Next round of APFloat changes.

Use APFloat in UpgradeParser and AsmParser.
Change all references to ConstantFP to use the
APFloat interface rather than double.  Remove
the ConstantFP double interfaces.
Use APFloat functions for constant folding arithmetic
and comparisons.
(There are still way too many places APFloat is
just a wrapper around host float/double, but we're
getting there.)


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41747 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Dale Johannesen 2007-09-06 18:13:44 +00:00
parent 325be7c608
commit 43421b3dd7
32 changed files with 540 additions and 437 deletions

View File

@ -217,29 +217,13 @@ class ConstantFP : public Constant {
APFloat Val;
ConstantFP(const ConstantFP &); // DO NOT IMPLEMENT
protected:
ConstantFP(const Type *Ty, double V);
ConstantFP(const Type *Ty, const APFloat& V);
public:
/// get() - Static factory methods - Return objects of the specified value
static ConstantFP *get(const Type *Ty, double V);
static ConstantFP *get(const Type *Ty, const APFloat& V);
/// isValueValidForType - return true if Ty is big enough to represent V.
static bool isValueValidForType(const Type *Ty, const APFloat& V);
static bool isValueValidForType(const Type *Ty, double V) {
if (Ty == Type::FloatTy)
return isValueValidForType(Ty, APFloat((float)V));
else
return isValueValidForType(Ty, APFloat(V));
}
inline double getValue() const {
if (&Val.getSemantics() == &APFloat::IEEEdouble)
return Val.convertToDouble();
else if (&Val.getSemantics() == &APFloat::IEEEsingle)
return (double)Val.convertToFloat();
else
assert(0);
}
inline const APFloat& getValueAPF() const { return Val; }
/// isNullValue - Return true if this is the value that would be returned by
@ -250,8 +234,11 @@ public:
/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
/// two floating point values. The version with a double operand is retained
/// because it's so convenient to write isExactlyValue(2.0), but please use
/// it only for constants.
bool isExactlyValue(const APFloat& V) const;
bool isExactlyValue(double V) const {
if (&Val.getSemantics() == &APFloat::IEEEdouble)
return isExactlyValue(APFloat(V));

View File

@ -407,8 +407,14 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
const Type *Ty) {
errno = 0;
V = NativeFP(V);
if (errno == 0)
return ConstantFP::get(Ty, V);
if (errno == 0) {
if (Ty==Type::FloatTy)
return ConstantFP::get(Ty, APFloat((float)V));
else if (Ty==Type::DoubleTy)
return ConstantFP::get(Ty, APFloat(V));
else
assert(0);
}
errno = 0;
return 0;
}
@ -418,14 +424,21 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
const Type *Ty) {
errno = 0;
V = NativeFP(V, W);
if (errno == 0)
return ConstantFP::get(Ty, V);
if (errno == 0) {
if (Ty==Type::FloatTy)
return ConstantFP::get(Ty, APFloat((float)V));
else if (Ty==Type::DoubleTy)
return ConstantFP::get(Ty, APFloat(V));
else
assert(0);
}
errno = 0;
return 0;
}
/// ConstantFoldCall - Attempt to constant fold a call to the specified function
/// with the specified arguments, returning null if unsuccessful.
Constant *
llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
const ValueName *NameVal = F->getValueName();
@ -436,7 +449,14 @@ llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
const Type *Ty = F->getReturnType();
if (NumOperands == 1) {
if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
double V = Op->getValue();
if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
return 0;
/// Currently APFloat versions of these functions do not exist, so we use
/// the host native double versions. Float versions are not called
/// directly but for all these it is true (float)(f((double)arg)) ==
/// f(arg). Long double not supported yet.
double V = Ty==Type::FloatTy ? (double)Op->getValueAPF().convertToFloat():
Op->getValueAPF().convertToDouble();
switch (Str[0]) {
case 'a':
if (Len == 4 && !strcmp(Str, "acos"))
@ -460,7 +480,7 @@ llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
break;
case 'f':
if (Len == 4 && !strcmp(Str, "fabs"))
return ConstantFP::get(Ty, fabs(V));
return ConstantFoldFP(fabs, V, Ty);
else if (Len == 5 && !strcmp(Str, "floor"))
return ConstantFoldFP(floor, V, Ty);
break;
@ -472,9 +492,10 @@ llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
else if (!strcmp(Str, "llvm.sqrt.f32") ||
!strcmp(Str, "llvm.sqrt.f64")) {
if (V >= -0.0)
return ConstantFP::get(Ty, sqrt(V));
return ConstantFoldFP(sqrt, V, Ty);
else // Undefined
return ConstantFP::get(Ty, 0.0);
return ConstantFP::get(Ty, Ty==Type::FloatTy ? APFloat(0.0f) :
APFloat(0.0));
}
break;
case 's':
@ -512,9 +533,15 @@ llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
}
} else if (NumOperands == 2) {
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
double Op1V = Op1->getValue();
double Op1V = Ty==Type::FloatTy ?
(double)Op1->getValueAPF().convertToFloat():
Op1->getValueAPF().convertToDouble();
if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
double Op2V = Op2->getValue();
if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
return 0;
double Op2V = Ty==Type::FloatTy ?
(double)Op2->getValueAPF().convertToFloat():
Op2->getValueAPF().convertToDouble();
if (Len == 3 && !strcmp(Str, "pow")) {
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
@ -525,11 +552,11 @@ llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
}
} else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
if (!strcmp(Str, "llvm.powi.f32")) {
return ConstantFP::get(Ty, std::pow((float)Op1V,
(int)Op2C->getZExtValue()));
return ConstantFP::get(Ty, APFloat((float)std::pow((float)Op1V,
(int)Op2C->getZExtValue())));
} else if (!strcmp(Str, "llvm.powi.f64")) {
return ConstantFP::get(Ty, std::pow((double)Op1V,
(int)Op2C->getZExtValue()));
return ConstantFP::get(Ty, APFloat((double)std::pow((double)Op1V,
(int)Op2C->getZExtValue())));
}
}
}

