Fix a serious bug that would cause deadlock during abstract type refinement. The constant creation

gets involved, and we end up trying to recursively acquire a writer lock.  The fix for this is slightly horrible,
and involves passing a boolean "locked" parameter around in Constants.cpp, but it's better than having locked and
unlocked versions of most of the code.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73790 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Owen Anderson 2009-06-19 23:16:19 +00:00
parent 4d1c1efd80
commit 430444b102
8 changed files with 469 additions and 356 deletions

View File

@ -61,7 +61,7 @@ protected:
public:
/// Static constructor to get a '0' constant of arbitrary type...
///
static Constant *getNullValue(const Type *Ty);
static Constant *getNullValue(const Type *Ty, bool locked = true);
/// Static constructor to get a '-1' constant. This supports integers and
/// vectors.
@ -107,7 +107,9 @@ public:
/// available cached constants. Implementations should call
/// destroyConstantImpl as the last thing they do, to destroy all users and
/// delete this.
virtual void destroyConstant() { assert(0 && "Not reached!"); }
virtual void destroyConstant(bool locked = true) {
assert(0 && "Not reached!");
}
//// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Constant *) { return true; }

View File

@ -109,11 +109,13 @@ public:
/// the type.
/// @brief Get a ConstantInt for a specific value.
static ConstantInt *get(const IntegerType *Ty,
uint64_t V, bool isSigned = false);
uint64_t V, bool isSigned = false,
bool locked = true);
/// If Ty is a vector type, return a Constant with a splat of the given
/// value. Otherwise return a ConstantInt for the given value.
static Constant *get(const Type *Ty, uint64_t V, bool isSigned = false);
static Constant *get(const Type *Ty, uint64_t V,
bool isSigned = false, bool locked = true);
/// Return a ConstantInt with the specified value for the specified type. The
/// value V will be canonicalized to a an unsigned APInt. Accessing it with
@ -129,11 +131,11 @@ public:
/// Return a ConstantInt with the specified value and an implied Type. The
/// type is the integer type that corresponds to the bit width of the value.
static ConstantInt *get(const APInt &V);
static ConstantInt *get(const APInt &V, bool locked = true);
/// If Ty is a vector type, return a Constant with a splat of the given
/// value. Otherwise return a ConstantInt for the given value.
static Constant *get(const Type *Ty, const APInt &V);
static Constant *get(const Type *Ty, const APInt &V, bool locked = true);
/// getType - Specialize the getType() method to always return an IntegerType,
/// which reduces the amount of casting needed in parts of the compiler.
@ -230,7 +232,7 @@ public:
/// @returns the value for an integer constant of the given type that has all
/// its bits set to true.
/// @brief Get the all ones value
static ConstantInt *getAllOnesValue(const Type *Ty);
static ConstantInt *getAllOnesValue(const Type *Ty, bool locked = true);
/// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const ConstantInt *) { return true; }
@ -259,13 +261,13 @@ protected:
}
public:
/// get() - Static factory methods - Return objects of the specified value
static ConstantFP *get(const APFloat &V);
static ConstantFP *get(const APFloat &V, bool locked = true);
/// get() - This returns a ConstantFP, or a vector containing a splat of a
/// ConstantFP, for the specified value in the specified type. This should
/// only be used for simple constant values like 2.0/1.0 etc, that are
/// known-valid both as host double and as the target format.
static Constant *get(const Type *Ty, double V);
static Constant *get(const Type *Ty, double V, bool locked = true);
/// isValueValidForType - return true if Ty is big enough to represent V.
static bool isValueValidForType(const Type *Ty, const APFloat& V);
@ -321,13 +323,13 @@ protected:
public:
/// get() - static factory method for creating a null aggregate. It is
/// illegal to call this method with a non-aggregate type.
static ConstantAggregateZero *get(const Type *Ty);
static ConstantAggregateZero *get(const Type *Ty, bool locked = true);
/// isNullValue - Return true if this is the value that would be returned by
/// getNullValue.
virtual bool isNullValue() const { return true; }
virtual void destroyConstant();
virtual void destroyConstant(bool locked = true);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
