[x86] eliminate unnecessary shuffling/moves with unary scalar math ops (PR21507)

Finish the job that was abandoned in D6958 following the refactoring in
http://reviews.llvm.org/rL230221:

1. Uncomment the intrinsic def for the AVX r_Int instruction.
2. Add missing r_Int entries to the load folding tables; there are already
   tests that check these in "test/Codegen/X86/fold-load-unops.ll", so I
   haven't added any more in this patch.
3. Add patterns to solve PR21507 ( https://llvm.org/bugs/show_bug.cgi?id=21507 ).

So instead of this:

  movaps	%xmm0, %xmm1
  rcpss	%xmm1, %xmm1
  movss	%xmm1, %xmm0

We should now get:

  rcpss	%xmm0, %xmm0

And instead of this:

  vsqrtss	%xmm0, %xmm0, %xmm1
  vblendps	$1, %xmm1, %xmm0, %xmm0 ## xmm0 = xmm1[0],xmm0[1,2,3]

We should now get:

  vsqrtss	%xmm0, %xmm0, %xmm0


Differential Revision: http://reviews.llvm.org/D9504



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236740 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Sanjay Patel 2015-05-07 15:48:53 +00:00
parent ee25f1e872
commit 39cf555429
3 changed files with 124 additions and 10 deletions

View File

@ -526,6 +526,8 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
{ X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
{ X86::PTESTrr, X86::PTESTrm, TB_ALIGN_16 },
{ X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
{ X86::RCPSSr, X86::RCPSSm, 0 },
{ X86::RCPSSr_Int, X86::RCPSSm_Int, 0 },
{ X86::ROUNDPDr, X86::ROUNDPDm, TB_ALIGN_16 },
{ X86::ROUNDPSr, X86::ROUNDPSm, TB_ALIGN_16 },
{ X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
@ -1239,9 +1241,13 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
{ X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
{ X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
{ X86::VRCPSSr, X86::VRCPSSm, 0 },
{ X86::VRCPSSr_Int, X86::VRCPSSm_Int, 0 },
{ X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
{ X86::VRSQRTSSr_Int, X86::VRSQRTSSm_Int, 0 },
{ X86::VSQRTSDr, X86::VSQRTSDm, 0 },
{ X86::VSQRTSDr_Int, X86::VSQRTSDm_Int, 0 },
{ X86::VSQRTSSr, X86::VSQRTSSm, 0 },
{ X86::VSQRTSSr_Int, X86::VSQRTSSm_Int, 0 },
{ X86::VADDPDrr, X86::VADDPDrm, 0 },
{ X86::VADDPSrr, X86::VADDPSrm, 0 },
{ X86::VADDSDrr, X86::VADDSDrm, 0 },

