Rework the SelectionDAG-based implementations of SimplifyDemandedBits

and ComputeMaskedBits to match the new improved versions in instcombine.
Tested against all of multisource/benchmarks on ppc.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26238 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Nate Begeman
2006-02-16 21:11:51 +00:00
parent a6bbfe8448
commit 368e18d56a
7 changed files with 639 additions and 215 deletions

View File

@ -23,6 +23,7 @@
#define LLVM_TARGET_TARGETLOWERING_H #define LLVM_TARGET_TARGETLOWERING_H
#include "llvm/Type.h" #include "llvm/Type.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/DataTypes.h" #include "llvm/Support/DataTypes.h"
#include <vector> #include <vector>
@ -284,21 +285,54 @@ public:
// TargetLowering Optimization Methods // TargetLowering Optimization Methods
// //
/// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
/// SDOperands for returning information from TargetLowering to its clients
/// that want to combine
struct TargetLoweringOpt {
SelectionDAG &DAG;
SDOperand Old;
SDOperand New;
TargetLoweringOpt::TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
bool CombineTo(SDOperand O, SDOperand N) {
Old = O;
New = N;
return true;
}
/// ShrinkDemandedConstant - Check to see if the specified operand of the
/// specified instruction is a constant integer. If so, check to see if there
/// are any bits set in the constant that are not demanded. If so, shrink the
/// constant and return true.
bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
};
/// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We
/// use this predicate to simplify operations downstream. Op and Mask are /// use this predicate to simplify operations downstream. Op and Mask are
/// known to be the same type. Targets can implement the /// known to be the same type.
/// isMaskedValueZeroForTargetNode method, to allow target nodes to be bool MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth = 0)
/// understood. const;
bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask) const;
/// DemandedBitsAreZero - Return true if 'Op & Mask' demands no bits from a /// ComputeMaskedBits - Determine which of the bits specified in Mask are
/// bit set operation such as a sign extend or or/xor with constant whose only /// known to be either zero or one and return them in the KnownZero/KnownOne
/// use is Op. If it returns true, the old node that sets bits which are /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
/// not demanded is returned in Old, and its replacement node is returned in /// processing. Targets can implement the computeMaskedBitsForTargetNode
/// New, such that callers of SetBitsAreZero may call CombineTo on them if /// method, to allow target nodes to be understood.
/// desired. void ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero,
bool DemandedBitsAreZero(const SDOperand &Op, uint64_t Mask, SDOperand &Old, uint64_t &KnownOne, unsigned Depth = 0) const;
SDOperand &New, SelectionDAG &DAG) const;
/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
/// DemandedMask bits of the result of Op are ever used downstream. If we can
/// use this information to simplify Op, create a new simplified DAG node and
/// return true, returning the original and new nodes in Old and New.
/// Otherwise, analyze the expression and return a mask of KnownOne and
/// KnownZero bits for the expression (used to simplify the caller).
/// The KnownZero/One bits may only be accurate for those bits in the
/// DemandedMask.
bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
uint64_t &KnownZero, uint64_t &KnownOne,
TargetLoweringOpt &TLO, unsigned Depth = 0) const;
//===--------------------------------------------------------------------===// //===--------------------------------------------------------------------===//
// TargetLowering Configuration Methods - These methods should be invoked by // TargetLowering Configuration Methods - These methods should be invoked by
@ -433,10 +467,14 @@ public:
/// DAG node. /// DAG node.
virtual const char *getTargetNodeName(unsigned Opcode) const; virtual const char *getTargetNodeName(unsigned Opcode) const;
/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
/// be zero. Op is expected to be a target specific node. /// Mask are known to be either zero or one and return them in the
virtual bool isMaskedValueZeroForTargetNode(const SDOperand &Op, /// KnownZero/KnownOne bitsets.
uint64_t Mask) const; virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
uint64_t Mask,
uint64_t &KnownZero,
uint64_t &KnownOne,
unsigned Depth = 0) const;
//===--------------------------------------------------------------------===// //===--------------------------------------------------------------------===//
// Inline Asm Support hooks // Inline Asm Support hooks

