Completely rewrite how getelementptr instructions are expanded. This has two

(minor) benefits right now:

1. An extra dummy MOVrr32 is gone.  This move would often be coallesced by
   both allocators anyway.
2. The code now uses the gep_type_iterator to walk the gep, which should future
   proof it a bit.  It still assumes that array indexes are Longs though.

These don't really justify rewriting the code.  The big benefit will come later
though.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11710 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2004-02-22 07:04:00 +00:00
parent f216421181
commit 3f1e8e7ceb
2 changed files with 138 additions and 82 deletions

View File

@ -27,6 +27,7 @@
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/CFG.h"
using namespace llvm;
@ -2211,38 +2212,54 @@ void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Value *Src, User::op_iterator IdxBegin,
User::op_iterator IdxEnd, unsigned TargetReg) {
const TargetData &TD = TM.getTargetData();
const Type *Ty = Src->getType();
unsigned BaseReg = getReg(Src, MBB, IP);
// GEPs have zero or more indices; we must perform a struct access
// or array access for each one.
for (GetElementPtrInst::op_iterator oi = IdxBegin,
oe = IdxEnd; oi != oe; ++oi) {
Value *idx = *oi;
unsigned NextReg = BaseReg;
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
// It's a struct access. idx is the index into the structure,
// which names the field. This index must have ubyte type.
const ConstantUInt *CUI = cast<ConstantUInt>(idx);
assert(CUI->getType() == Type::UByteTy
&& "Funny-looking structure index in GEP");
// Use the TargetData structure to pick out what the layout of
// the structure is in memory. Since the structure index must
// be constant, we can get its value and use it to find the
// right byte offset from the StructLayout class's list of
// structure member offsets.
std::vector<Value*> GEPOps;
GEPOps.resize(IdxEnd-IdxBegin+1);
GEPOps[0] = Src;
std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
std::vector<const Type*> GEPTypes;
GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
gep_type_end(Src->getType(), IdxBegin, IdxEnd));
// Keep emitting instructions until we consume the entire GEP instruction.
while (!GEPOps.empty()) {
unsigned OldSize = GEPOps.size();
if (GEPTypes.empty()) {
// The getGEPIndex operation didn't want to build an LEA. Check to see if
// all operands are consumed but the base pointer. If so, just load it
// into the register.
unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
return; // we are now done
} else if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
// It's a struct access. CUI is the index into the structure,
// which names the field. This index must have unsigned type.
const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
GEPOps.pop_back(); // Consume a GEP operand
GEPTypes.pop_back();
// Use the TargetData structure to pick out what the layout of the
// structure is in memory. Since the structure index must be constant, we
// can get its value and use it to find the right byte offset from the
// StructLayout class's list of structure member offsets.
unsigned idxValue = CUI->getValue();
unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
if (FieldOff) {
NextReg = makeAnotherReg(Type::UIntTy);
unsigned Reg = makeAnotherReg(Type::UIntTy);
// Emit an ADD to add FieldOff to the basePtr.
BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
BMI(MBB, IP, X86::ADDri32, 2, TargetReg).addReg(Reg).addZImm(FieldOff);
--IP; // Insert the next instruction before this one.
TargetReg = Reg; // Codegen the rest of the GEP into this
}
// The next type is the member of the structure selected by the
// index.
Ty = StTy->getElementType(idxValue);
} else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
} else {
// It's an array or pointer access: [ArraySize x ElementType].
const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
Value *idx = GEPOps.back();
GEPOps.pop_back(); // Consume a GEP operand
GEPTypes.pop_back();
// idx is the index into the array. Unlike with structure
// indices, we may not know its actual value at code-generation
@ -2259,41 +2276,52 @@ void ISel::emitGEPOperation(MachineBasicBlock *MBB,
// We want to add BaseReg to(idxReg * sizeof ElementType). First, we
// must find the size of the pointed-to type (Not coincidentally, the next
// type is the type of the elements in the array).
Ty = SqTy->getElementType();
unsigned elementSize = TD.getTypeSize(Ty);
const Type *ElTy = SqTy->getElementType();
unsigned elementSize = TD.getTypeSize(ElTy);
// If idxReg is a constant, we don't need to perform the multiply!
if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
if (!CSI->isNullValue()) {
unsigned Offset = elementSize*CSI->getValue();
NextReg = makeAnotherReg(Type::UIntTy);
BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
unsigned Reg = makeAnotherReg(Type::UIntTy);
BMI(MBB, IP, X86::ADDri32, 2, TargetReg).addReg(Reg).addZImm(Offset);
--IP; // Insert the next instruction before this one.
TargetReg = Reg; // Codegen the rest of the GEP into this
}
} else if (elementSize == 1) {
// If the element size is 1, we don't have to multiply, just add
unsigned idxReg = getReg(idx, MBB, IP);
NextReg = makeAnotherReg(Type::UIntTy);
BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
unsigned Reg = makeAnotherReg(Type::UIntTy);
BMI(MBB, IP, X86::ADDrr32, 2, TargetReg).addReg(Reg).addReg(idxReg);
--IP; // Insert the next instruction before this one.
TargetReg = Reg; // Codegen the rest of the GEP into this
} else {
unsigned idxReg = getReg(idx, MBB, IP);
unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
// Make sure we can back the iterator up to point to the first
// instruction emitted.
MachineBasicBlock::iterator BeforeIt = IP;
if (IP == MBB->begin())
BeforeIt = MBB->end();
else
--BeforeIt;
doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
// Emit an ADD to add OffsetReg to the basePtr.
NextReg = makeAnotherReg(Type::UIntTy);
BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
unsigned Reg = makeAnotherReg(Type::UIntTy);
BMI(MBB, IP, X86::ADDrr32, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
// Step to the first instruction of the multiply.
if (BeforeIt == MBB->end())
IP = MBB->begin();
else
IP = ++BeforeIt;
TargetReg = Reg; // Codegen the rest of the GEP into this
}
}
// Now that we are here, further indices refer to subtypes of this
// one, so we don't need to worry about BaseReg itself, anymore.
BaseReg = NextReg;
}
// After we have processed all the indices, the result is left in
// BaseReg. Move it to the register where we were expected to
// put the answer. A 32-bit move should do it, because we are in
// ILP32 land.
BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
}

