Add a liveness analysis pass for LLVM IR values. This computes

the set of blocks in which values are used, the set in which
values are live-through, and the set in which values are
killed. For the live-through and killed sets, conservative
approximations are used.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67309 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Dan Gohman 2009-03-19 17:29:04 +00:00
parent f33b1103a1
commit 3751f564e3
4 changed files with 287 additions and 0 deletions

View File

@ -0,0 +1,103 @@
//===- LiveValues.h - Liveness information for LLVM IR Values. ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interface for the LLVM IR Value liveness
// analysis pass.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LIVEVALUES_H
#define LLVM_ANALYSIS_LIVEVALUES_H
#include "llvm/Pass.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
namespace llvm {
class DominatorTree;
class LoopInfo;
class Value;
/// LiveValues - Analysis that provides liveness information for
/// LLVM IR Values.
///
class LiveValues : public FunctionPass {
DominatorTree *DT;
LoopInfo *LI;
/// Memo - A bunch of state to be associated with a value.
///
struct Memo {
/// Used - The set of blocks which contain a use of the value.
///
SmallPtrSet<const BasicBlock *, 4> Used;
/// LiveThrough - A conservative approximation of the set of blocks in
/// which the value is live-through, meaning blocks properly dominated
/// by the definition, and from which blocks containing uses of the
/// value are reachable.
///
SmallPtrSet<const BasicBlock *, 4> LiveThrough;
/// Killed - A conservative approximation of the set of blocks in which
/// the value is used and not live-out.
///
SmallPtrSet<const BasicBlock *, 4> Killed;
};
/// Memos - Remembers the Memo for each Value. This is populated on
/// demand.
///
DenseMap<const Value *, Memo> Memos;
/// getMemo - Retrieve an existing Memo for the given value if one
/// is available, otherwise compute a new one.
///
Memo &getMemo(const Value *V);
/// compute - Compute a new Memo for the given value.
///
Memo &compute(const Value *V);
public:
static char ID;
LiveValues();
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual bool runOnFunction(Function &F);
virtual void releaseMemory();
/// isUsedInBlock - Test if the given value is used in the given block.
///
bool isUsedInBlock(const Value *V, const BasicBlock *BB);
/// isLiveThroughBlock - Test if the given value is known to be
/// live-through the given block, meaning that the block is properly
/// dominated by the value's definition, and there exists a block
/// reachable from it that contains a use. This uses a conservative
/// approximation that errs on the side of returning false.
///
bool isLiveThroughBlock(const Value *V, const BasicBlock *BB);
/// isKilledInBlock - Test if the given value is known to be killed in
/// the given block, meaning that the block contains a use of the value,
/// and no blocks reachable from the block contain a use. This uses a
/// conservative approximation that errs on the side of returning false.
///
bool isKilledInBlock(const Value *V, const BasicBlock *BB);
};
/// createLiveValuesPass - This creates an instance of the LiveValues pass.
///
FunctionPass *createLiveValuesPass();
}
#endif

View File

@ -110,6 +110,12 @@ namespace llvm {
// simple context insensitive alias analysis.
//
ModulePass *createSteensgaardPass();
//===--------------------------------------------------------------------===//
//
// createLiveValuesPass - This creates an instance of the LiveValues pass.
//
FunctionPass *createLiveValuesPass();
// Minor pass prototypes, allowing us to expose them through bugpoint and
// analyze.

View File

@ -76,6 +76,7 @@ namespace {
(void) llvm::createInternalizePass(false);
(void) llvm::createLCSSAPass();
(void) llvm::createLICMPass();
(void) llvm::createLiveValuesPass();
(void) llvm::createLoopExtractorPass();
(void) llvm::createLoopSimplifyPass();
(void) llvm::createLoopStrengthReducePass();