///
@ -349,9 +351,11 @@ protected:
ConstantArray(const ArrayType *T, const std::vector<Constant*> &Val);
public:
/// get() - Static factory methods - Return objects of the specified value
static Constant *get(const ArrayType *T, const std::vector<Constant*> &);
static Constant *get(const ArrayType *T, const std::vector<Constant*> &,
bool locked = true);
static Constant *get(const ArrayType *T,
Constant*const*Vals, unsigned NumVals) {
Constant*const*Vals, unsigned NumVals,
bool locked = true) {
// FIXME: make this the primary ctor method.
return get(T, std::vector<Constant*>(Vals, Vals+NumVals));
}
@ -362,7 +366,8 @@ public:
/// of the array by one (you've been warned). However, in some situations
/// this is not desired so if AddNull==false then the string is copied without
/// null termination.
static Constant *get(const std::string &Initializer, bool AddNull = true);
static Constant *get(const std::string &Initializer,
bool AddNull = true, bool locked = true);
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
@ -395,7 +400,7 @@ public:
/// created as ConstantAggregateZero objects.
virtual bool isNullValue() const { return false; }
virtual void destroyConstant();
virtual void destroyConstant(bool locked = true);
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
@ -423,12 +428,14 @@ protected:
public:
/// get() - Static factory methods - Return objects of the specified value
///
static Constant *get(const StructType *T, const std::vector<Constant*> &V);
static Constant *get(const std::vector<Constant*> &V, bool Packed = false);
static Constant *get(const StructType *T, const std::vector<Constant*> &V,
bool locked = true);
static Constant *get(const std::vector<Constant*> &V, bool Packed = false,
bool locked = true);
static Constant *get(Constant*const* Vals, unsigned NumVals,
bool Packed = false) {
bool Packed = false, bool locked = true) {
// FIXME: make this the primary ctor method.
return get(std::vector<Constant*>(Vals, Vals+NumVals), Packed);
return get(std::vector<Constant*>(Vals, Vals+NumVals), Packed, locked);
}
/// Transparently provide more efficient getOperand methods.
@ -447,7 +454,7 @@ public:
return false;
}
virtual void destroyConstant();
virtual void destroyConstant(bool locked = true);
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
@ -474,11 +481,13 @@ protected:
ConstantVector(const VectorType *T, const std::vector<Constant*> &Val);
public:
/// get() - Static factory methods - Return objects of the specified value
static Constant *get(const VectorType *T, const std::vector<Constant*> &);
static Constant *get(const std::vector<Constant*> &V);
static Constant *get(Constant*const* Vals, unsigned NumVals) {
static Constant *get(const VectorType *T, const std::vector<Constant*> &,
bool locked = true);
static Constant *get(const std::vector<Constant*> &V, bool locked = true);
static Constant *get(Constant*const* Vals, unsigned NumVals,
bool locked = true) {
// FIXME: make this the primary ctor method.
return get(std::vector<Constant*>(Vals, Vals+NumVals));
return get(std::vector<Constant*>(Vals, Vals+NumVals), locked);
}
/// Transparently provide more efficient getOperand methods.
@ -494,7 +503,8 @@ public:
/// @returns the value for a vector integer constant of the given type that
/// has all its bits set to true.
/// @brief Get the all ones value
static ConstantVector *getAllOnesValue(const VectorType *Ty);
static ConstantVector *getAllOnesValue(const VectorType *Ty,
bool locked = true);
/// isNullValue - Return true if this is the value that would be returned by
/// getNullValue. This always returns false because zero vectors are always
@ -511,7 +521,7 @@ public:
/// elements have the same value, return that value. Otherwise return NULL.
Constant *getSplatValue();
virtual void destroyConstant();
virtual void destroyConstant(bool locked = true);
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
@ -546,13 +556,13 @@ protected:
}
public:
/// get() - Static factory methods - Return objects of the specified value
static ConstantPointerNull *get(const PointerType *T);
static ConstantPointerNull *get(const PointerType *T, bool locked = true);
/// isNullValue - Return true if this is the value that would be returned by
/// getNullValue.
virtual bool isNullValue() const { return true; }
virtual void destroyConstant();
virtual void destroyConstant(bool locked = true);
/// getType - Specialize the getType() method to always return an PointerType,
