Refactor code to select NEON VLD intrinsics.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84117 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Bob Wilson 2009-10-14 17:28:52 +00:00
parent 5db2c52270
commit 3e36f13ba7

View File

@ -126,6 +126,13 @@ private:
/// SelectDYN_ALLOC - Select dynamic alloc for Thumb.
SDNode *SelectDYN_ALLOC(SDValue Op);
/// SelectVLD - Select NEON load intrinsics. NumVecs should
/// be 2, 3 or 4. The opcode arrays specify the instructions used for
/// loads of D registers and even subregs and odd subregs of Q registers.
/// For NumVecs == 2, QOpcodes1 is not used.
SDNode *SelectVLD(SDValue Op, unsigned NumVecs, unsigned *DOpcodes,
unsigned *QOpcodes0, unsigned *QOpcodes1);
/// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should
/// be 2, 3 or 4. The opcode arrays specify the instructions used for
/// load/store of D registers and even subregs and odd subregs of Q registers.
@ -990,6 +997,94 @@ static EVT GetNEONSubregVT(EVT VT) {
}
}
SDNode *ARMDAGToDAGISel::SelectVLD(SDValue Op, unsigned NumVecs,
unsigned *DOpcodes, unsigned *QOpcodes0,
unsigned *QOpcodes1) {
assert(NumVecs >=2 && NumVecs <= 4 && "VLD NumVecs out-of-range");
SDNode *N = Op.getNode();
DebugLoc dl = N->getDebugLoc();
SDValue MemAddr, MemUpdate, MemOpc;
if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc))
return NULL;
SDValue Chain = N->getOperand(0);
EVT VT = N->getValueType(0);
bool is64BitVector = VT.is64BitVector();
unsigned OpcodeIndex;
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("unhandled vld type");
// Double-register operations:
case MVT::v8i8: OpcodeIndex = 0; break;
case MVT::v4i16: OpcodeIndex = 1; break;
case MVT::v2f32:
case MVT::v2i32: OpcodeIndex = 2; break;
case MVT::v1i64: OpcodeIndex = 3; break;
// Quad-register operations:
case MVT::v16i8: OpcodeIndex = 0; break;
case MVT::v8i16: OpcodeIndex = 1; break;
case MVT::v4f32:
case MVT::v4i32: OpcodeIndex = 2; break;
}
if (is64BitVector) {
unsigned Opc = DOpcodes[OpcodeIndex];
const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, Chain };
std::vector<EVT> ResTys(NumVecs, VT);
ResTys.push_back(MVT::Other);
return CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 4);
}
EVT RegVT = GetNEONSubregVT(VT);
if (NumVecs == 2) {
// Quad registers are directly supported for VLD2,
// loading 2 pairs of D regs.
unsigned Opc = QOpcodes0[OpcodeIndex];
const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, Chain };
std::vector<EVT> ResTys(4, VT);
ResTys.push_back(MVT::Other);
SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 4);
Chain = SDValue(VLd, 4);
// Combine the even and odd subregs to produce the result.
for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
SDNode *Q = PairDRegs(VT, SDValue(VLd, 2*Vec), SDValue(VLd, 2*Vec+1));
ReplaceUses(SDValue(N, Vec), SDValue(Q, 0));
}
} else {
// Otherwise, quad registers are loaded with two separate instructions,
// where one loads the even registers and the other loads the odd registers.
// Enable writeback to the address register.
MemOpc = CurDAG->getTargetConstant(ARM_AM::getAM6Opc(true), MVT::i32);
std::vector<EVT> ResTys(NumVecs, RegVT);
ResTys.push_back(MemAddr.getValueType());
ResTys.push_back(MVT::Other);
// Load the even subreg.
unsigned Opc = QOpcodes0[OpcodeIndex];
const SDValue OpsA[] = { MemAddr, MemUpdate, MemOpc, Chain };
SDNode *VLdA = CurDAG->getMachineNode(Opc, dl, ResTys, OpsA, 4);
Chain = SDValue(VLdA, NumVecs+1);
// Load the odd subreg.
Opc = QOpcodes1[OpcodeIndex];
const SDValue OpsB[] = { SDValue(VLdA, NumVecs), MemUpdate, MemOpc, Chain };
SDNode *VLdB = CurDAG->getMachineNode(Opc, dl, ResTys, OpsB, 4);
Chain = SDValue(VLdB, NumVecs+1);
// Combine the even and odd subregs to produce the result.