View File

@ -99,6 +99,18 @@ namespace {
return SDOperand(N, 0); return SDOperand(N, 0);
} }
bool DemandedBitsAreZero(SDOperand Op, uint64_t DemandedMask,
SDOperand &Old, SDOperand &New) const {
TargetLowering::TargetLoweringOpt TLO(DAG);
uint64_t KnownZero, KnownOne;
if (TLI.SimplifyDemandedBits(Op, DemandedMask, KnownZero, KnownOne, TLO)){
Old = TLO.Old;
New = TLO.New;
return true;
}
return false;
}
SDOperand CombineTo(SDNode *N, SDOperand Res) { SDOperand CombineTo(SDNode *N, SDOperand Res) {
std::vector<SDOperand> To; std::vector<SDOperand> To;
To.push_back(Res); To.push_back(Res);
@ -897,12 +909,8 @@ SDOperand DAGCombiner::visitAND(SDNode *N) {
if (N1C && N1C->isAllOnesValue()) if (N1C && N1C->isAllOnesValue())
return N0; return N0;
// if (and x, c) is known to be zero, return 0 // if (and x, c) is known to be zero, return 0
if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits))) if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
return DAG.getConstant(0, VT); return DAG.getConstant(0, VT);
// fold (and x, c) -> x iff (x & ~c) == 0
if (N1C &&
TLI.MaskedValueIsZero(N0, ~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
return N0;
// reassociate and // reassociate and
SDOperand RAND = ReassociateOps(ISD::AND, N0, N1); SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
if (RAND.Val != 0) if (RAND.Val != 0)
@ -984,38 +992,12 @@ SDOperand DAGCombiner::visitAND(SDNode *N) {
} }
// fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
// fold (and (sra)) -> (and (srl)) when possible. // fold (and (sra)) -> (and (srl)) when possible.
if (TLI.DemandedBitsAreZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits), Old, if (DemandedBitsAreZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT), Old,
New, DAG)) { New)) {
WorkList.push_back(N); WorkList.push_back(N);
CombineTo(Old.Val, New); CombineTo(Old.Val, New);
return SDOperand(); return SDOperand();
} }
// FIXME: DemandedBitsAreZero cannot currently handle AND with non-constant
// RHS and propagate known cleared bits to LHS. For this reason, we must keep
// this fold, for now, for the following testcase:
//
//int %test2(uint %mode.0.i.0) {
// %tmp.79 = cast uint %mode.0.i.0 to int
// %tmp.80 = shr int %tmp.79, ubyte 15
// %tmp.81 = shr uint %mode.0.i.0, ubyte 16
// %tmp.82 = cast uint %tmp.81 to int
// %tmp.83 = and int %tmp.80, %tmp.82
// ret int %tmp.83
//}
// fold (and (sra)) -> (and (srl)) when possible.
if (N0.getOpcode() == ISD::SRA && N0.Val->hasOneUse()) {
if (ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
// If the RHS of the AND has zeros where the sign bits of the SRA will
// land, turn the SRA into an SRL.
if (TLI.MaskedValueIsZero(N1, (~0ULL << (OpSizeInBits-N01C->getValue())) &
(~0ULL>>(64-OpSizeInBits)))) {
WorkList.push_back(N);
CombineTo(N0.Val, DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
N0.getOperand(1)));
return SDOperand();
}
}
}
// fold (zext_inreg (extload x)) -> (zextload x) // fold (zext_inreg (extload x)) -> (zextload x)
if (N0.getOpcode() == ISD::EXTLOAD) { if (N0.getOpcode() == ISD::EXTLOAD) {
MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT(); MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT();
@ -1298,8 +1280,8 @@ SDOperand DAGCombiner::visitSHL(SDNode *N) {
// if (shl x, c) is known to be zero, return 0 // if (shl x, c) is known to be zero, return 0
if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits))) if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
return DAG.getConstant(0, VT); return DAG.getConstant(0, VT);
if (N1C && TLI.DemandedBitsAreZero(SDOperand(N,0), ~0ULL >> (64-OpSizeInBits), if (N1C && DemandedBitsAreZero(SDOperand(N,0), ~0ULL >> (64-OpSizeInBits),
Old, New, DAG)) { Old, New)) {
WorkList.push_back(N); WorkList.push_back(N);
CombineTo(Old.Val, New); CombineTo(Old.Val, New);
return SDOperand(); return SDOperand();

