Implement a bit more softfloat support in

LegalizeTypes.  Correct the load logic so
that it actually works, and also teach it
to handle floating point extending loads.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49923 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Duncan Sands 2008-04-18 20:56:03 +00:00
parent 28269139ee
commit 37bcda3de9
2 changed files with 188 additions and 6 deletions

View File

@ -316,8 +316,13 @@ private:
void FloatToIntResult(SDNode *N, unsigned OpNo);
SDOperand FloatToIntRes_BIT_CONVERT(SDNode *N);
SDOperand FloatToIntRes_BUILD_PAIR(SDNode *N);
SDOperand FloatToIntRes_ConstantFP(ConstantFPSDNode *N);
SDOperand FloatToIntRes_FADD(SDNode *N);
SDOperand FloatToIntRes_FCOPYSIGN(SDNode *N);
SDOperand FloatToIntRes_FMUL(SDNode *N);
SDOperand FloatToIntRes_FSUB(SDNode *N);
SDOperand FloatToIntRes_LOAD(SDNode *N);
SDOperand FloatToIntRes_XINT_TO_FP(SDNode *N);
// Operand Float to Integer Conversion.
bool FloatToIntOperand(SDNode *N, unsigned OpNo);

View File

@ -11,12 +11,29 @@
// is the act of turning a computation in an invalid floating point type into
// a computation in an integer type of the same size. For example, turning
// f32 arithmetic into operations using i32. Also known as "soft float".
// The result is equivalent to bitcasting the float value to the integer type.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/DerivedTypes.h"
#include "LegalizeTypes.h"
using namespace llvm;
/// GetFPLibCall - Return the right libcall for the given floating point type.
static RTLIB::Libcall GetFPLibCall(MVT::ValueType VT,
RTLIB::Libcall Call_F32,
RTLIB::Libcall Call_F64,
RTLIB::Libcall Call_F80,
RTLIB::Libcall Call_PPCF128) {
return
VT == MVT::f32 ? Call_F32 :
VT == MVT::f64 ? Call_F64 :
VT == MVT::f80 ? Call_F80 :
VT == MVT::ppcf128 ? Call_PPCF128 :
RTLIB::UNKNOWN_LIBCALL;
}
//===----------------------------------------------------------------------===//
// Result Float to Integer Conversion.
//===----------------------------------------------------------------------===//
@ -52,8 +69,17 @@ void DAGTypeLegalizer::FloatToIntResult(SDNode *N, unsigned ResNo) {
case ISD::BIT_CONVERT: R = FloatToIntRes_BIT_CONVERT(N); break;
case ISD::BUILD_PAIR: R = FloatToIntRes_BUILD_PAIR(N); break;
case ISD::ConstantFP:
R = FloatToIntRes_ConstantFP(cast<ConstantFPSDNode>(N));
break;
case ISD::FCOPYSIGN: R = FloatToIntRes_FCOPYSIGN(N); break;
case ISD::LOAD: R = FloatToIntRes_LOAD(N); break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: R = FloatToIntRes_XINT_TO_FP(N); break;
case ISD::FADD: R = FloatToIntRes_FADD(N); break;
case ISD::FMUL: R = FloatToIntRes_FMUL(N); break;
case ISD::FSUB: R = FloatToIntRes_FSUB(N); break;
}
// If R is null, the sub-method took care of registering the result.
@ -73,6 +99,23 @@ SDOperand DAGTypeLegalizer::FloatToIntRes_BUILD_PAIR(SDNode *N) {
BitConvertToInteger(N->getOperand(1)));
}
SDOperand DAGTypeLegalizer::FloatToIntRes_ConstantFP(ConstantFPSDNode *N) {
return DAG.getConstant(N->getValueAPF().convertToAPInt(),
TLI.getTypeToTransformTo(N->getValueType(0)));
}
SDOperand DAGTypeLegalizer::FloatToIntRes_FADD(SDNode *N) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDOperand Ops[2] = { GetIntegerOp(N->getOperand(0)),
GetIntegerOp(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::ADD_F32,
RTLIB::ADD_F64,
RTLIB::ADD_F80,
RTLIB::ADD_PPCF128),
NVT, Ops, 2, false/*sign irrelevant*/);
}
SDOperand DAGTypeLegalizer::FloatToIntRes_FCOPYSIGN(SDNode *N) {
SDOperand LHS = GetIntegerOp(N->getOperand(0));
SDOperand RHS = BitConvertToInteger(N->getOperand(1));
@ -112,14 +155,148 @@ SDOperand DAGTypeLegalizer::FloatToIntRes_FCOPYSIGN(SDNode *N) {
return DAG.getNode(ISD::OR, LVT, LHS, SignBit);
}
SDOperand DAGTypeLegalizer::FloatToIntRes_LOAD(SDNode *N) {
SDOperand DAGTypeLegalizer::FloatToIntRes_FMUL(SDNode *N) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
LoadSDNode *L = cast<LoadSDNode>(N);
SDOperand Ops[2] = { GetIntegerOp(N->getOperand(0)),
GetIntegerOp(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::MUL_F32,
RTLIB::MUL_F64,
RTLIB::MUL_F80,
RTLIB::MUL_PPCF128),
NVT, Ops, 2, false/*sign irrelevant*/);
}
return DAG.getLoad(L->getAddressingMode(), L->getExtensionType(),
NVT, L->getChain(), L->getBasePtr(), L->getOffset(),
L->getSrcValue(), L->getSrcValueOffset(),
L->getMemoryVT(), L->isVolatile(), L->getAlignment());