for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
SDNode *Q = PairDRegs(VT, SDValue(VLdA, Vec), SDValue(VLdB, Vec));
ReplaceUses(SDValue(N, Vec), SDValue(Q, 0));
}
}
ReplaceUses(SDValue(N, NumVecs), Chain);
return NULL;
}
SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDValue Op, bool IsLoad,
unsigned NumVecs, unsigned *DOpcodes,
unsigned *QOpcodes0,
@ -1525,159 +1620,26 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
break;
case Intrinsic::arm_neon_vld2: {
SDValue MemAddr, MemUpdate, MemOpc;
if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc))
return NULL;
SDValue Chain = N->getOperand(0);
if (VT.is64BitVector()) {
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("unhandled vld2 type");
case MVT::v8i8: Opc = ARM::VLD2d8; break;
case MVT::v4i16: Opc = ARM::VLD2d16; break;
case MVT::v2f32:
case MVT::v2i32: Opc = ARM::VLD2d32; break;
case MVT::v1i64: Opc = ARM::VLD2d64; break;
}
const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, Chain };
return CurDAG->getMachineNode(Opc, dl, VT, VT, MVT::Other, Ops, 4);
}
// Quad registers are loaded as pairs of double registers.
EVT RegVT;
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("unhandled vld2 type");
case MVT::v16i8: Opc = ARM::VLD2q8; RegVT = MVT::v8i8; break;
case MVT::v8i16: Opc = ARM::VLD2q16; RegVT = MVT::v4i16; break;
case MVT::v4f32: Opc = ARM::VLD2q32; RegVT = MVT::v2f32; break;
case MVT::v4i32: Opc = ARM::VLD2q32; RegVT = MVT::v2i32; break;
}
const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, Chain };
std::vector<EVT> ResTys(4, RegVT);
ResTys.push_back(MVT::Other);
SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 4);
SDNode *Q0 = PairDRegs(VT, SDValue(VLd, 0), SDValue(VLd, 1));
SDNode *Q1 = PairDRegs(VT, SDValue(VLd, 2), SDValue(VLd, 3));
ReplaceUses(SDValue(N, 0), SDValue(Q0, 0));
ReplaceUses(SDValue(N, 1), SDValue(Q1, 0));
ReplaceUses(SDValue(N, 2), SDValue(VLd, 4));
return NULL;
unsigned DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
ARM::VLD2d32, ARM::VLD2d64 };
unsigned QOpcodes[] = { ARM::VLD2q8, ARM::VLD2q16, ARM::VLD2q32 };
return SelectVLD(Op, 2, DOpcodes, QOpcodes, 0);
}
case Intrinsic::arm_neon_vld3: {
SDValue MemAddr, MemUpdate, MemOpc;
if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc))
return NULL;
SDValue Chain = N->getOperand(0);
if (VT.is64BitVector()) {
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("unhandled vld3 type");
case MVT::v8i8: Opc = ARM::VLD3d8; break;
case MVT::v4i16: Opc = ARM::VLD3d16; break;
case MVT::v2f32:
case MVT::v2i32: Opc = ARM::VLD3d32; break;
case MVT::v1i64: Opc = ARM::VLD3d64; break;
}
const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, Chain };
return CurDAG->getMachineNode(Opc, dl, VT, VT, VT, MVT::Other, Ops, 4);
}
// Quad registers are loaded with two separate instructions, where one
// loads the even registers and the other loads the odd registers.
EVT RegVT;
unsigned Opc2 = 0;
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("unhandled vld3 type");
case MVT::v16i8:
Opc = ARM::VLD3q8a; Opc2 = ARM::VLD3q8b; RegVT = MVT::v8i8; break;
case MVT::v8i16:
Opc = ARM::VLD3q16a; Opc2 = ARM::VLD3q16b; RegVT = MVT::v4i16; break;
case MVT::v4f32:
Opc = ARM::VLD3q32a; Opc2 = ARM::VLD3q32b; RegVT = MVT::v2f32; break;
case MVT::v4i32:
Opc = ARM::VLD3q32a; Opc2 = ARM::VLD3q32b; RegVT = MVT::v2i32; break;
}
// Enable writeback to the address register.