View File

@ -135,175 +135,559 @@ const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
// Optimization Methods // Optimization Methods
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
/// DemandedBitsAreZero - Return true if 'Op & Mask' demands no bits from a bit /// ShrinkDemandedConstant - Check to see if the specified operand of the
/// set operation such as a sign extend or or/xor with constant whose only /// specified instruction is a constant integer. If so, check to see if there
/// use is Op. If it returns true, the old node that sets bits which are /// are any bits set in the constant that are not demanded. If so, shrink the
/// not demanded is returned in Old, and its replacement node is returned in /// constant and return true.
/// New, such that callers of DemandedBitsAreZero may call CombineTo on them if bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
/// desired. uint64_t Demanded) {
bool TargetLowering::DemandedBitsAreZero(const SDOperand &Op, uint64_t Mask, // FIXME: ISD::SELECT
SDOperand &Old, SDOperand &New, switch(Op.getOpcode()) {
SelectionDAG &DAG) const { default: break;
// If the operation has more than one use, we're not interested in it.
// Tracking down and checking all uses would be problematic and slow.
if (!Op.Val->hasOneUse())
return false;
switch (Op.getOpcode()) {
case ISD::AND: case ISD::AND:
// (X & C1) & C2 == 0 iff C1 & C2 == 0. case ISD::OR:
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { case ISD::XOR:
uint64_t NewVal = Mask & AndRHS->getValue(); if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
return DemandedBitsAreZero(Op.getOperand(0), NewVal, Old, New, DAG); if ((~Demanded & C->getValue()) != 0) {
} MVT::ValueType VT = Op.getValueType();
break; SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
case ISD::SHL: DAG.getConstant(Demanded & C->getValue(),
// (ushl X, C1) & C2 == 0 iff X & (C2 >> C1) == 0 VT));
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { return CombineTo(Op, New);
uint64_t NewVal = Mask >> ShAmt->getValue();
return DemandedBitsAreZero(Op.getOperand(0), NewVal, Old, New, DAG);
}
break;
case ISD::SIGN_EXTEND_INREG: {
MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
unsigned ExtendBits = MVT::getSizeInBits(EVT);
// If we're extending from something smaller than MVT::i64 and all of the
// sign extension bits are masked, return true and set New to be the
// first operand, since we no longer care what the high bits are.
if (ExtendBits < 64 && ((Mask & (~0ULL << ExtendBits)) == 0)) {
Old = Op;
New = Op.getOperand(0);
return true;
}
break;
}
case ISD::SRA:
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned OpBits = MVT::getSizeInBits(Op.getValueType());
unsigned SH = ShAmt->getValue();
if (SH && ((Mask & (~0ULL << (OpBits-SH))) == 0)) {
Old = Op;
New = DAG.getNode(ISD::SRL, Op.getValueType(), Op.getOperand(0),
Op.getOperand(1));
return true;
} }
}
break; break;
} }
return false; return false;
} }
/// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We use /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
/// this predicate to simplify operations downstream. Op and Mask are known to /// DemandedMask bits of the result of Op are ever used downstream. If we can
/// be the same type. /// use this information to simplify Op, create a new simplified DAG node and
bool TargetLowering::MaskedValueIsZero(const SDOperand &Op, /// return true, returning the original and new nodes in Old and New. Otherwise,
uint64_t Mask) const { /// analyze the expression and return a mask of KnownOne and KnownZero bits for
unsigned SrcBits; /// the expression (used to simplify the caller). The KnownZero/One bits may
if (Mask == 0) return true; /// only be accurate for those bits in the DemandedMask.
bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
uint64_t &KnownZero,
uint64_t &KnownOne,
TargetLoweringOpt &TLO,
unsigned Depth) const {
KnownZero = KnownOne = 0; // Don't know anything.
// Other users may use these bits.
if (!Op.Val->hasOneUse()) {
if (Depth != 0) {
// If not at the root, Just compute the KnownZero/KnownOne bits to
// simplify things downstream.
ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
return false;
}
// If this is the root being simplified, allow it to have multiple uses,
// just set the DemandedMask to all bits.
DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