SDOperand DAGTypeLegalizer::FloatToIntRes_FSUB(SDNode *N) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDOperand Ops[2] = { GetIntegerOp(N->getOperand(0)),
GetIntegerOp(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::SUB_F32,
RTLIB::SUB_F64,
RTLIB::SUB_F80,
RTLIB::SUB_PPCF128),
NVT, Ops, 2, false/*sign irrelevant*/);
}
SDOperand DAGTypeLegalizer::FloatToIntRes_LOAD(SDNode *N) {
LoadSDNode *L = cast<LoadSDNode>(N);
MVT::ValueType VT = N->getValueType(0);
MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
if (L->getExtensionType() == ISD::NON_EXTLOAD)
return DAG.getLoad(L->getAddressingMode(), L->getExtensionType(),
NVT, L->getChain(), L->getBasePtr(), L->getOffset(),
L->getSrcValue(), L->getSrcValueOffset(), NVT,
L->isVolatile(), L->getAlignment());
// Do a non-extending load followed by FP_EXTEND.
SDOperand NL = DAG.getLoad(L->getAddressingMode(), ISD::NON_EXTLOAD,
L->getMemoryVT(), L->getChain(),
L->getBasePtr(), L->getOffset(),
L->getSrcValue(), L->getSrcValueOffset(),
L->getMemoryVT(),
L->isVolatile(), L->getAlignment());
return BitConvertToInteger(DAG.getNode(ISD::FP_EXTEND, VT, NL));
}
SDOperand DAGTypeLegalizer::FloatToIntRes_XINT_TO_FP(SDNode *N) {
bool isSigned = N->getOpcode() == ISD::SINT_TO_FP;
MVT::ValueType DestVT = N->getValueType(0);
SDOperand Op = N->getOperand(0);
if (Op.getValueType() == MVT::i32) {
// simple 32-bit [signed|unsigned] integer to float/double expansion
// Get the stack frame index of a 8 byte buffer.
SDOperand StackSlot = DAG.CreateStackTemporary(MVT::f64);
// word offset constant for Hi/Lo address computation
SDOperand Offset = DAG.getConstant(MVT::getSizeInBits(MVT::i32) / 8,
TLI.getPointerTy());
// set up Hi and Lo (into buffer) address based on endian
SDOperand Hi = StackSlot;
SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot, Offset);
if (TLI.isLittleEndian())
std::swap(Hi, Lo);
// if signed map to unsigned space
SDOperand OpMapped;
if (isSigned) {
// constant used to invert sign bit (signed to unsigned mapping)
SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32);
OpMapped = DAG.getNode(ISD::XOR, MVT::i32, Op, SignBit);
} else {
OpMapped = Op;
}
// store the lo of the constructed double - based on integer input
SDOperand Store1 = DAG.getStore(DAG.getEntryNode(),
OpMapped, Lo, NULL, 0);
// initial hi portion of constructed double
SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
// store the hi of the constructed double - biased exponent
SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0);
// load the constructed double
SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0);
// FP constant to bias correct the final result
SDOperand Bias = DAG.getConstantFP(isSigned ?
BitsToDouble(0x4330000080000000ULL)
: BitsToDouble(0x4330000000000000ULL),
MVT::f64);
// subtract the bias
SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias);
// final result
SDOperand Result;
// handle final rounding
if (DestVT == MVT::f64) {
// do nothing
Result = Sub;
} else if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(MVT::f64)) {
Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub,
DAG.getIntPtrConstant(0));
} else if (MVT::getSizeInBits(DestVT) > MVT::getSizeInBits(MVT::f64)) {
Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub);
}
return BitConvertToInteger(Result);
}
assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op);
SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultType(Op), Op,
DAG.getConstant(0, Op.getValueType()),
ISD::SETLT);
SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(),
SignSet, Four, Zero);
// If the sign bit of the integer is set, the large number will be treated
// as a negative number. To counteract this, the dynamic code adds an
// offset depending on the data type.
uint64_t FF;
switch (Op.getValueType()) {
default: assert(0 && "Unsupported integer type!");
case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
}
if (TLI.isLittleEndian()) FF <<= 32;
static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset);
SDOperand FudgeInReg;
if (DestVT == MVT::f32)
FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0);
else {
FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestVT,
DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0,
MVT::f32);
}
return BitConvertToInteger(DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg));
}