/// which reduces the amount of casting needed in parts of the compiler.
@ -590,13 +600,14 @@ protected:
// These private methods are used by the type resolution code to create
// ConstantExprs in intermediate forms.
static Constant *getTy(const Type *Ty, unsigned Opcode,
Constant *C1, Constant *C2);
Constant *C1, Constant *C2, bool locked = true);
static Constant *getCompareTy(unsigned short pred, Constant *C1,
Constant *C2);
static Constant *getSelectTy(const Type *Ty,
Constant *C1, Constant *C2, Constant *C3);
static Constant *getSelectTy(const Type *Ty, Constant *C1, Constant *C2,
Constant *C3, bool locked = true);
static Constant *getGetElementPtrTy(const Type *Ty, Constant *C,
Value* const *Idxs, unsigned NumIdxs);
Value* const *Idxs, unsigned NumIdxs,
bool locked = true);
static Constant *getExtractElementTy(const Type *Ty, Constant *Val,
Constant *Idx);
static Constant *getInsertElementTy(const Type *Ty, Constant *Val,
@ -617,18 +628,18 @@ public:
/// Cast constant expr
///
static Constant *getTrunc (Constant *C, const Type *Ty);
static Constant *getSExt (Constant *C, const Type *Ty);
static Constant *getZExt (Constant *C, const Type *Ty);
static Constant *getFPTrunc (Constant *C, const Type *Ty);
static Constant *getFPExtend(Constant *C, const Type *Ty);
static Constant *getUIToFP (Constant *C, const Type *Ty);
static Constant *getSIToFP (Constant *C, const Type *Ty);
static Constant *getFPToUI (Constant *C, const Type *Ty);
static Constant *getFPToSI (Constant *C, const Type *Ty);
static Constant *getPtrToInt(Constant *C, const Type *Ty);
static Constant *getIntToPtr(Constant *C, const Type *Ty);
static Constant *getBitCast (Constant *C, const Type *Ty);
static Constant *getTrunc (Constant *C, const Type *Ty, bool locked = true);
static Constant *getSExt (Constant *C, const Type *Ty, bool locked = true);
static Constant *getZExt (Constant *C, const Type *Ty, bool locked = true);
static Constant *getFPTrunc (Constant *C, const Type *Ty, bool locked = true);
static Constant *getFPExtend(Constant *C, const Type *Ty, bool locked = true);
static Constant *getUIToFP (Constant *C, const Type *Ty, bool locked = true);
static Constant *getSIToFP (Constant *C, const Type *Ty, bool locked = true);
static Constant *getFPToUI (Constant *C, const Type *Ty, bool locked = true);
static Constant *getFPToSI (Constant *C, const Type *Ty, bool locked = true);
static Constant *getPtrToInt(Constant *C, const Type *Ty, bool locked = true);
static Constant *getIntToPtr(Constant *C, const Type *Ty, bool locked = true);
static Constant *getBitCast (Constant *C, const Type *Ty, bool locked = true);
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
@ -638,7 +649,8 @@ public:
static Constant *getCast(
unsigned ops, ///< The opcode for the conversion
Constant *C, ///< The constant to be converted
const Type *Ty ///< The type to which the constant is converted
const Type *Ty, ///< The type to which the constant is converted
bool locked = true
);
// @brief Create a ZExt or BitCast cast constant expression
@ -650,7 +662,8 @@ public:
// @brief Create a SExt or BitCast cast constant expression
static Constant *getSExtOrBitCast(
Constant *C, ///< The constant to sext or bitcast
const Type *Ty ///< The type to sext or bitcast C to
const Type *Ty, ///< The type to sext or bitcast C to
bool locked = true
);
// @brief Create a Trunc or BitCast cast constant expression
@ -662,7 +675,8 @@ public:
/// @brief Create a BitCast or a PtrToInt cast constant expression
static Constant *getPointerCast(
Constant *C, ///< The pointer value to be casted (operand 0)
const Type *Ty ///< The type to which cast should be made
const Type *Ty, ///< The type to which cast should be made
bool locked = true
);
/// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
@ -708,7 +722,8 @@ public:
/// ConstantExpr::get - Return a binary or shift operator constant expression,
/// folding if possible.
///
static Constant *get(unsigned Opcode, Constant *C1, Constant *C2);
static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
bool locked = true);
/// @brief Return an ICmp, FCmp, VICmp, or VFCmp comparison operator constant
/// expression.
@ -720,36 +735,38 @@ public:
static Constant *getNeg(Constant *C);
static Constant *getFNeg(Constant *C);
static Constant *getNot(Constant *C);
static Constant *getAdd(Constant *C1, Constant *C2);
static Constant *getFAdd(Constant *C1, Constant *C2);
