mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-08-05 13:26:55 +00:00
Class that encapsulates priority heuristics for instruction scheduling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@395 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
297
lib/Target/SparcV9/InstrSched/SchedPriorities.cpp
Normal file
297
lib/Target/SparcV9/InstrSched/SchedPriorities.cpp
Normal file
@@ -0,0 +1,297 @@
|
||||
/* -*-C++-*-
|
||||
****************************************************************************
|
||||
* File:
|
||||
* SchedPriorities.h
|
||||
*
|
||||
* Purpose:
|
||||
* Encapsulate heuristics for instruction scheduling.
|
||||
*
|
||||
* Strategy:
|
||||
* Priority ordering rules:
|
||||
* (1) Max delay, which is the order of the heap S.candsAsHeap.
|
||||
* (2) Instruction that frees up a register.
|
||||
* (3) Instruction that has the maximum number of dependent instructions.
|
||||
* Note that rules 2 and 3 are only used if issue conflicts prevent
|
||||
* choosing a higher priority instruction by rule 1.
|
||||
*
|
||||
* History:
|
||||
* 7/30/01 - Vikram Adve - Created
|
||||
***************************************************************************/
|
||||
|
||||
//************************** System Include Files **************************/
|
||||
|
||||
#include <hash_map>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <sys/types.h>
|
||||
|
||||
//*************************** User Include Files ***************************/
|
||||
|
||||
#include "llvm/Method.h"
|
||||
#include "llvm/CodeGen/MachineInstr.h"
|
||||
#include "llvm/CodeGen/InstrScheduling.h"
|
||||
#include "llvm/CodeGen/SchedPriorities.h"
|
||||
|
||||
//************************* Forward Declarations ***************************/
|
||||
|
||||
|
||||
/*ctor*/
|
||||
SchedPriorities::SchedPriorities(const Method* method,
|
||||
const SchedGraph* _graph)
|
||||
: curTime(0),
|
||||
graph(_graph),
|
||||
methodLiveVarInfo(method), // expensive!
|
||||
lastUseMap(),
|
||||
nodeDelayVec(_graph->getNumNodes(),INVALID_LATENCY), //make errors obvious
|
||||
earliestForNode(_graph->getNumNodes(), 0),
|
||||
earliestReadyTime(0),
|
||||
candsAsHeap(),
|
||||
candsAsSet(),
|
||||
mcands(),
|
||||
nextToTry(candsAsHeap.begin())
|
||||
{
|
||||
methodLiveVarInfo.analyze();
|
||||
computeDelays(graph);
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
SchedPriorities::initialize()
|
||||
{
|
||||
initializeReadyHeap(graph);
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
SchedPriorities::computeDelays(const SchedGraph* graph)
|
||||
{
|
||||
sg_po_const_iterator poIter = sg_po_const_iterator::begin(graph->getRoot());
|
||||
sg_po_const_iterator poEnd = sg_po_const_iterator::end( graph->getRoot());
|
||||
for ( ; poIter != poEnd; ++poIter)
|
||||
{
|
||||
const SchedGraphNode* node = *poIter;
|
||||
cycles_t nodeDelay;
|
||||
if (node->beginOutEdges() == node->endOutEdges())
|
||||
nodeDelay = node->getLatency();
|
||||
else
|
||||
{
|
||||
// Iterate over the out-edges of the node to compute delay
|
||||
nodeDelay = 0;
|
||||
for (SchedGraphNode::const_iterator E=node->beginOutEdges();
|
||||
E != node->endOutEdges(); ++E)
|
||||
{
|
||||
cycles_t sinkDelay = getNodeDelayRef((*E)->getSink());
|
||||
nodeDelay = max(nodeDelay, sinkDelay + (*E)->getMinDelay());
|
||||
}
|
||||
}
|
||||
getNodeDelayRef(node) = nodeDelay;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
SchedPriorities::initializeReadyHeap(const SchedGraph* graph)
|
||||
{
|
||||
const SchedGraphNode* graphRoot = graph->getRoot();
|
||||
assert(graphRoot->getMachineInstr() == NULL && "Expect dummy root");
|
||||
|
||||
// Insert immediate successors of dummy root, which are the actual roots
|
||||
sg_succ_const_iterator SEnd = succ_end(graphRoot);
|
||||
for (sg_succ_const_iterator S = succ_begin(graphRoot); S != SEnd; ++S)
|
||||
this->insertReady(*S);
|
||||
|
||||
#undef TEST_HEAP_CONVERSION
|
||||
