst::ICMP_SLE:
pred = ICmpInst::ICMP_SLT;
return true;
case ICmpInst::ICMP_SGT:
pred = ICmpInst::ICMP_SGE;
return true;
default:
return false;
}
return false;
}
// isHighOnes - Return true if the constant is of the form 1+0+. // isHighOnes - Return true if the constant is of the form 1+0+.
// This is the same as lowones(~X). // This is the same as lowones(~X).
static bool isHighOnes(const ConstantInt *CI) { static bool isHighOnes(const ConstantInt *CI) {
@ -1282,6 +1318,25 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
break; break;
} }
case Instruction::Mul: { // (icmp pred (mul X, Val), CI)
ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
if (!Val) break;
if (!ICI.isEquality()) {
// If this is a signed comparison to 0 and the mul is sign preserving,
// use the mul LHS operand instead.
ICmpInst::Predicate pred = ICI.getPredicate();
if (isSignTest(pred, RHS) && !Val->isZero() &&
cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
return new ICmpInst(Val->isNegative() ?
ICmpInst::getSwappedPredicate(pred) : pred,
LHSI->getOperand(0),
Constant::getNullValue(RHS->getType()));
}
break;
}
case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI) case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
if (!ShAmt) break; if (!ShAmt) break;
@ -1313,6 +1368,12 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
ConstantExpr::getLShr(RHS, ShAmt)); ConstantExpr::getLShr(RHS, ShAmt));
// If the shift is NSW and we compare to 0, then it is just shifting out
// sign bits, no need for an AND either.
if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
ConstantExpr::getLShr(RHS, ShAmt));
if (LHSI->hasOneUse()) { if (LHSI->hasOneUse()) {
// Otherwise strength reduce the shift into an and. // Otherwise strength reduce the shift into an and.
uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
@ -1327,6 +1388,15 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
} }
} }
// If this is a signed comparison to 0 and the shift is sign preserving,
// use the shift LHS operand instead.
ICmpInst::Predicate pred = ICI.getPredicate();
if (isSignTest(pred, RHS) &&
cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
return new ICmpInst(pred,
LHSI->getOperand(0),
Constant::getNullValue(RHS->getType()));
// Otherwise, if this is a comparison of the sign bit, simplify to and/test. // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
bool TrueIfSigned = false; bool TrueIfSigned = false;
if (LHSI->hasOneUse() && if (LHSI->hasOneUse() &&
@ -1541,6 +1611,19 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
return new ICmpInst(pred, X, NegX); return new ICmpInst(pred, X, NegX);
} }
} }
break;
case Instruction::Mul:
if (RHSV == 0) {
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
// The trivial case (mul X, 0) is handled by InstSimplify
// General case : (mul X, C) != 0 iff X != 0
// (mul X, C) == 0 iff X == 0
if (!BOC->isZero())
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
Constant::getNullValue(RHS->getType()));
}
}
break;
default: break; default: break;
} }
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) { } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {

View File

@ -744,3 +744,145 @@ define i1 @icmp_shl24(i32 %x) {
%cmp = icmp slt i32 %shl, 603979776 %cmp = icmp slt i32 %shl, 603979776
ret i1 %cmp ret i1 %cmp
} }
; If the (shl x, C) preserved the sign and this is a sign test,
; compare the LHS operand instead
; CHECK: @icmp_shl_nsw_sgt
; CHECK-NEXT: icmp sgt i32 %x, 0
define i1 @icmp_shl_nsw_sgt(i32 %x) {
%shl = shl nsw i32 %x, 21
%cmp = icmp sgt i32 %shl, 0
ret i1 %cmp
}
; CHECK: @icmp_shl_nsw_sge0
; CHECK-NEXT: icmp sgt i32 %x, -1
define i1 @icmp_shl_nsw_sge0(i32 %x) {
%shl = shl nsw i32 %x, 21
%cmp = icmp sge i32 %shl, 0
ret i1 %cmp
}
; CHECK: @icmp_shl_nsw_sge1
; CHECK-NEXT: icmp sgt i32 %x, 0
define i1 @icmp_shl_nsw_sge1(i32 %x) {
%shl = shl nsw i32 %x, 21
%cmp = icmp sge i32 %shl, 1
ret i1 %cmp
}
; Checks for icmp (eq|ne) (shl x, C), 0
; CHECK: @icmp_shl_nsw_eq
; CHECK-NEXT: icmp eq i32 %x, 0
define i1 @icmp_shl_nsw_eq(i32 %x) {
%mul = shl nsw i32 %x, 5
%cmp = icmp eq i32 %mul, 0
ret i1 %cmp
}
; CHECK: @icmp_shl_eq
; CHECK-NOT: icmp eq i32 %mul, 0
define i1 @icmp_shl_eq(i32 %x) {
%mul = shl i32 %x, 5
%cmp = icmp eq i32 %mul, 0
ret i1 %cmp
}
; CHECK: @icmp_shl_nsw_ne
; CHECK-NEXT: icmp ne i32 %x, 0
define i1 @icmp_shl_nsw_ne(i32 %x) {
%mul = shl nsw i32 %x, 7
%cmp = icmp ne i32 %mul, 0
ret i1 %cmp
}
; CHECK: @icmp_shl_ne
; CHECK-NOT: icmp ne i32 %x, 0
define i1 @icmp_shl_ne(i32 %x) {
%mul = shl i32 %x, 7
%cmp = icmp ne i32 %mul, 0
ret i1 %cmp
}
; If the (mul x, C) preserved the sign and this is sign test,
; compare the LHS operand instead
; CHECK: @icmp_mul_nsw
; CHECK-NEXT: icmp sgt i32 %x, 0
define i1 @icmp_mul_nsw(i32 %x) {
%mul = mul nsw i32 %x, 12
%cmp = icmp sgt i32 %mul, 0
ret i1 %cmp
}
; CHECK: @icmp_mul_nsw1
; CHECK-NEXT: icmp slt i32 %x, 0
define i1 @icmp_mul_nsw1(i32 %x) {
%mul = mul nsw i32 %x, 12
%cmp = icmp sle i32 %mul, -1
ret i1 %cmp
}
; CHECK: @icmp_mul_nsw_neg
; CHECK-NEXT: icmp slt i32 %x, 1
define i1 @icmp_mul_nsw_neg(i32 %x) {
%mul = mul nsw i32 %x, -12
%cmp = icmp sge i32 %mul, 0
ret i1 %cmp
}
; CHECK: @icmp_mul_nsw_neg1
; CHECK-NEXT: icmp slt i32 %x, 0
define i1 @icmp_mul_nsw_neg1(i32 %x) {
%mul = mul nsw i32 %x, -12
%cmp = icmp sge i32 %mul, 1
ret i1 %cmp
}
; CHECK: @icmp_mul_nsw_0
; CHECK-NOT: icmp sgt i32 %x, 0
define i1 @icmp_mul_nsw_0(i32 %x) {
%mul = mul nsw i32 %x, 0
%cmp = icmp sgt i32 %mul, 0
ret i1 %cmp
}
; CHECK: @icmp_mul
; CHECK-NEXT: %mul = mul i32 %x, -12
define i1 @icmp_mul(i32 %x) {
%mul = mul i32 %x, -12
%cmp = icmp sge i32 %mul, 0
ret i1 %cmp
}
; Checks for icmp (eq|ne) (mul x, C), 0
; CHECK: @icmp_mul_neq0
; CHECK-NEXT: icmp ne i32 %x, 0
define i1 @icmp_mul_neq0(i32 %x) {
%mul = mul i32 %x, -12
%cmp = icmp ne i32 %mul, 0
ret i1 %cmp
}
; CHECK: @icmp_mul_eq0
; CHECK-NEXT: icmp eq i32 %x, 0
define i1 @icmp_mul_eq0(i32 %x) {
%mul = mul i32 %x, 12
%cmp = icmp eq i32 %mul, 0
ret i1 %cmp
}
; CHECK: @icmp_mul0_eq0
; CHECK-NEXT: ret i1 true
define i1 @icmp_mul0_eq0(i32 %x) {
%mul = mul i32 %x, 0
%cmp = icmp eq i32 %mul, 0
ret i1 %cmp
}
; CHECK: @icmp_mul0_ne0
; CHECK-NEXT: ret i1 false
define i1 @icmp_mul0_ne0(i32 %x) {
%mul = mul i32 %x, 0
%cmp = icmp ne i32 %mul, 0
ret i1 %cmp
}