mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-06-19 18:24:00 +00:00
Revert "LiveRangeCalc: Rewrite subrange calculation"
Revert until I find out why non-subreg enabled targets break.
This reverts commit 6097277eef
.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224278 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@ -29,35 +29,31 @@ void LiveRangeCalc::reset(const MachineFunction *mf,
|
||||
DomTree = MDT;
|
||||
Alloc = VNIA;
|
||||
|
||||
unsigned NumBlocks = MF->getNumBlockIDs();
|
||||
Seen.clear();
|
||||
Seen.resize(NumBlocks);
|
||||
Map.resize(NumBlocks);
|
||||
MainLiveOutData.reset(MF->getNumBlockIDs());
|
||||
LiveIn.clear();
|
||||
}
|
||||
|
||||
|
||||
static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
|
||||
LiveRange &LR, const MachineOperand &MO) {
|
||||
const MachineInstr *MI = MO.getParent();
|
||||
SlotIndex DefIdx;
|
||||
if (MI->isPHI()) {
|
||||
DefIdx = Indexes.getMBBStartIdx(MI->getParent());
|
||||
} else {
|
||||
DefIdx = Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
|
||||
}
|
||||
// Create the def in LR. This may find an existing def.
|
||||
LR.createDeadDef(DefIdx, Alloc);
|
||||
static SlotIndex getDefIndex(const SlotIndexes &Indexes, const MachineInstr &MI,
|
||||
bool EarlyClobber) {
|
||||
// PHI defs begin at the basic block start index.
|
||||
if (MI.isPHI())
|
||||
return Indexes.getMBBStartIdx(MI.getParent());
|
||||
|
||||
// Instructions are either normal 'r', or early clobber 'e'.
|
||||
return Indexes.getInstructionIndex(&MI).getRegSlot(EarlyClobber);
|
||||
}
|
||||
|
||||
void LiveRangeCalc::calculate(LiveInterval &LI) {
|
||||
void LiveRangeCalc::createDeadDefs(LiveInterval &LI) {
|
||||
assert(MRI && Indexes && "call reset() first");
|
||||
|
||||
// Step 1: Create minimal live segments for every definition of Reg.
|
||||
// Visit all def operands. If the same instruction has multiple defs of Reg,
|
||||
// LR.createDeadDef() will deduplicate.
|
||||
const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
|
||||
unsigned Reg = LI.reg;
|
||||
for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
|
||||
for (const MachineOperand &MO : MRI->def_operands(Reg)) {
|
||||
const MachineInstr *MI = MO.getParent();
|
||||
SlotIndex Idx = getDefIndex(*Indexes, *MI, MO.isEarlyClobber());
|
||||
unsigned SubReg = MO.getSubReg();
|
||||
if (LI.hasSubRanges() || (SubReg != 0 && MRI->tracksSubRegLiveness())) {
|
||||
unsigned Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
|
||||
@ -86,108 +82,155 @@ void LiveRangeCalc::calculate(LiveInterval &LI) {
|
||||
assert(Common == S.LaneMask);
|
||||
CommonRange = &S;
|
||||
}
|
||||
if (MO.isDef())
|
||||
createDeadDef(*Indexes, *Alloc, *CommonRange, MO);
|
||||
CommonRange->createDeadDef(Idx, *Alloc);
|
||||
Mask &= ~Common;
|
||||
}
|
||||
// Create a new SubRange for subregs we did not cover yet.
|
||||
if (Mask != 0) {
|
||||
LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask);
|
||||
if (MO.isDef())
|
||||
createDeadDef(*Indexes, *Alloc, *NewRange, MO);
|
||||
LiveInterval::SubRange *SubRange = LI.createSubRange(*Alloc, Mask);
|
||||
SubRange->createDeadDef(Idx, *Alloc);
|
||||
}
|
||||
}
|
||||
|
||||
// Create the def in the main liverange.
|
||||
if (MO.isDef())
|
||||
createDeadDef(*Indexes, *Alloc, LI, MO);
|
||||
// Create the def in LR. This may find an existing def.
|
||||
LI.createDeadDef(Idx, *Alloc);
|
||||
}
|
||||
|
||||
// Step 2: Extend live segments to all uses, constructing SSA form as
|
||||
// necessary.