} else if (DemandedMask == 0) {
// Not demanding any bits from Op.
if (Op.getOpcode() != ISD::UNDEF)
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
return false;
} else if (Depth == 6) { // Limit search depth.
return false;
}
// If we know the result of a setcc has the top bits zero, use this info. uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
switch (Op.getOpcode()) { switch (Op.getOpcode()) {
case ISD::Constant: case ISD::Constant:
return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0; // We know all of the bits for a constant!
case ISD::SETCC: KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
return ((Mask & 1) == 0) && KnownZero = ~KnownOne & DemandedMask;
getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult; return false;
case ISD::ZEXTLOAD:
SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
case ISD::ZERO_EXTEND:
SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
return MaskedValueIsZero(Op.getOperand(0),Mask & (~0ULL >> (64-SrcBits)));
case ISD::ANY_EXTEND:
// If the mask only includes bits in the low part, recurse.
SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
if (Mask >> SrcBits) return false; // Use of unknown top bits.
return MaskedValueIsZero(Op.getOperand(0), Mask);
case ISD::AssertZext:
SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
case ISD::AND: case ISD::AND:
// If either of the operands has zero bits, the result will too. // If either the LHS or the RHS are Zero, the result is zero.
if (MaskedValueIsZero(Op.getOperand(1), Mask) || if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
MaskedValueIsZero(Op.getOperand(0), Mask)) KnownOne, TLO, Depth+1))
return true; return true;
// (X & C1) & C2 == 0 iff C1 & C2 == 0. assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) // If something is known zero on the RHS, the bits aren't demanded on the
return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask); // LHS.
return false; if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
KnownZero2, KnownOne2, TLO, Depth+1))
return true;
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If all of the demanded bits are known one on one side, return the other.
// These bits cannot contribute to the result of the 'and'.
if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
return TLO.CombineTo(Op, Op.getOperand(0));
if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
return TLO.CombineTo(Op, Op.getOperand(1));
// If all of the demanded bits in the inputs are known zeros, return zero.
if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
// If the RHS is a constant, see if we can simplify it.
if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
return true;
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
KnownZero |= KnownZero2;
break;
case ISD::OR: case ISD::OR:
if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
KnownOne, TLO, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
KnownZero2, KnownOne2, TLO, Depth+1))
return true;
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'or'.
if ((DemandedMask & ~KnownOne2 & KnownZero) == DemandedMask & ~KnownOne2)
return TLO.CombineTo(Op, Op.getOperand(0));
if ((DemandedMask & ~KnownOne & KnownZero2) == DemandedMask & ~KnownOne)
return TLO.CombineTo(Op, Op.getOperand(1));
// If all of the potentially set bits on one side are known to be set on
// the other side, just use the 'other' side.
if ((DemandedMask & (~KnownZero) & KnownOne2) ==
(DemandedMask & (~KnownZero)))
return TLO.CombineTo(Op, Op.getOperand(0));
if ((DemandedMask & (~KnownZero2) & KnownOne) ==
(DemandedMask & (~KnownZero2)))
return TLO.CombineTo(Op, Op.getOperand(1));
// If the RHS is a constant, see if we can simplify it.
if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
return true;
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
// Output known-1 are known to be set if set in either the LHS | RHS.
KnownOne |= KnownOne2;
break;
case ISD::XOR: case ISD::XOR:
return MaskedValueIsZero(Op.getOperand(0), Mask) && if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
MaskedValueIsZero(Op.getOperand(1), Mask); KnownOne, TLO, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
KnownOne2, TLO, Depth+1))
return true;
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'xor'.
if ((DemandedMask & KnownZero) == DemandedMask)
return TLO.CombineTo(Op, Op.getOperand(0));
