[LoopAccesses] Rename LoopAccessAnalysis to LoopAccessInfo

LoopAccessAnalysis will be used as the name of the pass.

This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229621 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Adam Nemet 2015-02-18 03:42:35 +00:00
parent d7aa78535c
commit 38a9ebb065
3 changed files with 34 additions and 35 deletions

View File

@ -74,7 +74,7 @@ public:
/// generates run-time checks to prove independence. This is done by
/// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
/// RuntimePointerCheck class.
class LoopAccessAnalysis {
class LoopAccessInfo {
public:
/// \brief Collection of parameters used from the vectorizer.
struct VectorizerParams {
@ -137,10 +137,10 @@ public:
SmallVector<unsigned, 2> AliasSetId;
};
LoopAccessAnalysis(Function *F, Loop *L, ScalarEvolution *SE,
const DataLayout *DL, const TargetLibraryInfo *TLI,
AliasAnalysis *AA, DominatorTree *DT,
const VectorizerParams &VectParams) :
LoopAccessInfo(Function *F, Loop *L, ScalarEvolution *SE,
const DataLayout *DL, const TargetLibraryInfo *TLI,
AliasAnalysis *AA, DominatorTree *DT,
const VectorizerParams &VectParams) :
TheFunction(F), TheLoop(L), SE(SE), DL(DL), TLI(TLI), AA(AA), DT(DT),
NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1U),
VectParams(VectParams) {}

View File

@ -73,12 +73,11 @@ const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE,
return SE->getSCEV(Ptr);
}
void LoopAccessAnalysis::RuntimePointerCheck::insert(ScalarEvolution *SE,
Loop *Lp, Value *Ptr,
bool WritePtr,
unsigned DepSetId,
unsigned ASId,
ValueToValueMap &Strides) {
void LoopAccessInfo::RuntimePointerCheck::insert(ScalarEvolution *SE, Loop *Lp,
Value *Ptr, bool WritePtr,
unsigned DepSetId,
unsigned ASId,
ValueToValueMap &Strides) {
// Get the stride replaced scev.
const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
@ -128,7 +127,7 @@ public:
/// \brief Check whether we can check the pointers at runtime for
/// non-intersection.
bool canCheckPtrAtRT(LoopAccessAnalysis::RuntimePointerCheck &RtCheck,
bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck,
unsigned &NumComparisons,
ScalarEvolution *SE, Loop *TheLoop,
ValueToValueMap &Strides,
@ -196,7 +195,7 @@ static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
const Loop *Lp, ValueToValueMap &StridesMap);
bool AccessAnalysis::canCheckPtrAtRT(
LoopAccessAnalysis::RuntimePointerCheck &RtCheck,
LoopAccessInfo::RuntimePointerCheck &RtCheck,
unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop,
ValueToValueMap &StridesMap, bool ShouldCheckStride) {
// Find pointers with computable bounds. We are going to use this information
@ -439,7 +438,7 @@ public:
typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L,
const LoopAccessAnalysis::VectorizerParams &VectParams)
const LoopAccessInfo::VectorizerParams &VectParams)
: SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
ShouldRetryWithRuntimeCheck(false), VectParams(VectParams) {}
@ -497,7 +496,7 @@ private:
bool ShouldRetryWithRuntimeCheck;
/// \brief Vectorizer parameters used by the analysis.
LoopAccessAnalysis::VectorizerParams VectParams;
LoopAccessInfo::VectorizerParams VectParams;
/// \brief Check whether there is a plausible dependence between the two
/// accesses.
@ -815,7 +814,7 @@ bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
return true;
}
bool LoopAccessAnalysis::canVectorizeMemory(ValueToValueMap &Strides) {
bool LoopAccessInfo::canVectorizeMemory(ValueToValueMap &Strides) {
typedef SmallVector<Value*, 16> ValueVector;
typedef SmallPtrSet<Value*, 16> ValueSet;
@ -1069,7 +1068,7 @@ bool LoopAccessAnalysis::canVectorizeMemory(ValueToValueMap &Strides) {
return CanVecMem;
}
bool LoopAccessAnalysis::blockNeedsPredication(BasicBlock *BB) {
bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB) {
assert(TheLoop->contains(BB) && "Unknown block used");
// Blocks that do not dominate the latch need predication.
@ -1077,11 +1076,11 @@ bool LoopAccessAnalysis::blockNeedsPredication(BasicBlock *BB) {
return !DT->dominates(BB, Latch);
}
void LoopAccessAnalysis::emitAnalysis(VectorizationReport &Message) {
void LoopAccessInfo::emitAnalysis(VectorizationReport &Message) {
VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop);
}
bool LoopAccessAnalysis::isUniform(Value *V) {
bool LoopAccessInfo::isUniform(Value *V) {
return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
}
@ -1097,7 +1096,7 @@ static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
}
std::pair<Instruction *, Instruction *>
LoopAccessAnalysis::addRuntimeCheck(Instruction *Loc) {
LoopAccessInfo::addRuntimeCheck(Instruction *Loc) {
Instruction *tnullptr = nullptr;
if (!PtrRtCheck.Need)
return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);