|
||||
for (LiveInterval::SubRange &S : LI.subranges()) {
|
||||
extendToUses(S, Reg, S.LaneMask);
|
||||
}
|
||||
extendToUses(LI, Reg, ~0u);
|
||||
}
|
||||
|
||||
|
||||
void LiveRangeCalc::calculate(LiveRange &LR, unsigned Reg, bool IgnoreUses) {
|
||||
void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
|
||||
assert(MRI && Indexes && "call reset() first");
|
||||
|
||||
// Step 1: Create minimal live segments for every definition of Reg.
|
||||
// Visit all def operands. If the same instruction has multiple defs of Reg,
|
||||
// LR.createDeadDef() will deduplicate.
|
||||
for (MachineOperand &MO : MRI->def_operands(Reg)) {
|
||||
createDeadDef(*Indexes, *Alloc, LR, MO);
|
||||
const MachineInstr *MI = MO.getParent();
|
||||
SlotIndex Idx = getDefIndex(*Indexes, *MI, MO.isEarlyClobber());
|
||||
// Create the def in LR. This may find an existing def.
|
||||
LR.createDeadDef(Idx, *Alloc);
|
||||
}
|
||||
|
||||
// Step 2: Extend live segments to all uses, constructing SSA form as
|
||||
// necessary.
|
||||
if (!IgnoreUses)
|
||||
extendToUses(LR, Reg, ~0u);
|
||||
}
|
||||
|
||||
|
||||
void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, unsigned Mask) {
|
||||
unsigned NumBlocks = MF->getNumBlockIDs();
|
||||
Seen.clear();
|
||||
Seen.resize(NumBlocks);
|
||||
Map.resize(NumBlocks);
|
||||
static SlotIndex getUseIndex(const SlotIndexes &Indexes,
|
||||
const MachineOperand &MO) {
|
||||
const MachineInstr *MI = MO.getParent();
|
||||
unsigned OpNo = (&MO - &MI->getOperand(0));
|
||||
if (MI->isPHI()) {
|
||||
assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
|
||||
// The actual place where a phi operand is used is the end of the pred MBB.
|
||||
// PHI operands are paired: (Reg, PredMBB).
|
||||
return Indexes.getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
|
||||
}
|
||||
|
||||
// Check for early-clobber redefs.
|
||||
bool isEarlyClobber = false;
|
||||
unsigned DefIdx;
|
||||
if (MO.isDef()) {
|
||||
isEarlyClobber = MO.isEarlyClobber();
|
||||
} else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
|
||||
// FIXME: This would be a lot easier if tied early-clobber uses also
|
||||
// had an early-clobber flag.
|
||||
isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
|
||||
}
|
||||
return Indexes.getInstructionIndex(MI).getRegSlot(isEarlyClobber);
|
||||
}
|
||||
|
||||
|
||||
void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg) {
|
||||
assert(MRI && Indexes && "call reset() first");
|
||||
|
||||
// Visit all operands that read Reg. This may include partial defs.
|
||||
const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
|
||||
for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
|
||||
// Clear all kill flags. They will be reinserted after register allocation
|
||||
// by LiveIntervalAnalysis::addKillFlags().
|
||||
if (MO.isUse())
|
||||
MO.setIsKill(false);
|
||||
// We are only interested in uses. For the main range this also includes
|
||||
// the reads happening on partial register defs.
|
||||
if (!MO.isUse() && (!MO.readsReg() || Mask != ~0u))
|
||||
if (!MO.readsReg())
|
||||
continue;
|
||||
unsigned SubReg = MO.getSubReg();
|
||||
if (SubReg != 0) {
|
||||
unsigned SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
|
||||
// Ignore uses not covering the current subrange.
|
||||
if ((SubRegMask & Mask) == 0)
|
||||
continue;
|
||||
// The create dead-defs logic in calculate() splits subranges as fine as
|
||||
// necessary for all uses, so SubRegMask shouldn't be smaller than Mask.
|
||||
assert((SubRegMask & ~Mask) == 0);
|
||||
}
|
||||
|
||||
// Determine the actual place of the use.