if ((DemandedMask & KnownZero2) == DemandedMask)
return TLO.CombineTo(Op, Op.getOperand(1));
// Output known-0 bits are known if clear or set in both the LHS & RHS.
KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
// If all of the unknown bits are known to be zero on one side or the other
// (but not both) turn this into an *inclusive* or.
// e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut))
if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits)
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
Op.getOperand(0),
Op.getOperand(1)));
// If all of the demanded bits on one side are known, and all of the set
// bits on that side are also known to be set on the other side, turn this
// into an AND, as we know the bits will be cleared.
// e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
if ((KnownOne & KnownOne2) == KnownOne) {
MVT::ValueType VT = Op.getValueType();
SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
ANDC));
}
}
// If the RHS is a constant, see if we can simplify it.
// FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
return true;
KnownZero = KnownZeroOut;
KnownOne = KnownOneOut;
break;
case ISD::SETCC:
// If we know the result of a setcc has the top bits zero, use this info.
if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
break;
case ISD::SELECT: case ISD::SELECT:
return MaskedValueIsZero(Op.getOperand(1), Mask) && if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
MaskedValueIsZero(Op.getOperand(2), Mask); KnownOne, TLO, Depth+1))
case ISD::SELECT_CC: return true;
return MaskedValueIsZero(Op.getOperand(2), Mask) && if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
MaskedValueIsZero(Op.getOperand(3), Mask); KnownOne2, TLO, Depth+1))
case ISD::SRL: return true;
// (ushr X, C1) & C2 == 0 iff X & (C2 << C1) == 0 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
uint64_t NewVal = Mask << ShAmt->getValue();
SrcBits = MVT::getSizeInBits(Op.getValueType()); // If the operands are constants, see if we can simplify them.
if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1; if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
return MaskedValueIsZero(Op.getOperand(0), NewVal); return true;
}
return false; // Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
break;
case ISD::SHL: case ISD::SHL:
// (ushl X, C1) & C2 == 0 iff X & (C2 >> C1) == 0 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(),
uint64_t NewVal = Mask >> ShAmt->getValue(); KnownZero, KnownOne, TLO, Depth+1))
return MaskedValueIsZero(Op.getOperand(0), NewVal);
}
return false;
case ISD::ADD:
// (add X, Y) & C == 0 iff (X&C)|(Y&C) == 0 and all bits are low bits.
if ((Mask&(Mask+1)) == 0) { // All low bits
if (MaskedValueIsZero(Op.getOperand(0), Mask) &&
MaskedValueIsZero(Op.getOperand(1), Mask))
return true; return true;
KnownZero <<= SA->getValue();
KnownOne <<= SA->getValue();
KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
} }
break; break;
case ISD::SUB: case ISD::SRL:
if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) { if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
// We know that the top bits of C-X are clear if X contains less bits MVT::ValueType VT = Op.getValueType();
// than C (i.e. no wrap-around can happen). For example, 20-X is unsigned ShAmt = SA->getValue();
// positive if we can prove that X is >= 0 and < 16.
unsigned Bits = MVT::getSizeInBits(CLHS->getValueType(0)); // Compute the new bits that are at the top now.
if ((CLHS->getValue() & (1 << (Bits-1))) == 0) { // sign bit clear uint64_t HighBits = (1ULL << ShAmt)-1;
unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1); HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
uint64_t MaskV = (1ULL << (63-NLZ))-1; uint64_t TypeMask = MVT::getIntVTBitMask(VT);
if (MaskedValueIsZero(Op.getOperand(1), ~MaskV)) {
// High bits are clear this value is known to be >= C. if (SimplifyDemandedBits(Op.getOperand(0),
unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue()); (DemandedMask << ShAmt) & TypeMask,
if ((Mask & ((1ULL << (64-NLZ2))-1)) == 0) KnownZero, KnownOne, TLO, Depth+1))
return true; return true;
} assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero &= TypeMask;
KnownOne &= TypeMask;
KnownZero >>= ShAmt;
KnownOne >>= ShAmt;
KnownZero |= HighBits; // high bits known zero.
}
break;
case ISD::SRA:
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
MVT::ValueType VT = Op.getValueType();