View File

@ -27,6 +27,7 @@
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/CFG.h"
using namespace llvm;
@ -2211,38 +2212,54 @@ void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Value *Src, User::op_iterator IdxBegin,
User::op_iterator IdxEnd, unsigned TargetReg) {
const TargetData &TD = TM.getTargetData();
const Type *Ty = Src->getType();
unsigned BaseReg = getReg(Src, MBB, IP);
// GEPs have zero or more indices; we must perform a struct access
// or array access for each one.
for (GetElementPtrInst::op_iterator oi = IdxBegin,
oe = IdxEnd; oi != oe; ++oi) {
Value *idx = *oi;
unsigned NextReg = BaseReg;
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
// It's a struct access. idx is the index into the structure,
// which names the field. This index must have ubyte type.
const ConstantUInt *CUI = cast<ConstantUInt>(idx);
assert(CUI->getType() == Type::UByteTy
&& "Funny-looking structure index in GEP");
// Use the TargetData structure to pick out what the layout of
// the structure is in memory. Since the structure index must
// be constant, we can get its value and use it to find the
// right byte offset from the StructLayout class's list of
// structure member offsets.
std::vector<Value*> GEPOps;
GEPOps.resize(IdxEnd-IdxBegin+1);
GEPOps[0] = Src;
std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
std::vector<const Type*> GEPTypes;
GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
gep_type_end(Src->getType(), IdxBegin, IdxEnd));
// Keep emitting instructions until we consume the entire GEP instruction.
while (!GEPOps.empty()) {
unsigned OldSize = GEPOps.size();
if (GEPTypes.empty()) {
// The getGEPIndex operation didn't want to build an LEA. Check to see if
// all operands are consumed but the base pointer. If so, just load it
// into the register.
unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
return; // we are now done
} else if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
// It's a struct access. CUI is the index into the structure,
// which names the field. This index must have unsigned type.
const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
GEPOps.pop_back(); // Consume a GEP operand
GEPTypes.pop_back();
// Use the TargetData structure to pick out what the layout of the
// structure is in memory. Since the structure index must be constant, we
// can get its value and use it to find the right byte offset from the
// StructLayout class's list of structure member offsets.
unsigned idxValue = CUI->getValue();
unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
if (FieldOff) {
NextReg = makeAnotherReg(Type::UIntTy);
unsigned Reg = makeAnotherReg(Type::UIntTy);
// Emit an ADD to add FieldOff to the basePtr.
BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
BMI(MBB, IP, X86::ADDri32, 2, TargetReg).addReg(Reg).addZImm(FieldOff);
--IP; // Insert the next instruction before this one.
TargetReg = Reg; // Codegen the rest of the GEP into this
}
// The next type is the member of the structure selected by the
// index.
Ty = StTy->getElementType(idxValue);
} else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
} else {
// It's an array or pointer access: [ArraySize x ElementType].
const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
Value *idx = GEPOps.back();
GEPOps.pop_back(); // Consume a GEP operand
GEPTypes.pop_back();
// idx is the index into the array. Unlike with structure
// indices, we may not know its actual value at code-generation
@ -2259,41 +2276,52 @@ void ISel::emitGEPOperation(MachineBasicBlock *MBB,
// We want to add BaseReg to(idxReg * sizeof ElementType). First, we
// must find the size of the pointed-to type (Not coincidentally, the next
// type is the type of the elements in the array).
Ty = SqTy->getElementType();
unsigned elementSize = TD.getTypeSize(Ty);
const Type *ElTy = SqTy->getElementType();
unsigned elementSize = TD.getTypeSize(ElTy);
// If idxReg is a constant, we don't need to perform the multiply!
if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
if (!CSI->isNullValue()) {
unsigned Offset = elementSize*CSI->getValue();
NextReg = makeAnotherReg(Type::UIntTy);
BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
unsigned Reg = makeAnotherReg(Type::UIntTy);
BMI(MBB, IP, X86::ADDri32, 2, TargetReg).addReg(Reg).addZImm(Offset);
--IP; // Insert the next instruction before this one.
TargetReg = Reg; // Codegen the rest of the GEP into this
}
} else if (elementSize == 1) {
// If the element size is 1, we don't have to multiply, just add
unsigned idxReg = getReg(idx, MBB, IP);
NextReg = makeAnotherReg(Type::UIntTy);
BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
unsigned Reg = makeAnotherReg(Type::UIntTy);
BMI(MBB, IP, X86::ADDrr32, 2, TargetReg).addReg(Reg).addReg(idxReg);
--IP; // Insert the next instruction before this one.
TargetReg = Reg; // Codegen the rest of the GEP into this
} else {
unsigned idxReg = getReg(idx, MBB, IP);
unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
// Make sure we can back the iterator up to point to the first
// instruction emitted.
MachineBasicBlock::iterator BeforeIt = IP;
if (IP == MBB->begin())
BeforeIt = MBB->end();
else
--BeforeIt;
doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
// Emit an ADD to add OffsetReg to the basePtr.
NextReg = makeAnotherReg(Type::UIntTy);
BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
unsigned Reg = makeAnotherReg(Type::UIntTy);
BMI(MBB, IP, X86::ADDrr32, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
// Step to the first instruction of the multiply.
if (BeforeIt == MBB->end())
IP = MBB->begin();
else
IP = ++BeforeIt;
TargetReg = Reg; // Codegen the rest of the GEP into this
}
}
// Now that we are here, further indices refer to subtypes of this
// one, so we don't need to worry about BaseReg itself, anymore.
BaseReg = NextReg;
}
// After we have processed all the indices, the result is left in
// BaseReg. Move it to the register where we were expected to
// put the answer. A 32-bit move should do it, because we are in
// ILP32 land.
BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
}