|
||||
const MachineInstr *MI = MO.getParent();
|
||||
unsigned OpNo = (&MO - &MI->getOperand(0));
|
||||
SlotIndex UseIdx;
|
||||
if (MI->isPHI()) {
|
||||
assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
|
||||
// The actual place where a phi operand is used is the end of the pred
|
||||
// MBB. PHI operands are paired: (Reg, PredMBB).
|
||||
UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
|
||||
} else {
|
||||
// Check for early-clobber redefs.
|
||||
bool isEarlyClobber = false;
|
||||
unsigned DefIdx;
|
||||
if (MO.isDef()) {
|
||||
isEarlyClobber = MO.isEarlyClobber();
|
||||
} else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
|
||||
// FIXME: This would be a lot easier if tied early-clobber uses also
|
||||
// had an early-clobber flag.
|
||||
isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
|
||||
}
|
||||
UseIdx = Indexes->getInstructionIndex(MI).getRegSlot(isEarlyClobber);
|
||||
}
|
||||
|
||||
// MI is reading Reg. We may have visited MI before if it happens to be
|
||||
// reading Reg multiple times. That is OK, extend() is idempotent.
|
||||
extend(LR, UseIdx, Reg);
|
||||
SlotIndex Idx = getUseIndex(*Indexes, MO);
|
||||
extend(LR, Idx, Reg, MainLiveOutData);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void LiveRangeCalc::updateFromLiveIns() {
|
||||
void LiveRangeCalc::extendToUses(LiveInterval &LI) {
|
||||
assert(MRI && Indexes && "call reset() first");
|
||||
|
||||
const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
|
||||
SmallVector<LiveOutData,2> LiveOuts;
|
||||
unsigned NumSubRanges = 0;
|
||||
for (const auto &S : LI.subranges()) {
|
||||
(void)S;
|
||||
++NumSubRanges;
|
||||
LiveOuts.push_back(LiveOutData());
|
||||
LiveOuts.back().reset(MF->getNumBlockIDs());
|
||||
}
|
||||
|
||||
// Visit all operands that read Reg. This may include partial defs.
|
||||
unsigned Reg = LI.reg;
|
||||
for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
|
||||
// Clear all kill flags. They will be reinserted after register allocation
|
||||
// by LiveIntervalAnalysis::addKillFlags().
|
||||
if (MO.isUse())
|
||||
MO.setIsKill(false);
|
||||
if (!MO.readsReg())
|
||||
continue;
|
||||
SlotIndex Idx = getUseIndex(*Indexes, MO);
|
||||
unsigned SubReg = MO.getSubReg();
|
||||
if (MO.isUse() && (LI.hasSubRanges() ||
|
||||
(MRI->tracksSubRegLiveness() && SubReg != 0))) {
|
||||
unsigned Mask = SubReg != 0
|
||||
? TRI.getSubRegIndexLaneMask(SubReg)
|
||||
: MRI->getMaxLaneMaskForVReg(Reg);
|
||||
|
||||
// If this is the first time we see a subregister def/use. Initialize
|
||||
// subranges by creating a copy of the main range.
|
||||
if (!LI.hasSubRanges()) {
|
||||
unsigned ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
|
||||
LI.createSubRangeFrom(*Alloc, ClassMask, LI);
|
||||
LiveOuts.insert(LiveOuts.begin(), LiveOutData());
|
||||
LiveOuts.front().reset(MF->getNumBlockIDs());
|
||||
++NumSubRanges;
|
||||
}
|
||||
unsigned SubRangeIdx = 0;
|
||||
for (LiveInterval::subrange_iterator S = LI.subrange_begin(),
|
||||
SE = LI.subrange_end(); S != SE; ++S, ++SubRangeIdx) {
|
||||
// A Mask for subregs common to the existing subrange and current def.
|
||||
unsigned Common = S->LaneMask & Mask;
|
||||
if (Common == 0)
|
||||
continue;
|
||||
// A Mask for subregs covered by the subrange but not the current def.
|
||||
unsigned LRest = S->LaneMask & ~Mask;
|
||||
LiveInterval::SubRange *CommonRange;
|
||||
unsigned CommonRangeIdx;
|
||||
if (LRest != 0) {
|
||||
// Split current subrange into Common and LRest ranges.