MemOpc = CurDAG->getTargetConstant(ARM_AM::getAM6Opc(true), MVT::i32);
std::vector<EVT> ResTys(3, RegVT);
ResTys.push_back(MemAddr.getValueType());
ResTys.push_back(MVT::Other);
const SDValue OpsA[] = { MemAddr, MemUpdate, MemOpc, Chain };
SDNode *VLdA = CurDAG->getMachineNode(Opc, dl, ResTys, OpsA, 4);
Chain = SDValue(VLdA, 4);
const SDValue OpsB[] = { SDValue(VLdA, 3), MemUpdate, MemOpc, Chain };
SDNode *VLdB = CurDAG->getMachineNode(Opc2, dl, ResTys, OpsB, 4);
Chain = SDValue(VLdB, 4);
SDNode *Q0 = PairDRegs(VT, SDValue(VLdA, 0), SDValue(VLdB, 0));
SDNode *Q1 = PairDRegs(VT, SDValue(VLdA, 1), SDValue(VLdB, 1));
SDNode *Q2 = PairDRegs(VT, SDValue(VLdA, 2), SDValue(VLdB, 2));
ReplaceUses(SDValue(N, 0), SDValue(Q0, 0));
ReplaceUses(SDValue(N, 1), SDValue(Q1, 0));
ReplaceUses(SDValue(N, 2), SDValue(Q2, 0));
ReplaceUses(SDValue(N, 3), Chain);
return NULL;
unsigned DOpcodes[] = { ARM::VLD3d8, ARM::VLD3d16,
ARM::VLD3d32, ARM::VLD3d64 };
unsigned QOpcodes0[] = { ARM::VLD3q8a, ARM::VLD3q16a, ARM::VLD3q32a };
unsigned QOpcodes1[] = { ARM::VLD3q8b, ARM::VLD3q16b, ARM::VLD3q32b };
return SelectVLD(Op, 3, DOpcodes, QOpcodes0, QOpcodes1);
}
case Intrinsic::arm_neon_vld4: {
SDValue MemAddr, MemUpdate, MemOpc;
if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc))
return NULL;
SDValue Chain = N->getOperand(0);
if (VT.is64BitVector()) {
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("unhandled vld4 type");
case MVT::v8i8: Opc = ARM::VLD4d8; break;
case MVT::v4i16: Opc = ARM::VLD4d16; break;
case MVT::v2f32:
case MVT::v2i32: Opc = ARM::VLD4d32; break;
case MVT::v1i64: Opc = ARM::VLD4d64; break;
}
const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, Chain };
std::vector<EVT> ResTys(4, VT);
ResTys.push_back(MVT::Other);
return CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 4);
}
// Quad registers are loaded with two separate instructions, where one
// loads the even registers and the other loads the odd registers.
EVT RegVT;
unsigned Opc2 = 0;
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("unhandled vld4 type");
case MVT::v16i8:
Opc = ARM::VLD4q8a; Opc2 = ARM::VLD4q8b; RegVT = MVT::v8i8; break;
case MVT::v8i16:
Opc = ARM::VLD4q16a; Opc2 = ARM::VLD4q16b; RegVT = MVT::v4i16; break;
case MVT::v4f32:
Opc = ARM::VLD4q32a; Opc2 = ARM::VLD4q32b; RegVT = MVT::v2f32; break;
case MVT::v4i32:
Opc = ARM::VLD4q32a; Opc2 = ARM::VLD4q32b; RegVT = MVT::v2i32; break;
}
// Enable writeback to the address register.
MemOpc = CurDAG->getTargetConstant(ARM_AM::getAM6Opc(true), MVT::i32);
std::vector<EVT> ResTys(4, RegVT);
ResTys.push_back(MemAddr.getValueType());
ResTys.push_back(MVT::Other);
const SDValue OpsA[] = { MemAddr, MemUpdate, MemOpc, Chain };
SDNode *VLdA = CurDAG->getMachineNode(Opc, dl, ResTys, OpsA, 4);
Chain = SDValue(VLdA, 5);
const SDValue OpsB[] = { SDValue(VLdA, 4), MemUpdate, MemOpc, Chain };
SDNode *VLdB = CurDAG->getMachineNode(Opc2, dl, ResTys, OpsB, 4);
Chain = SDValue(VLdB, 5);
SDNode *Q0 = PairDRegs(VT, SDValue(VLdA, 0), SDValue(VLdB, 0));
SDNode *Q1 = PairDRegs(VT, SDValue(VLdA, 1), SDValue(VLdB, 1));
SDNode *Q2 = PairDRegs(VT, SDValue(VLdA, 2), SDValue(VLdB, 2));
SDNode *Q3 = PairDRegs(VT, SDValue(VLdA, 3), SDValue(VLdB, 3));
ReplaceUses(SDValue(N, 0), SDValue(Q0, 0));
ReplaceUses(SDValue(N, 1), SDValue(Q1, 0));
ReplaceUses(SDValue(N, 2), SDValue(Q2, 0));
ReplaceUses(SDValue(N, 3), SDValue(Q3, 0));
ReplaceUses(SDValue(N, 4), Chain);
return NULL;
unsigned DOpcodes[] = { ARM::VLD4d8, ARM::VLD4d16,
ARM::VLD4d32, ARM::VLD4d64 };
unsigned QOpcodes0[] = { ARM::VLD4q8a, ARM::VLD4q16a, ARM::VLD4q32a };
unsigned QOpcodes1[] = { ARM::VLD4q8b, ARM::VLD4q16b, ARM::VLD4q32b };
return SelectVLD(Op, 4, DOpcodes, QOpcodes0, QOpcodes1);
}
case Intrinsic::arm_neon_vld2lane: {