static Constant *getSub(Constant *C1, Constant *C2);
static Constant *getFSub(Constant *C1, Constant *C2);
static Constant *getMul(Constant *C1, Constant *C2);
static Constant *getFMul(Constant *C1, Constant *C2);
static Constant *getUDiv(Constant *C1, Constant *C2);
static Constant *getSDiv(Constant *C1, Constant *C2);
static Constant *getFDiv(Constant *C1, Constant *C2);
static Constant *getURem(Constant *C1, Constant *C2); // unsigned rem
static Constant *getSRem(Constant *C1, Constant *C2); // signed rem
static Constant *getFRem(Constant *C1, Constant *C2);
static Constant *getAnd(Constant *C1, Constant *C2);
static Constant *getOr(Constant *C1, Constant *C2);
static Constant *getXor(Constant *C1, Constant *C2);
static Constant *getAdd(Constant *C1, Constant *C2, bool locked = true);
static Constant *getFAdd(Constant *C1, Constant *C2, bool locked = true);
static Constant *getSub(Constant *C1, Constant *C2, bool locked = true);
static Constant *getFSub(Constant *C1, Constant *C2, bool locked = true);
static Constant *getMul(Constant *C1, Constant *C2, bool locked = true);
static Constant *getFMul(Constant *C1, Constant *C2, bool locked = true);
static Constant *getUDiv(Constant *C1, Constant *C2, bool locked = true);
static Constant *getSDiv(Constant *C1, Constant *C2, bool locked = true);
static Constant *getFDiv(Constant *C1, Constant *C2, bool locked = true);
// unsigned rem
static Constant *getURem(Constant *C1, Constant *C2, bool locked = true);
// signed rem
static Constant *getSRem(Constant *C1, Constant *C2, bool locked = true);
static Constant *getFRem(Constant *C1, Constant *C2, bool locked = true);
static Constant *getAnd(Constant *C1, Constant *C2, bool locked = true);
static Constant *getOr(Constant *C1, Constant *C2, bool locked = true);
static Constant *getXor(Constant *C1, Constant *C2, bool locked = true);
static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS);
static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS);
static Constant *getVICmp(unsigned short pred, Constant *LHS, Constant *RHS);
static Constant *getVFCmp(unsigned short pred, Constant *LHS, Constant *RHS);
static Constant *getShl(Constant *C1, Constant *C2);
static Constant *getLShr(Constant *C1, Constant *C2);
static Constant *getAShr(Constant *C1, Constant *C2);
static Constant *getShl(Constant *C1, Constant *C2, bool locked = true);
static Constant *getLShr(Constant *C1, Constant *C2, bool locked = true);
static Constant *getAShr(Constant *C1, Constant *C2, bool locked = true);
/// Getelementptr form. std::vector<Value*> is only accepted for convenience:
/// all elements must be Constant's.
///
static Constant *getGetElementPtr(Constant *C,
Constant* const *IdxList, unsigned NumIdx);
static Constant *getGetElementPtr(Constant *C,
Value* const *IdxList, unsigned NumIdx);
static Constant *getGetElementPtr(Constant *C, Constant* const *IdxList,
unsigned NumIdx, bool locked = true);
static Constant *getGetElementPtr(Constant *C, Value* const *IdxList,
unsigned NumIdx, bool locked = true);
static Constant *getExtractElement(Constant *Vec, Constant *Idx);
static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx);
@ -794,7 +811,7 @@ public:
}
Constant *getWithOperands(Constant* const *Ops, unsigned NumOps) const;
virtual void destroyConstant();
virtual void destroyConstant(bool locked = true);
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
@ -831,13 +848,13 @@ public:
/// get() - Static factory methods - Return an 'undef' object of the specified
/// type.
///
static UndefValue *get(const Type *T);
static UndefValue *get(const Type *T, bool locked = true);
/// isNullValue - Return true if this is the value that would be returned by
/// getNullValue.
virtual bool isNullValue() const { return false; }
virtual void destroyConstant();
virtual void destroyConstant(bool locked = true);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const UndefValue *) { return true; }
@ -864,7 +881,8 @@ protected:
public:
/// get() - Static factory methods - Return objects of the specified value.
///
static MDString *get(const char *StrBegin, const char *StrEnd);
static MDString *get(const char *StrBegin, const char *StrEnd,
bool locked = true);
/// size() - The length of this string.
///
@ -891,7 +909,7 @@ public:
return false;
}
virtual void destroyConstant();
virtual void destroyConstant(bool locked = true);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const MDString *) { return true; }