|
||||
S->LaneMask = LRest;
|
||||
CommonRange = LI.createSubRangeFrom(*Alloc, Common, *S);
|
||||
CommonRangeIdx = 0;
|
||||
LiveOuts.insert(LiveOuts.begin(), LiveOutData());
|
||||
LiveOuts.front().reset(MF->getNumBlockIDs());
|
||||
++NumSubRanges;
|
||||
++SubRangeIdx;
|
||||
} else {
|
||||
// The subrange and current def lanemasks match completely.
|
||||
assert(Common == S->LaneMask);
|
||||
CommonRange = &*S;
|
||||
CommonRangeIdx = SubRangeIdx;
|
||||
}
|
||||
extend(*CommonRange, Idx, Reg, LiveOuts[CommonRangeIdx]);
|
||||
Mask &= ~Common;
|
||||
}
|
||||
assert(SubRangeIdx == NumSubRanges);
|
||||
}
|
||||
extend(LI, Idx, Reg, MainLiveOutData);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void LiveRangeCalc::updateFromLiveIns(LiveOutData &LiveOuts) {
|
||||
LiveRangeUpdater Updater;
|
||||
for (const LiveInBlock &I : LiveIn) {
|
||||
if (!I.DomNode)
|
||||
@ -203,8 +246,8 @@ void LiveRangeCalc::updateFromLiveIns() {
|
||||
else {
|
||||
// The value is live-through, update LiveOut as well.
|
||||
// Defer the Domtree lookup until it is needed.
|
||||
assert(Seen.test(MBB->getNumber()));
|
||||
Map[MBB] = LiveOutPair(I.Value, nullptr);
|
||||
assert(LiveOuts.Seen.test(MBB->getNumber()));
|
||||
LiveOuts.Map[MBB] = LiveOutPair(I.Value, nullptr);
|
||||
}
|
||||
Updater.setDest(&I.LR);
|
||||
Updater.add(Start, End, I.Value);
|
||||
@ -213,7 +256,8 @@ void LiveRangeCalc::updateFromLiveIns() {
|
||||
}
|
||||
|
||||
|
||||
void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg) {
|
||||
void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg,
|
||||
LiveOutData &LiveOuts) {
|
||||
assert(Kill.isValid() && "Invalid SlotIndex");
|
||||
assert(Indexes && "Missing SlotIndexes");
|
||||
assert(DomTree && "Missing dominator tree");
|
||||
@ -229,27 +273,28 @@ void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg) {
|
||||
// multiple values, and we may need to create even more phi-defs to preserve
|
||||
// VNInfo SSA form. Perform a search for all predecessor blocks where we
|
||||
// know the dominating VNInfo.
|
||||
if (findReachingDefs(LR, *KillMBB, Kill, PhysReg))
|
||||
if (findReachingDefs(LR, *KillMBB, Kill, PhysReg, LiveOuts))
|
||||
return;
|
||||
|
||||
// When there were multiple different values, we may need new PHIs.
|
||||
calculateValues();
|
||||
calculateValues(LiveOuts);
|
||||
}
|
||||
|
||||
|
||||
// This function is called by a client after using the low-level API to add
|
||||
// live-out and live-in blocks. The unique value optimization is not
|
||||
// available, SplitEditor::transferValues handles that case directly anyway.
|
||||
void LiveRangeCalc::calculateValues() {
|
||||
void LiveRangeCalc::calculateValues(LiveOutData &LiveOuts) {
|
||||
assert(Indexes && "Missing SlotIndexes");
|
||||
assert(DomTree && "Missing dominator tree");
|
||||
updateSSA();
|
||||
updateFromLiveIns();
|
||||
updateSSA(LiveOuts);
|
||||
updateFromLiveIns(LiveOuts);
|
||||
}
|
||||
|
||||
|
||||
bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
|
||||
SlotIndex Kill, unsigned PhysReg) {
|
||||
SlotIndex Kill, unsigned PhysReg,
|
||||
LiveOutData &LiveOuts) {
|
||||
unsigned KillMBBNum = KillMBB.getNumber();
|
||||
|
||||
// Block numbers where LR should be live-in.