#ifdef TEST_HEAP_CONVERSION
|
||||
cout << "Before heap conversion:" << endl;
|
||||
copy(candsAsHeap.begin(), candsAsHeap.end(),
|
||||
ostream_iterator<NodeDelayPair*>(cout,"\n"));
|
||||
#endif
|
||||
|
||||
candsAsHeap.makeHeap();
|
||||
|
||||
#ifdef TEST_HEAP_CONVERSION
|
||||
cout << "After heap conversion:" << endl;
|
||||
copy(candsAsHeap.begin(), candsAsHeap.end(),
|
||||
ostream_iterator<NodeDelayPair*>(cout,"\n"));
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
SchedPriorities::issuedReadyNodeAt(cycles_t curTime,
|
||||
const SchedGraphNode* node)
|
||||
{
|
||||
candsAsHeap.removeNode(node);
|
||||
candsAsSet.erase(node);
|
||||
mcands.clear(); // ensure reset choices is called before any more choices
|
||||
|
||||
if (earliestReadyTime == getEarliestForNodeRef(node))
|
||||
{// earliestReadyTime may have been due to this node, so recompute it
|
||||
earliestReadyTime = HUGE_LATENCY;
|
||||
for (NodeHeap::const_iterator I=candsAsHeap.begin();
|
||||
I != candsAsHeap.end(); ++I)
|
||||
if (candsAsHeap.getNode(I))
|
||||
earliestReadyTime = min(earliestReadyTime,
|
||||
getEarliestForNodeRef(candsAsHeap.getNode(I)));
|
||||
}
|
||||
|
||||
// Now update ready times for successors
|
||||
for (SchedGraphNode::const_iterator E=node->beginOutEdges();
|
||||
E != node->endOutEdges(); ++E)
|
||||
{
|
||||
cycles_t& etime = getEarliestForNodeRef((*E)->getSink());
|
||||
etime = max(etime, curTime + (*E)->getMinDelay());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------
|
||||
// Priority ordering rules:
|
||||
// (1) Max delay, which is the order of the heap S.candsAsHeap.
|
||||
// (2) Instruction that frees up a register.
|
||||
// (3) Instruction that has the maximum number of dependent instructions.
|
||||
// Note that rules 2 and 3 are only used if issue conflicts prevent
|
||||
// choosing a higher priority instruction by rule 1.
|
||||
//----------------------------------------------------------------------
|
||||
|
||||
inline int
|
||||
SchedPriorities::chooseByRule1(vector<candIndex>& mcands)
|
||||
{
|
||||
return (mcands.size() == 1)? 0 // only one choice exists so take it
|
||||
: -1; // -1 indicates multiple choices
|
||||
}
|
||||
|
||||
inline int
|
||||
SchedPriorities::chooseByRule2(vector<candIndex>& mcands)
|
||||
{
|
||||
assert(mcands.size() >= 1 && "Should have at least one candidate here.");
|
||||
for (unsigned i=0, N = mcands.size(); i < N; i++)
|
||||
if (instructionHasLastUse(methodLiveVarInfo,
|
||||
candsAsHeap.getNode(mcands[i])))
|
||||
return i;
|
||||
return -1;
|
||||
}
|
||||
|
||||
inline int
|
||||
SchedPriorities::chooseByRule3(vector<candIndex>& mcands)
|
||||
{
|
||||
assert(mcands.size() >= 1 && "Should have at least one candidate here.");
|
||||
int maxUses = candsAsHeap.getNode(mcands[0])->getNumOutEdges();
|
||||
int indexWithMaxUses = 0;
|
||||
for (unsigned i=1, N = mcands.size(); i < N; i++)
|
||||
{
|
||||
int numUses = candsAsHeap.getNode(mcands[i])->getNumOutEdges();
|
||||
if (numUses > maxUses)
|
||||
{
|
||||
maxUses = numUses;
|
||||
indexWithMaxUses = i;
|
||||
}
|
||||
}
|
||||
return indexWithMaxUses;
|
||||
}
|
||||
|
||||
const SchedGraphNode*
|
||||
SchedPriorities::getNextHighest(const SchedulingManager& S,
|
||||
cycles_t curTime)
|
||||
{
|
||||
int nextIdx = -1;
|
||||
const SchedGraphNode* nextChoice = NULL;
|
||||
|
||||
if (mcands.size() == 0)
|
||||
findSetWithMaxDelay(mcands, S);
|
||||
|
||||
while (nextIdx < 0 && mcands.size() > 0)
|
||||
{
|
||||
nextIdx = chooseByRule1(mcands); // rule 1
|
||||
|
||||
if (nextIdx == -1)
|
||||
nextIdx = chooseByRule2(mcands); // rule 2
|
||||
|
||||
if (nextIdx == -1)
|
||||
nextIdx = chooseByRule3(mcands); // rule 3
|
||||
|
||||
if (nextIdx == -1)
|
||||
nextIdx = 0; // default to first choice by delays
|
||||
|
||||
// We have found the next best candidate. Check if it ready in
|
||||
// the current cycle, and if it is feasible.