View File

@ -172,7 +172,7 @@ public:
virtual bool isNullValue() const { return false; }
/// Override from Constant class.
virtual void destroyConstant();
virtual void destroyConstant(bool locked = true);
/// isDeclaration - Return true if the primary definition of this global
/// value is outside of the current translation unit...

View File

@ -78,7 +78,7 @@ public:
/// get() - Static factory methods - Return objects of the specified value.
///
static MDNode *get(Value*const* Vals, unsigned NumVals);
static MDNode *get(Value*const* Vals, unsigned NumVals, bool locked = true);
Value *getElement(unsigned i) const {
return Node[i];
@ -117,7 +117,7 @@ public:
/// duplicates
void Profile(FoldingSetNodeID &ID) const;
virtual void destroyConstant();
virtual void destroyConstant(bool locked = true);
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
assert(0 && "This should never be called because MDNodes have no ops");
abort();

View File

@ -40,7 +40,8 @@ using namespace llvm;
/// specified vector type. At this point, we know that the elements of the
/// input vector constant are all simple integer or FP values.
static Constant *BitCastConstantVector(ConstantVector *CV,
const VectorType *DstTy) {
const VectorType *DstTy,
bool locked) {
// If this cast changes element count then we can't handle it here:
// doing so requires endianness information. This should be handled by
// Analysis/ConstantFolding.cpp
@ -60,7 +61,7 @@ static Constant *BitCastConstantVector(ConstantVector *CV,
const Type *DstEltTy = DstTy->getElementType();
for (unsigned i = 0; i != NumElts; ++i)
Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i), DstEltTy));
return ConstantVector::get(Result);
return ConstantVector::get(Result, locked);
}
/// This function determines which opcode to use to fold two constant cast
@ -88,7 +89,8 @@ foldConstantCastPair(
Type::Int64Ty);
}
static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
static Constant *FoldBitCast(Constant *V, const Type *DestTy,
bool locked = true) {
const Type *SrcTy = V->getType();
if (SrcTy == DestTy)
return V; // no-op cast
@ -99,7 +101,7 @@ static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
SmallVector<Value*, 8> IdxList;
IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
IdxList.push_back(Constant::getNullValue(Type::Int32Ty, locked));
const Type *ElTy = PTy->getElementType();
while (ElTy != DPTy->getElementType()) {
if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
@ -117,7 +119,8 @@ static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
}
if (ElTy == DPTy->getElementType())
return ConstantExpr::getGetElementPtr(V, &IdxList[0], IdxList.size());
return ConstantExpr::getGetElementPtr(V, &IdxList[0],
IdxList.size(), locked);
}
// Handle casts from one vector constant to another. We know that the src
@ -129,23 +132,24 @@ static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
SrcTy = NULL;
// First, check for null. Undef is already handled.
if (isa<ConstantAggregateZero>(V))
return Constant::getNullValue(DestTy);
return Constant::getNullValue(DestTy, locked);
if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
return BitCastConstantVector(CV, DestPTy);
return BitCastConstantVector(CV, DestPTy, locked);
}
// Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
// This allows for other simplifications (although some of them
// can only be handled by Analysis/ConstantFolding.cpp).
if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
return ConstantExpr::getBitCast(ConstantVector::get(&V, 1), DestPTy);
return ConstantExpr::getBitCast(ConstantVector::get(&V, 1, locked),
DestPTy, locked);
}
// Finally, implement bitcast folding now. The code below doesn't handle
// bitcast right.
if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
return ConstantPointerNull::get(cast<PointerType>(DestTy));
return ConstantPointerNull::get(cast<PointerType>(DestTy), locked);
// Handle integral constant input.
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
@ -156,7 +160,7 @@ static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
if (DestTy->isFloatingPoint())
return ConstantFP::get(APFloat(CI->getValue(),
DestTy != Type::PPC_FP128Ty));
DestTy != Type::PPC_FP128Ty), locked);
// Otherwise, can't fold this (vector?)
return 0;
@ -165,22 +169,22 @@ static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
// Handle ConstantFP input.
if (const ConstantFP *FP = dyn_cast<ConstantFP>(V))
// FP -> Integral.
return ConstantInt::get(FP->getValueAPF().bitcastToAPInt());
return ConstantInt::get(FP->getValueAPF().bitcastToAPInt(), locked);
return 0;
}
Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
const Type *DestTy) {
const Type *DestTy, bool locked) {