|
||||
@ -283,8 +328,8 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
|
||||
MachineBasicBlock *Pred = *PI;
|
||||
|
||||
// Is this a known live-out block?
|
||||
if (Seen.test(Pred->getNumber())) {
|
||||
if (VNInfo *VNI = Map[Pred].first) {
|
||||
if (LiveOuts.Seen.test(Pred->getNumber())) {
|
||||
if (VNInfo *VNI = LiveOuts.Map[Pred].first) {
|
||||
if (TheVNI && TheVNI != VNI)
|
||||
UniqueVNI = false;
|
||||
TheVNI = VNI;
|
||||
@ -298,7 +343,7 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
|
||||
// First time we see Pred. Try to determine the live-out value, but set
|
||||
// it as null if Pred is live-through with an unknown value.
|
||||
VNInfo *VNI = LR.extendInBlock(Start, End);
|
||||
setLiveOutValue(Pred, VNI);
|
||||
LiveOuts.setLiveOutValue(Pred, VNI);
|
||||
if (VNI) {
|
||||
if (TheVNI && TheVNI != VNI)
|
||||
UniqueVNI = false;
|
||||
@ -333,7 +378,8 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
|
||||
if (*I == KillMBBNum && Kill.isValid())
|
||||
End = Kill;
|
||||
else
|
||||
Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr);
|
||||
LiveOuts.Map[MF->getBlockNumbered(*I)] =
|
||||
LiveOutPair(TheVNI, nullptr);
|
||||
Updater.add(Start, End, TheVNI);
|
||||
}
|
||||
return true;
|
||||
@ -356,7 +402,7 @@ bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB,
|
||||
|
||||
// This is essentially the same iterative algorithm that SSAUpdater uses,
|
||||
// except we already have a dominator tree, so we don't have to recompute it.
|
||||
void LiveRangeCalc::updateSSA() {
|
||||
void LiveRangeCalc::updateSSA(LiveOutData &LiveOuts) {
|
||||
assert(Indexes && "Missing SlotIndexes");
|
||||
assert(DomTree && "Missing dominator tree");
|
||||
|
||||
@ -377,22 +423,23 @@ void LiveRangeCalc::updateSSA() {
|
||||
|
||||
// We need a live-in value to a block with no immediate dominator?
|
||||
// This is probably an unreachable block that has survived somehow.
|
||||
bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
|
||||
bool needPHI = !IDom
|
||||
|| !LiveOuts.Seen.test(IDom->getBlock()->getNumber());
|
||||
|
||||
// IDom dominates all of our predecessors, but it may not be their
|
||||
// immediate dominator. Check if any of them have live-out values that are
|
||||
// properly dominated by IDom. If so, we need a phi-def here.
|
||||
if (!needPHI) {
|
||||
IDomValue = Map[IDom->getBlock()];
|
||||
IDomValue = LiveOuts.Map[IDom->getBlock()];
|
||||
|
||||
// Cache the DomTree node that defined the value.
|
||||
if (IDomValue.first && !IDomValue.second)
|
||||
Map[IDom->getBlock()].second = IDomValue.second =
|
||||
LiveOuts.Map[IDom->getBlock()].second = IDomValue.second =
|
||||
DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
|
||||
|
||||
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
||||
PE = MBB->pred_end(); PI != PE; ++PI) {
|
||||
LiveOutPair &Value = Map[*PI];
|
||||
LiveOutPair &Value = LiveOuts.Map[*PI];
|
||||
if (!Value.first || Value.first == IDomValue.first)
|
||||
continue;
|
||||
|
||||
@ -414,7 +461,7 @@ void LiveRangeCalc::updateSSA() {
|
||||
// The value may be live-through even if Kill is set, as can happen when
|
||||
// we are called from extendRange. In that case LiveOutSeen is true, and
|
||||
// LiveOut indicates a foreign or missing value.
|
||||
LiveOutPair &LOP = Map[MBB];
|
||||
LiveOutPair &LOP = LiveOuts.Map[MBB];
|
||||
|
||||
// Create a phi-def if required.
|
||||
if (needPHI) {
|
||||
|
Reference in New Issue
Block a user