unsigned ShAmt = SA->getValue();
// Compute the new bits that are at the top now.
uint64_t HighBits = (1ULL << ShAmt)-1;
HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
uint64_t TypeMask = MVT::getIntVTBitMask(VT);
if (SimplifyDemandedBits(Op.getOperand(0),
(DemandedMask << ShAmt) & TypeMask,
KnownZero, KnownOne, TLO, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero &= TypeMask;
KnownOne &= TypeMask;
KnownZero >>= SA->getValue();
KnownOne >>= SA->getValue();
// Handle the sign bits.
uint64_t SignBit = MVT::getIntVTSignBit(VT);
SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
// If the input sign bit is known to be zero, or if none of the top bits
// are demanded, turn this into an unsigned shift right.
if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
Op.getOperand(1)));
} else if (KnownOne & SignBit) { // New bits are known one.
KnownOne |= HighBits;
}
}
break;
case ISD::SIGN_EXTEND_INREG: {
MVT::ValueType VT = Op.getValueType();
MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
// Sign or Zero extension. Compute the bits in the result that are not
// present in the input.
uint64_t NotIn = ~MVT::getIntVTBitMask(EVT);
uint64_t NewBits = MVT::getIntVTBitMask(VT) & NotIn;
// Sign extension.
uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
// If any of the sign extended bits are demanded, we know that the sign
// bit is demanded.
if (NewBits & DemandedMask)
InputDemandedBits |= InSignBit;
if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
KnownZero, KnownOne, TLO, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
// If the input sign bit is known zero, or if the NewBits are not demanded
// convert this into a zero extension.
if ((KnownZero & InSignBit) || (NewBits & ~DemandedMask) == NewBits) {
return TLO.CombineTo(Op, Op.getOperand(0));
} else if (KnownOne & InSignBit) { // Input sign bit known set
KnownOne |= NewBits;
KnownZero &= ~NewBits;
} else { // Input sign bit unknown
KnownZero &= ~NewBits;
KnownOne &= ~NewBits;
}
break;
}
case ISD::ADD:
if (ConstantSDNode *AA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero,
KnownOne, TLO, Depth+1))
return true;
// Compute the KnownOne/KnownZero masks for the constant, so we can set
// KnownZero appropriately if we're adding a constant that has all low
// bits cleared.
ComputeMaskedBits(Op.getOperand(1),
MVT::getIntVTBitMask(Op.getValueType()),
KnownZero2, KnownOne2, Depth+1);
uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
CountTrailingZeros_64(~KnownZero2));
KnownZero = (1ULL << KnownZeroOut) - 1;
KnownOne = 0;
}
break;
case ISD::CTTZ:
case ISD::CTLZ:
case ISD::CTPOP: {
MVT::ValueType VT = Op.getValueType();
unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
KnownOne = 0;
break;
}
}
return false;
}
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. Mask is known to be zero
/// for bits that V cannot have.
bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
unsigned Depth) const {
uint64_t KnownZero, KnownOne;
ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
return (KnownZero & Mask) == Mask;
}
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
/// known to be either zero or one and return them in the KnownZero/KnownOne
/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
/// processing.
void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
uint64_t &KnownZero, uint64_t &KnownOne,
unsigned Depth) const {
KnownZero = KnownOne = 0; // Don't know anything.
if (Depth == 6 || Mask == 0)
return; // Limit search depth.
uint64_t KnownZero2, KnownOne2;
switch (Op.getOpcode()) {
case ISD::Constant:
// We know all of the bits for a constant!
KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
KnownZero = ~KnownOne & Mask;
return;
case ISD::AND:
// If either the LHS or the RHS are Zero, the result is zero.
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
Mask &= ~KnownZero;
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
KnownZero |= KnownZero2;
return;
case ISD::OR:
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
Mask &= ~KnownOne;
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
// Output known-1 are known to be set if set in either the LHS | RHS.
KnownOne |= KnownOne2;
return;
case ISD::XOR: {
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are known if clear or set in both the LHS & RHS.
uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