if (isa<UndefValue>(V)) {
// zext(undef) = 0, because the top bits will be zero.
// sext(undef) = 0, because the top bits will all be the same.
// [us]itofp(undef) = 0, because the result value is bounded.
if (opc == Instruction::ZExt || opc == Instruction::SExt ||
opc == Instruction::UIToFP || opc == Instruction::SIToFP)
return Constant::getNullValue(DestTy);
return UndefValue::get(DestTy);
return Constant::getNullValue(DestTy, locked);
return UndefValue::get(DestTy, locked);
}
// No compile-time operations on this type yet.
if (V->getType() == Type::PPC_FP128Ty || DestTy == Type::PPC_FP128Ty)
@ -192,7 +196,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
if (CE->isCast()) {
// Try hard to fold cast of cast because they are often eliminable.
if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy, locked);
} else if (CE->getOpcode() == Instruction::GetElementPtr) {
// If all of the indexes in the GEP are null values, there is no pointer
// adjustment going on. We might as well cast the source pointer.
@ -204,7 +208,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
}
if (isAllNull)
// This is casting one pointer type to another, always BitCast
return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy, locked);
}
}
@ -220,8 +224,8 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
const Type *DstEltTy = DestVecTy->getElementType();
for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
res.push_back(ConstantExpr::getCast(opc,
CV->getOperand(i), DstEltTy));
return ConstantVector::get(DestVecTy, res);
CV->getOperand(i), DstEltTy, locked));
return ConstantVector::get(DestVecTy, res, locked);
}
// We actually have to do a cast now. Perform the cast according to the
@ -238,7 +242,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
DestTy == Type::FP128Ty ? APFloat::IEEEquad :
APFloat::Bogus,
APFloat::rmNearestTiesToEven, &ignored);
return ConstantFP::get(Val);
return ConstantFP::get(Val, locked);
}
return 0; // Can't fold.
case Instruction::FPToUI:
@ -251,16 +255,16 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
(void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
APFloat::rmTowardZero, &ignored);
APInt Val(DestBitWidth, 2, x);
return ConstantInt::get(Val);
return ConstantInt::get(Val, locked);
}
return 0; // Can't fold.
case Instruction::IntToPtr: //always treated as unsigned
if (V->isNullValue()) // Is it an integral null value?
return ConstantPointerNull::get(cast<PointerType>(DestTy));
return ConstantPointerNull::get(cast<PointerType>(DestTy), locked);
return 0; // Other pointer types cannot be casted
case Instruction::PtrToInt: // always treated as unsigned
if (V->isNullValue()) // is it a null pointer value?
return ConstantInt::get(DestTy, 0);
return ConstantInt::get(DestTy, 0, locked);
return 0; // Other pointer types cannot be casted
case Instruction::UIToFP:
case Instruction::SIToFP:
@ -272,7 +276,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
(void)apf.convertFromAPInt(api,
opc==Instruction::SIToFP,
APFloat::rmNearestTiesToEven);
return ConstantFP::get(apf);
return ConstantFP::get(apf, locked);
}
return 0;
case Instruction::ZExt:
@ -280,7 +284,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Result(CI->getValue());
Result.zext(BitWidth);
return ConstantInt::get(Result);
return ConstantInt::get(Result, locked);
}
return 0;
case Instruction::SExt:
@ -288,7 +292,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Result(CI->getValue());
Result.sext(BitWidth);
return ConstantInt::get(Result);
return ConstantInt::get(Result, locked);
}
return 0;
case Instruction::Trunc:
@ -296,11 +300,11 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Result(CI->getValue());
Result.trunc(BitWidth);
return ConstantInt::get(Result);
return ConstantInt::get(Result, locked);
}
return 0;
case Instruction::BitCast:
return FoldBitCast(const_cast<Constant*>(V), DestTy);
return FoldBitCast(const_cast<Constant*>(V), DestTy, locked);
default:
assert(!"Invalid CE CastInst opcode");
break;
@ -312,7 +316,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
const Constant *V1,
const Constant *V2) {
const Constant *V2, bool locked) {
if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
@ -566,21 +570,22 @@ Constant *llvm::ConstantFoldInsertValueInstruction(const Constant *Agg,
static Constant *EvalVectorOp(const ConstantVector *V1,
const ConstantVector *V2,
const VectorType *VTy,
Constant *(*FP)(Constant*, Constant*)) {
Constant *(*FP)(Constant*, Constant*, bool)) {
std::vector<Constant*> Res;
const Type *EltTy = VTy->getElementType();
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
const Constant *C1 = V1 ? V1->getOperand(i) : Constant::getNullValue(EltTy);