View File

@ -3369,7 +3369,7 @@ multiclass sse_fp_unop_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
def : Pat<(Intr (load addr:$src)),
(vt (COPY_TO_REGCLASS(!cast<Instruction>(NAME#Suffix##m)
addr:$src), VR128))>;
def : Pat<(Intr mem_cpat:$src),
def : Pat<(Intr mem_cpat:$src),
(!cast<Instruction>(NAME#Suffix##m_Int)
(vt (IMPLICIT_DEF)), mem_cpat:$src)>;
}
@ -3390,16 +3390,15 @@ multiclass avx_fp_unop_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[], itins.rm, d>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
let isCodeGenOnly = 1 in {
// todo: uncomment when all r_Int forms will be added to X86InstrInfo.cpp
//def r_Int : I<opc, MRMSrcReg, (outs VR128:$dst),
// (ins VR128:$src1, VR128:$src2),
// !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
// []>, Sched<[itins.Sched.Folded]>;
def r_Int : I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, Sched<[itins.Sched.Folded]>;
let mayLoad = 1 in
def m_Int : I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, vec_memop:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
[]>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
}
@ -3411,13 +3410,11 @@ multiclass avx_fp_unop_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
(!cast<Instruction>("V"#NAME#Suffix##m_Int) (vt (IMPLICIT_DEF)),
mem_cpat:$src)>;
// todo: use r_Int form when it will be ready
//def : Pat<(Intr VR128:$src), (!cast<Instruction>("V"#NAME#Suffix##r_Int)
// (VT (IMPLICIT_DEF)), VR128:$src)>;
def : Pat<(Intr VR128:$src),
(vt (COPY_TO_REGCLASS(
!cast<Instruction>("V"#NAME#Suffix##r) (ScalarVT (IMPLICIT_DEF)),
(ScalarVT (COPY_TO_REGCLASS VR128:$src, RC))), VR128))>;
def : Pat<(Intr mem_cpat:$src),
(!cast<Instruction>("V"#NAME#Suffix##m_Int)
(vt (IMPLICIT_DEF)), mem_cpat:$src)>;
@ -3540,6 +3537,44 @@ defm RCP : sse1_fp_unop_s<0x53, "rcp", X86frcp, SSE_RCPS>,
// There is no f64 version of the reciprocal approximation instructions.
// TODO: We should add *scalar* op patterns for these just like we have for
// the binops above. If the binop and unop patterns could all be unified
// that would be even better.
multiclass scalar_unary_math_patterns<Intrinsic Intr, string OpcPrefix,
SDNode Move, ValueType VT,
Predicate BasePredicate> {
let Predicates = [BasePredicate] in {
def : Pat<(VT (Move VT:$dst, (Intr VT:$src))),
(!cast<I>(OpcPrefix#r_Int) VT:$dst, VT:$src)>;
}
// With SSE 4.1, blendi is preferred to movs*, so match that too.
let Predicates = [UseSSE41] in {
def : Pat<(VT (X86Blendi VT:$dst, (Intr VT:$src), (i8 1))),
(!cast<I>(OpcPrefix#r_Int) VT:$dst, VT:$src)>;
}
// Repeat for AVX versions of the instructions.
let Predicates = [HasAVX] in {
def : Pat<(VT (Move VT:$dst, (Intr VT:$src))),
(!cast<I>("V"#OpcPrefix#r_Int) VT:$dst, VT:$src)>;
def : Pat<(VT (X86Blendi VT:$dst, (Intr VT:$src), (i8 1))),
(!cast<I>("V"#OpcPrefix#r_Int) VT:$dst, VT:$src)>;
}
}
defm : scalar_unary_math_patterns<int_x86_sse_rcp_ss, "RCPSS", X86Movss,
v4f32, UseSSE1>;
defm : scalar_unary_math_patterns<int_x86_sse_rsqrt_ss, "RSQRTSS", X86Movss,
v4f32, UseSSE1>;
defm : scalar_unary_math_patterns<int_x86_sse_sqrt_ss, "SQRTSS", X86Movss,
v4f32, UseSSE1>;
defm : scalar_unary_math_patterns<int_x86_sse2_sqrt_sd, "SQRTSD", X86Movsd,
v2f64, UseSSE2>;
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Non-temporal stores
//===----------------------------------------------------------------------===//

View File

@ -0,0 +1,73 @@
; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=sse2 < %s | FileCheck --check-prefix=SSE %s
; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=sse4.1 < %s | FileCheck --check-prefix=SSE %s
; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=avx < %s | FileCheck --check-prefix=AVX %s
; PR21507 - https://llvm.org/bugs/show_bug.cgi?id=21507
; Each function should be a single math op; no extra moves.
define <4 x float> @recip(<4 x float> %x) {
; SSE-LABEL: recip:
; SSE: # BB#0:
; SSE-NEXT: rcpss %xmm0, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: recip:
; AVX: # BB#0:
; AVX-NEXT: vrcpss %xmm0, %xmm0, %xmm0
; AVX-NEXT: retq
%y = tail call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %x)
%shuf = shufflevector <4 x float> %y, <4 x float> %x, <4 x i32> <i32 0, i32 5, i32 6, i32 7>
ret <4 x float> %shuf
}
define <4 x float> @recip_square_root(<4 x float> %x) {
; SSE-LABEL: recip_square_root:
; SSE: # BB#0:
; SSE-NEXT: rsqrtss %xmm0, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: recip_square_root:
; AVX: # BB#0:
; AVX-NEXT: vrsqrtss %xmm0, %xmm0, %xmm0
; AVX-NEXT: retq
%y = tail call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %x)
%shuf = shufflevector <4 x float> %y, <4 x float> %x, <4 x i32> <i32 0, i32 5, i32 6, i32 7>
ret <4 x float> %shuf
}
define <4 x float> @square_root(<4 x float> %x) {
; SSE-LABEL: square_root:
; SSE: # BB#0:
; SSE-NEXT: sqrtss %xmm0, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: square_root:
; AVX: # BB#0:
; AVX-NEXT: vsqrtss %xmm0, %xmm0, %xmm0
; AVX-NEXT: retq
%y = tail call <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float> %x)
%shuf = shufflevector <4 x float> %y, <4 x float> %x, <4 x i32> <i32 0, i32 5, i32 6, i32 7>
ret <4 x float> %shuf
}
define <2 x double> @square_root_double(<2 x double> %x) {
; SSE-LABEL: square_root_double:
; SSE: # BB#0:
; SSE-NEXT: sqrtsd %xmm0, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: square_root_double:
; AVX: # BB#0:
; AVX-NEXT: vsqrtsd %xmm0, %xmm0, %xmm0
; AVX-NEXT: retq
%y = tail call <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double> %x)
%shuf = shufflevector <2 x double> %y, <2 x double> %x, <2 x i32> <i32 0, i32 3>
ret <2 x double> %shuf
}
declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>)
declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>)
declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>)
declare <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double>)