KnownZero = KnownZeroOut;
return;
}
case ISD::SELECT:
ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
return;
case ISD::SELECT_CC:
ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
return;
case ISD::SETCC:
// If we know the result of a setcc has the top bits zero, use this info.
if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
return;
case ISD::SHL:
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Mask >>= SA->getValue();
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero <<= SA->getValue();
KnownOne <<= SA->getValue();
KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
}
break;
case ISD::SRL:
// (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
uint64_t HighBits = (1ULL << SA->getValue())-1;
HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
Mask <<= SA->getValue();
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
KnownZero >>= SA->getValue();
KnownOne >>= SA->getValue();
KnownZero |= HighBits; // high bits known zero.
}
break;
case ISD::SRA:
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
uint64_t HighBits = (1ULL << SA->getValue())-1;
HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
Mask <<= SA->getValue();
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
KnownZero >>= SA->getValue();
KnownOne >>= SA->getValue();
// Handle the sign bits.
uint64_t SignBit = 1ULL << (MVT::getSizeInBits(Op.getValueType())-1);
SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
if (KnownZero & SignBit) { // New bits are known zero.
KnownZero |= HighBits;
} else if (KnownOne & SignBit) { // New bits are known one.
KnownOne |= HighBits;
} }
} }
break; break;
case ISD::CTTZ: case ISD::CTTZ:
case ISD::CTLZ: case ISD::CTLZ:
case ISD::CTPOP: case ISD::CTPOP: {
// Bit counting instructions can not set the high bits of the result MVT::ValueType VT = Op.getValueType();
// register. The max number of bits sets depends on the input. unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0; KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
KnownOne = 0;
return;
}
case ISD::ZEXTLOAD: {
unsigned SrcBits =
MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
KnownZero |= ~((1ULL << SrcBits)-1);
return;
}
case ISD::ZERO_EXTEND: {
unsigned SrcBits =
MVT::getSizeInBits(Op.getOperand(0).getValueType());
KnownZero |= ~((1ULL << SrcBits)-1);
return;
}
case ISD::ANY_EXTEND: {
unsigned SrcBits =
MVT::getSizeInBits(Op.getOperand(0).getValueType());
KnownZero &= ((1ULL << SrcBits)-1);
KnownOne &= ((1ULL << SrcBits)-1);
return;
}
case ISD::AssertZext: {
unsigned SrcBits =
MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
KnownZero |= ~((1ULL << SrcBits)-1);
return;
}
case ISD::ADD: {
// If either the LHS or the RHS are Zero, the result is zero.
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are known if clear or set in both the low clear bits
// common to both LHS & RHS;
uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
CountTrailingZeros_64(~KnownZero2));
KnownZero = (1ULL << KnownZeroOut) - 1;
KnownOne = 0;
return;
}
case ISD::SUB:
// We know that the top bits of C-X are clear if X contains less bits
// than C (i.e. no wrap-around can happen). For example, 20-X is
// positive if we can prove that X is >= 0 and < 16.
break;
default: default:
// Allow the target to implement this method for its nodes. // Allow the target to implement this method for its nodes.
if (Op.getOpcode() >= ISD::BUILTIN_OP_END) if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
return isMaskedValueZeroForTargetNode(Op, Mask); computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
break; break;
} }
return false;
} }
bool TargetLowering::isMaskedValueZeroForTargetNode(const SDOperand &Op, /// computeMaskedBitsForTargetNode - Determine which of the bits specified
uint64_t Mask) const { /// in Mask are known to be either zero or one and return them in the
/// KnownZero/KnownOne bitsets.
void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
uint64_t Mask,
uint64_t &KnownZero,
uint64_t &KnownOne,
unsigned Depth) const {
assert(Op.getOpcode() >= ISD::BUILTIN_OP_END && assert(Op.getOpcode() >= ISD::BUILTIN_OP_END &&
"Should use MaskedValueIsZero if you don't know whether Op" "Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!"); " is a target node!");
return false; KnownZero = 0;
KnownOne = 0;
} }
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//