const Constant *C2 = V2 ? V2->getOperand(i) : Constant::getNullValue(EltTy);
Res.push_back(FP(const_cast<Constant*>(C1),
const_cast<Constant*>(C2)));
const_cast<Constant*>(C2), true));
}
return ConstantVector::get(Res);
}
Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
const Constant *C1,
const Constant *C2) {
const Constant *C2,
bool locked) {
// No compile-time operations on this type yet.
if (C1->getType() == Type::PPC_FP128Ty)
return 0;
@ -592,29 +597,29 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
// Handle undef ^ undef -> 0 special case. This is a common
// idiom (misuse).
return Constant::getNullValue(C1->getType());
return Constant::getNullValue(C1->getType(), locked);
// Fallthrough
case Instruction::Add:
case Instruction::Sub:
return UndefValue::get(C1->getType());
return UndefValue::get(C1->getType(), locked);
case Instruction::Mul:
case Instruction::And:
return Constant::getNullValue(C1->getType());
return Constant::getNullValue(C1->getType(), locked);
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
if (!isa<UndefValue>(C2)) // undef / X -> 0
return Constant::getNullValue(C1->getType());
return Constant::getNullValue(C1->getType(), locked);
return const_cast<Constant*>(C2); // X / undef -> undef
case Instruction::Or: // X | undef -> -1
if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
return ConstantVector::getAllOnesValue(PTy);
return ConstantInt::getAllOnesValue(C1->getType());
return ConstantVector::getAllOnesValue(PTy, locked);
return ConstantInt::getAllOnesValue(C1->getType(), locked);
case Instruction::LShr:
if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
return const_cast<Constant*>(C1); // undef lshr undef -> undef
return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
return Constant::getNullValue(C1->getType(), locked); // X lshr undef -> 0
// undef lshr X -> 0
case Instruction::AShr:
if (!isa<UndefValue>(C2))
@ -625,7 +630,7 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
return const_cast<Constant*>(C1); // X ashr undef --> X
case Instruction::Shl:
// undef << X -> 0 or X << undef -> 0
return Constant::getNullValue(C1->getType());
return Constant::getNullValue(C1->getType(), locked);
}
}
@ -1572,7 +1577,7 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
Constant* const *Idxs,
unsigned NumIdx) {
unsigned NumIdx, bool locked) {
if (NumIdx == 0 ||
(NumIdx == 1 && Idxs[0]->isNullValue()))
return const_cast<Constant*>(C);
@ -1583,7 +1588,8 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
(Value **)Idxs,
(Value **)Idxs+NumIdx);
assert(Ty != 0 && "Invalid indices for GEP!");
return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()),
locked);
}
Constant *Idx0 = Idxs[0];
@ -1601,7 +1607,8 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
(Value**)Idxs+NumIdx);
assert(Ty != 0 && "Invalid indices for GEP!");
return
ConstantPointerNull::get(PointerType::get(Ty,Ptr->getAddressSpace()));
ConstantPointerNull::get(PointerType::get(Ty,Ptr->getAddressSpace()),
locked);
}
}
@ -1629,20 +1636,22 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
if (!Idx0->isNullValue()) {
const Type *IdxTy = Combined->getType();
if (IdxTy != Idx0->getType()) {
Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty,
locked);
Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
Type::Int64Ty);
Combined = ConstantExpr::get(Instruction::Add, C1, C2);
Type::Int64Ty,
locked);
Combined = ConstantExpr::get(Instruction::Add, C1, C2, locked);
} else {
Combined =
ConstantExpr::get(Instruction::Add, Idx0, Combined);
ConstantExpr::get(Instruction::Add, Idx0, Combined, locked);
}
}
NewIndices.push_back(Combined);
NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
return ConstantExpr::getGetElementPtr(CE->getOperand(0), &NewIndices[0],
NewIndices.size());
NewIndices.size(), locked);
}
}
@ -1659,7 +1668,7 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
if (CAT->getElementType() == SAT->getElementType())
return ConstantExpr::getGetElementPtr(
(Constant*)CE->getOperand(0), Idxs, NumIdx);
(Constant*)CE->getOperand(0), Idxs, NumIdx, locked);
}
// Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
@ -1677,10 +1686,10 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
Offset = ConstantExpr::getSExt(Offset, Base->getType());
else if (Base->getType()->getPrimitiveSizeInBits() <
Offset->getType()->getPrimitiveSizeInBits())
Base = ConstantExpr::getZExt(Base, Offset->getType());
Base = ConstantExpr::getZExt(Base, Offset->getType(), locked);
Base = ConstantExpr::getAdd(Base, Offset);
return ConstantExpr::getIntToPtr(Base, CE->getType());
Base = ConstantExpr::getAdd(Base, Offset, locked);
return ConstantExpr::getIntToPtr(Base, CE->getType(), locked);
}
}
return 0;