|
||||
// If not, remove it from mcands and continue. Refill mcands if
|
||||
// it becomes empty.
|
||||
nextChoice = candsAsHeap.getNode(mcands[nextIdx]);
|
||||
if (getEarliestForNodeRef(nextChoice) > curTime
|
||||
|| ! instrIsFeasible(S, nextChoice->getOpCode()))
|
||||
{
|
||||
mcands.erase(mcands.begin() + nextIdx);
|
||||
nextIdx = -1;
|
||||
if (mcands.size() == 0)
|
||||
findSetWithMaxDelay(mcands, S);
|
||||
}
|
||||
}
|
||||
|
||||
if (nextIdx >= 0)
|
||||
{
|
||||
mcands.erase(mcands.begin() + nextIdx);
|
||||
return nextChoice;
|
||||
}
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
SchedPriorities::findSetWithMaxDelay(vector<candIndex>& mcands,
|
||||
const SchedulingManager& S)
|
||||
{
|
||||
if (mcands.size() == 0 && nextToTry != candsAsHeap.end())
|
||||
{ // out of choices at current maximum delay;
|
||||
// put nodes with next highest delay in mcands
|
||||
candIndex next = nextToTry;
|
||||
cycles_t maxDelay = candsAsHeap.getDelay(next);
|
||||
for (; next != candsAsHeap.end()
|
||||
&& candsAsHeap.getDelay(next) == maxDelay; ++next)
|
||||
mcands.push_back(next);
|
||||
|
||||
nextToTry = next;
|
||||
|
||||
if (SchedDebugLevel >= Sched_PrintSchedTrace)
|
||||
{
|
||||
printIndent(2);
|
||||
cout << "Cycle " << this->getTime() << ": "
|
||||
<< "Next highest delay = " << maxDelay << " : "
|
||||
<< mcands.size() << " Nodes with this delay: ";
|
||||
for (unsigned i=0; i < mcands.size(); i++)
|
||||
cout << candsAsHeap.getNode(mcands[i])->getNodeId() << ", ";
|
||||
cout << endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool
|
||||
SchedPriorities::instructionHasLastUse(MethodLiveVarInfo& methodLiveVarInfo,
|
||||
const SchedGraphNode* graphNode)
|
||||
{
|
||||
const MachineInstr* minstr = graphNode->getMachineInstr();
|
||||
|
||||
hash_map<const MachineInstr*, bool>::const_iterator
|
||||
ui = lastUseMap.find(minstr);
|
||||
if (ui != lastUseMap.end())
|
||||
return (*ui).second;
|
||||
|
||||
// else check if instruction is a last use and save it in the hash_map
|
||||
bool hasLastUse = false;
|
||||
const BasicBlock* bb = graphNode->getInstr()->getParent();
|
||||
const LiveVarSet* liveVars =
|
||||
methodLiveVarInfo.getLiveVarSetBeforeMInst(minstr, bb);
|
||||
|
||||
for (MachineInstr::val_op_const_iterator vo(minstr); ! vo.done(); ++vo)
|
||||
if (liveVars->find(*vo) == liveVars->end())
|
||||
{
|
||||
hasLastUse = true;
|
||||
break;
|
||||
}
|
||||
|
||||
lastUseMap[minstr] = hasLastUse;
|
||||
return hasLastUse;
|
||||
}
|
||||
|
Reference in New Issue
Block a user