mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-07-25 13:24:46 +00:00
Break SCEVExpander out of IndVarSimplify into its own .h/.cpp file so that
other passes may use it. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22557 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
105
lib/Analysis/ScalarEvolutionExpander.cpp
Normal file
105
lib/Analysis/ScalarEvolutionExpander.cpp
Normal file
@@ -0,0 +1,105 @@
|
||||
//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file contains the implementation of the scalar evolution expander,
|
||||
// which is used to generate the code corresponding to a given scalar evolution
|
||||
// expression.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
||||
using namespace llvm;
|
||||
|
||||
Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
|
||||
const Type *Ty = S->getType();
|
||||
int FirstOp = 0; // Set if we should emit a subtract.
|
||||
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
|
||||
if (SC->getValue()->isAllOnesValue())
|
||||
FirstOp = 1;
|
||||
|
||||
int i = S->getNumOperands()-2;
|
||||
Value *V = expandInTy(S->getOperand(i+1), Ty);
|
||||
|
||||
// Emit a bunch of multiply instructions
|
||||
for (; i >= FirstOp; --i)
|
||||
V = BinaryOperator::createMul(V, expandInTy(S->getOperand(i), Ty),
|
||||
"tmp.", InsertPt);
|
||||
// -1 * ... ---> 0 - ...
|
||||
if (FirstOp == 1)
|
||||
V = BinaryOperator::createNeg(V, "tmp.", InsertPt);
|
||||
return V;
|
||||
}
|
||||
|
||||
Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
|
||||
const Type *Ty = S->getType();
|
||||
const Loop *L = S->getLoop();
|
||||
// We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
|
||||
assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
|
||||
|
||||
// {X,+,F} --> X + {0,+,F}
|
||||
if (!isa<SCEVConstant>(S->getStart()) ||
|
||||
!cast<SCEVConstant>(S->getStart())->getValue()->isNullValue()) {
|
||||
Value *Start = expandInTy(S->getStart(), Ty);
|
||||
std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
|
||||
NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
|
||||
Value *Rest = expandInTy(SCEVAddRecExpr::get(NewOps, L), Ty);
|
||||
|
||||
// FIXME: look for an existing add to use.
|
||||
return BinaryOperator::createAdd(Rest, Start, "tmp.", InsertPt);
|
||||
}
|
||||
|
||||
// {0,+,1} --> Insert a canonical induction variable into the loop!
|
||||
if (S->getNumOperands() == 2 &&
|
||||
S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
|
||||
// Create and insert the PHI node for the induction variable in the
|
||||
// specified loop.
|
||||
BasicBlock *Header = L->getHeader();
|
||||
PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
|
||||
PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
|
||||
|
||||
pred_iterator HPI = pred_begin(Header);
|
||||
assert(HPI != pred_end(Header) && "Loop with zero preds???");
|
||||
if (!L->contains(*HPI)) ++HPI;
|
||||
assert(HPI != pred_end(Header) && L->contains(*HPI) &&
|
||||
"No backedge in loop?");
|
||||
|
||||
// Insert a unit add instruction right before the terminator corresponding
|
||||
// to the back-edge.
|
||||
Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
|
||||
: ConstantInt::get(Ty, 1);
|
||||
Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next",
|
||||
(*HPI)->getTerminator());
|
||||
|
||||
pred_iterator PI = pred_begin(Header);
|
||||
if (*PI == L->getLoopPreheader())
|
||||
++PI;
|
||||
PN->addIncoming(Add, *PI);
|
||||
return PN;
|
||||
}
|
||||
|
||||
// Get the canonical induction variable I for this loop.
|
||||
Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
|
||||
|
||||
if (S->getNumOperands() == 2) { // {0,+,F} --> i*F
|
||||
Value *F = expandInTy(S->getOperand(1), Ty);
|
||||
return BinaryOperator::createMul(I, F, "tmp.", InsertPt);
|
||||
}
|
||||
|
||||
// If this is a chain of recurrences, turn it into a closed form, using the
|
||||
// folders, then expandCodeFor the closed form. This allows the folders to
|
||||
// simplify the expression without having to build a bunch of special code
|
||||
// into this folder.
|
||||
SCEVHandle IH = SCEVUnknown::get(I); // Get I as a "symbolic" SCEV.
|
||||
|
||||
SCEVHandle V = S->evaluateAtIteration(IH);
|
||||
//std::cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
|
||||
|
||||
return expandInTy(V, Ty);
|
||||
}
|
Reference in New Issue
Block a user