View File

@ -98,11 +98,14 @@ namespace {
SparcTargetLowering(TargetMachine &TM); SparcTargetLowering(TargetMachine &TM);
virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG); virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to /// computeMaskedBitsForTargetNode - Determine which of the bits specified
/// be zero. Op is expected to be a target specific node. Used by DAG /// in Mask are known to be either zero or one and return them in the
/// combiner. /// KnownZero/KnownOne bitsets.
virtual bool isMaskedValueZeroForTargetNode(const SDOperand &Op, virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
uint64_t Mask) const; uint64_t Mask,
uint64_t &KnownZero,
uint64_t &KnownOne,
unsigned Depth = 0) const;
virtual std::vector<SDOperand> virtual std::vector<SDOperand>
LowerArguments(Function &F, SelectionDAG &DAG); LowerArguments(Function &F, SelectionDAG &DAG);
@ -246,20 +249,30 @@ const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const {
/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
/// be zero. Op is expected to be a target specific node. Used by DAG /// be zero. Op is expected to be a target specific node. Used by DAG
/// combiner. /// combiner.
bool SparcTargetLowering:: void SparcTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
isMaskedValueZeroForTargetNode(const SDOperand &Op, uint64_t Mask) const { uint64_t Mask,
uint64_t &KnownZero,
uint64_t &KnownOne,
unsigned Depth) const {
uint64_t KnownZero2, KnownOne2;
KnownZero = KnownOne = 0; // Don't know anything.
switch (Op.getOpcode()) { switch (Op.getOpcode()) {
default: return false; default: break;
case SPISD::SELECT_ICC: case SPISD::SELECT_ICC:
case SPISD::SELECT_FCC: case SPISD::SELECT_FCC:
assert(MVT::isInteger(Op.getValueType()) && "Not an integer select!"); ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
// These operations are masked zero if both the left and the right are zero. ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
return MaskedValueIsZero(Op.getOperand(0), Mask) && assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
MaskedValueIsZero(Op.getOperand(1), Mask); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
break;
} }
} }
/// LowerArguments - V8 uses a very simple ABI, where all values are passed in /// LowerArguments - V8 uses a very simple ABI, where all values are passed in
/// either one or two GPRs, including FP values. TODO: we should pass FP values /// either one or two GPRs, including FP values. TODO: we should pass FP values
/// in FP registers for fastcc functions. /// in FP registers for fastcc functions.

View File

@ -2035,19 +2035,23 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
} }
} }
bool X86TargetLowering::isMaskedValueZeroForTargetNode(const SDOperand &Op, void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
uint64_t Mask) const { uint64_t Mask,
uint64_t &KnownZero,
uint64_t &KnownOne,
unsigned Depth) const {
unsigned Opc = Op.getOpcode(); unsigned Opc = Op.getOpcode();
KnownZero = KnownOne = 0; // Don't know anything.
switch (Opc) { switch (Opc) {
default: default:
assert(Opc >= ISD::BUILTIN_OP_END && "Expected a target specific node"); assert(Opc >= ISD::BUILTIN_OP_END && "Expected a target specific node");
break; break;
case X86ISD::SETCC: return (Mask & 1) == 0; case X86ISD::SETCC:
KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
break;
} }
return false;
} }
std::vector<unsigned> X86TargetLowering:: std::vector<unsigned> X86TargetLowering::

View File

@ -218,11 +218,14 @@ namespace llvm {
/// DAG node. /// DAG node.
virtual const char *getTargetNodeName(unsigned Opcode) const; virtual const char *getTargetNodeName(unsigned Opcode) const;
/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to /// computeMaskedBitsForTargetNode - Determine which of the bits specified
/// be zero. Op is expected to be a target specific node. Used by DAG /// in Mask are known to be either zero or one and return them in the
/// combiner. /// KnownZero/KnownOne bitsets.
virtual bool isMaskedValueZeroForTargetNode(const SDOperand &Op, virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
uint64_t Mask) const; uint64_t Mask,
uint64_t &KnownZero,
uint64_t &KnownOne,
unsigned Depth = 0) const;
SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG); SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG);

View File

@ -767,9 +767,9 @@ bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t DemandedMask,
if ((DemandedMask & (~KnownZero) & KnownOne2) == if ((DemandedMask & (~KnownZero) & KnownOne2) ==
(DemandedMask & (~KnownZero))) (DemandedMask & (~KnownZero)))
return UpdateValueUsesWith(I, I->getOperand(0)); return UpdateValueUsesWith(I, I->getOperand(0));
if ((DemandedMask & (~KnownZero2) & KnownOne) == if ((DemandedMask & (~KnownZero2) & KnownOne) ==
(DemandedMask & (~KnownZero2))) (DemandedMask & (~KnownZero2)))
return UpdateValueUsesWith(I, I->getOperand(1)); return UpdateValueUsesWith(I, I->getOperand(1));
// If the RHS is a constant, see if we can simplify it. // If the RHS is a constant, see if we can simplify it.
if (ShrinkDemandedConstant(I, 1, DemandedMask)) if (ShrinkDemandedConstant(I, 1, DemandedMask))