177
lib/Analysis/LiveValues.cpp Normal file
View File

@ -0,0 +1,177 @@
//===- LiveValues.cpp - Liveness information for LLVM IR Values. ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the implementation for the LLVM IR Value liveness
// analysis pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LiveValues.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
using namespace llvm;
FunctionPass *llvm::createLiveValuesPass() { return new LiveValues(); }
char LiveValues::ID = 0;
static RegisterPass<LiveValues>
X("live-values", "Value Liveness Analysis", false, true);
LiveValues::LiveValues() : FunctionPass(&ID) {}
void LiveValues::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addRequired<LoopInfo>();
AU.setPreservesAll();
}
bool LiveValues::runOnFunction(Function &F) {
DT = &getAnalysis<DominatorTree>();
LI = &getAnalysis<LoopInfo>();
// This pass' values are computed lazily, so there's nothing to do here.
return false;
}
void LiveValues::releaseMemory() {
Memos.clear();
}
/// isUsedInBlock - Test if the given value is used in the given block.
///
bool LiveValues::isUsedInBlock(const Value *V, const BasicBlock *BB) {
Memo &M = getMemo(V);
return M.Used.count(BB);
}
/// isLiveThroughBlock - Test if the given value is known to be
/// live-through the given block, meaning that the block is properly
/// dominated by the value's definition, and there exists a block
/// reachable from it that contains a use. This uses a conservative
/// approximation that errs on the side of returning false.
///
bool LiveValues::isLiveThroughBlock(const Value *V,
const BasicBlock *BB) {
Memo &M = getMemo(V);
return M.LiveThrough.count(BB);
}
/// isKilledInBlock - Test if the given value is known to be killed in
/// the given block, meaning that the block contains a use of the value,
/// and no blocks reachable from the block contain a use. This uses a
/// conservative approximation that errs on the side of returning false.
///
bool LiveValues::isKilledInBlock(const Value *V, const BasicBlock *BB) {
Memo &M = getMemo(V);
return M.Killed.count(BB);
}
/// getMemo - Retrieve an existing Memo for the given value if one
/// is available, otherwise compute a new one.
///
LiveValues::Memo &LiveValues::getMemo(const Value *V) {
DenseMap<const Value *, Memo>::iterator I = Memos.find(V);
if (I != Memos.end())
return I->second;
return compute(V);
}
/// getImmediateDominator - A handy utility for the specific DominatorTree
/// query that we need here.
///
static const BasicBlock *getImmediateDominator(const BasicBlock *BB,
const DominatorTree *DT) {
DomTreeNode *Node = DT->getNode(const_cast<BasicBlock *>(BB))->getIDom();
return Node ? Node->getBlock() : 0;
}
/// compute - Compute a new Memo for the given value.
///
LiveValues::Memo &LiveValues::compute(const Value *V) {
Memo &M = Memos[V];
// Determine the block containing the definition.
const BasicBlock *DefBB;
// Instructions define values with meaningful live ranges.
if (const Instruction *I = dyn_cast<Instruction>(V))
DefBB = I->getParent();
// Arguments can be analyzed as values defined in the entry block.
else if (const Argument *A = dyn_cast<Argument>(V))
DefBB = &A->getParent()->getEntryBlock();
// Constants and other things aren't meaningful here, so just
// return having computed an empty Memo so that we don't come
// here again. The assumption here is that client code won't
// be asking about such values very often.
else
return M;
// Determine if the value is defined inside a loop. This is used
// to track whether the value is ever used outside the loop, so
// it'll be set to null if the value is either not defined in a
// loop or used outside the loop in which it is defined.
const Loop *L = LI->getLoopFor(DefBB);
// Track whether the value is used anywhere outside of the block
// in which it is defined.
bool LiveOutOfDefBB = false;
// Examine each use of the value.
for (Value::use_const_iterator I = V->use_begin(), E = V->use_end();
I != E; ++I) {
const User *U = *I;
const BasicBlock *UseBB = cast<Instruction>(U)->getParent();
// Note the block in which this use occurs.
M.Used.insert(UseBB);
// Observe whether the value is used outside of the loop in which
// it is defined. Switch to an enclosing loop if necessary.
for (; L; L = L->getParentLoop())
if (L->contains(UseBB))
break;
if (isa<PHINode>(U)) {
// The value is used by a PHI, so it is live-out of the defining block.
LiveOutOfDefBB = true;
} else if (UseBB != DefBB) {
// A use outside the defining block has been found.
LiveOutOfDefBB = true;
// Climb the immediate dominator tree from the use to the definition
// and mark all intermediate blocks as live-through. Don't do this if
// the user is a PHI because such users may not be dominated by the
// definition.
for (const BasicBlock *BB = getImmediateDominator(UseBB, DT);
BB != DefBB; BB = getImmediateDominator(BB, DT))
if (!M.LiveThrough.insert(BB))
break;
}
}
// If the value is defined inside a loop and is not live outside
// the loop, then each exit block of the loop in which the value
// is used is a kill block.
if (L) {
SmallVector<BasicBlock *, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
const BasicBlock *ExitingBlock = ExitingBlocks[i];
if (M.Used.count(ExitingBlock))
M.Killed.insert(ExitingBlock);
}
}
// If the value was never used outside the the block in which it was
// defined, it's killed in that block.
if (!LiveOutOfDefBB)
M.Killed.insert(DefBB);
return M;
}