View File

@ -551,8 +551,8 @@ public:
: NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
TLI(TLI), TheFunction(F), TTI(TTI), Induction(nullptr),
WidestIndTy(nullptr),
LAA(F, L, SE, DL, TLI, AA, DT,
LoopAccessAnalysis::VectorizerParams(
LAI(F, L, SE, DL, TLI, AA, DT,
LoopAccessInfo::VectorizerParams(
MaxVectorWidth, VectorizationFactor, VectorizationInterleave,
RuntimeMemoryCheckThreshold)),
HasFunNoNaNAttr(false) {}
@ -740,19 +740,19 @@ public:
bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
/// Returns the information that we collected about runtime memory check.
LoopAccessAnalysis::RuntimePointerCheck *getRuntimePointerCheck() {
return LAA.getRuntimePointerCheck();
LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() {
return LAI.getRuntimePointerCheck();
}
LoopAccessAnalysis *getLAA() {
return &LAA;
LoopAccessInfo *getLAI() {
return &LAI;
}
/// This function returns the identity element (or neutral element) for
/// the operation K.
static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
unsigned getMaxSafeDepDistBytes() { return LAA.getMaxSafeDepDistBytes(); }
unsigned getMaxSafeDepDistBytes() { return LAI.getMaxSafeDepDistBytes(); }
bool hasStride(Value *V) { return StrideSet.count(V); }
bool mustCheckStrides() { return !StrideSet.empty(); }
@ -777,10 +777,10 @@ public:
return (MaskedOp.count(I) != 0);
}
unsigned getNumStores() const {
return LAA.getNumStores();
return LAI.getNumStores();
}
unsigned getNumLoads() const {
return LAA.getNumLoads();
return LAI.getNumLoads();
}
unsigned getNumPredStores() const {
return NumPredStores;
@ -874,7 +874,7 @@ private:
/// This set holds the variables which are known to be uniform after
/// vectorization.
SmallPtrSet<Instruction*, 4> Uniforms;
LoopAccessAnalysis LAA;
LoopAccessInfo LAI;
/// Can we assume the absence of NaNs.
bool HasFunNoNaNAttr;
@ -1658,7 +1658,7 @@ int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
}
bool LoopVectorizationLegality::isUniform(Value *V) {
return LAA.isUniform(V);
return LAI.isUniform(V);
}
InnerLoopVectorizer::VectorParts&
@ -2230,7 +2230,7 @@ void InnerLoopVectorizer::createEmptyLoop() {
// faster.
Instruction *MemRuntimeCheck;
std::tie(FirstCheckInst, MemRuntimeCheck) =
Legal->getLAA()->addRuntimeCheck(LastBypassBlock->getTerminator());
Legal->getLAI()->addRuntimeCheck(LastBypassBlock->getTerminator());
if (MemRuntimeCheck) {
// Create a new block containing the memory check.
BasicBlock *CheckBlock =
@ -3398,7 +3398,7 @@ bool LoopVectorizationLegality::canVectorize() {
collectLoopUniforms();
DEBUG(dbgs() << "LV: We can vectorize this loop" <<
(LAA.getRuntimePointerCheck()->Need ? " (with a runtime bound check)" :
(LAI.getRuntimePointerCheck()->Need ? " (with a runtime bound check)" :
"")
<<"!\n");
@ -3823,7 +3823,7 @@ void LoopVectorizationLegality::collectLoopUniforms() {
}
bool LoopVectorizationLegality::canVectorizeMemory() {
return LAA.canVectorizeMemory(Strides);
return LAI.canVectorizeMemory(Strides);
}
static bool hasMultipleUsesOf(Instruction *I,
@ -4167,7 +4167,7 @@ bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
}
bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
return LAA.blockNeedsPredication(BB);
return LAI.blockNeedsPredication(BB);
}
bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,