View File

@ -28,11 +28,13 @@ namespace llvm {
Constant *ConstantFoldCastInstruction(
unsigned opcode, ///< The opcode of the cast
const Constant *V, ///< The source constant
const Type *DestTy ///< The destination type
const Type *DestTy, ///< The destination type
bool locked = true
);
Constant *ConstantFoldSelectInstruction(const Constant *Cond,
const Constant *V1,
const Constant *V2);
const Constant *V2,
bool locked = true);
Constant *ConstantFoldExtractElementInstruction(const Constant *Val,
const Constant *Idx);
Constant *ConstantFoldInsertElementInstruction(const Constant *Val,
@ -49,12 +51,13 @@ namespace llvm {
const unsigned* Idxs,
unsigned NumIdx);
Constant *ConstantFoldBinaryInstruction(unsigned Opcode, const Constant *V1,
const Constant *V2);
const Constant *V2,
bool locked = true);
Constant *ConstantFoldCompareInstruction(unsigned short predicate,
const Constant *C1,
const Constant *C2);
Constant *ConstantFoldGetElementPtr(const Constant *C,
Constant* const *Idxs, unsigned NumIdx);
Constant *ConstantFoldGetElementPtr(const Constant *C, Constant* const *Idxs,
unsigned NumIdx, bool locked = true);
} // End llvm namespace
#endif

File diff suppressed because it is too large Load Diff

View File

@ -75,7 +75,7 @@ void GlobalValue::removeDeadConstantUsers() const {
/// Override destroyConstant to make sure it doesn't get called on
/// GlobalValue's because they shouldn't be treated like other constants.
void GlobalValue::destroyConstant() {
void GlobalValue::destroyConstant(bool locked) {
assert(0 && "You can't GV->destroyConstant()!");
abort();
}