View File

@ -485,7 +485,8 @@ SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
if (Val == 0)
C = Constant::getNullValue(Ty);
else if (Ty->isFloatingPoint())
C = ConstantFP::get(Ty, Val);
C = ConstantFP::get(Ty, APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
APFloat::IEEEdouble, Val));
else
C = ConstantInt::get(Ty, Val);
return SCEVUnknown::get(C);

View File

@ -2129,15 +2129,17 @@ YY_RULE_SETUP
case 145:
YY_RULE_SETUP
#line 440 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
{ llvmAsmlval.FPVal = atof(yytext); return FPVAL; }
{ llvmAsmlval.FPVal = new APFloat(atof(yytext)); return FPVAL; }
YY_BREAK
case 146:
YY_RULE_SETUP
#line 441 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
{ llvmAsmlval.FPVal = HexToFP(yytext); return FPVAL; }
{ llvmAsmlval.FPVal = new APFloat(HexToFP(yytext));
return FPVAL;
}
YY_BREAK
case YY_STATE_EOF(INITIAL):
#line 443 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
#line 445 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
{
/* Make sure to free the internal buffers for flex when we are
* done reading our input!
@ -2148,20 +2150,20 @@ case YY_STATE_EOF(INITIAL):
YY_BREAK
case 147:
YY_RULE_SETUP
#line 451 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
#line 453 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
{ /* Ignore whitespace */ }
YY_BREAK
case 148:
YY_RULE_SETUP
#line 452 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
#line 454 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
{ return yytext[0]; }
YY_BREAK
case 149:
YY_RULE_SETUP
#line 454 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
#line 456 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
YY_FATAL_ERROR( "flex scanner jammed" );
YY_BREAK
#line 2165 "Lexer.cpp"
#line 2167 "Lexer.cpp"
case YY_END_OF_BUFFER:
{
@ -3043,5 +3045,5 @@ int main()
return 0;
}
#endif
#line 454 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"
#line 456 "/Volumes/MacOS9/gcc/llvm/lib/AsmParser/Lexer.l"

View File

@ -437,8 +437,10 @@ shufflevector { RET_TOK(OtherOpVal, ShuffleVector, SHUFFLEVECTOR); }
return GLOBALVAL_ID;
}
{FPConstant} { llvmAsmlval.FPVal = atof(yytext); return FPVAL; }
{HexFPConstant} { llvmAsmlval.FPVal = HexToFP(yytext); return FPVAL; }
{FPConstant} { llvmAsmlval.FPVal = new APFloat(atof(yytext)); return FPVAL; }
{HexFPConstant} { llvmAsmlval.FPVal = new APFloat(HexToFP(yytext));
return FPVAL;
}
<<EOF>> {
/* Make sure to free the internal buffers for flex when we are

View File

@ -437,8 +437,10 @@ shufflevector { RET_TOK(OtherOpVal, ShuffleVector, SHUFFLEVECTOR); }
return GLOBALVAL_ID;
}
{FPConstant} { llvmAsmlval.FPVal = atof(yytext); return FPVAL; }
{HexFPConstant} { llvmAsmlval.FPVal = HexToFP(yytext); return FPVAL; }
{FPConstant} { llvmAsmlval.FPVal = new APFloat(atof(yytext)); return FPVAL; }
{HexFPConstant} { llvmAsmlval.FPVal = new APFloat(HexToFP(yytext));
return FPVAL;
}
<<EOF>> {
/* Make sure to free the internal buffers for flex when we are

View File

@ -22,7 +22,7 @@
#include "llvm/Instructions.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/APFloat.h"
// Global variables exported from the lexer...
@ -93,10 +93,10 @@ struct ValID {
std::string *Name; // If it's a named reference. Memory must be deleted.
int64_t ConstPool64; // Constant pool reference. This is the value
uint64_t UConstPool64;// Unsigned constant pool reference.
double ConstPoolFP; // Floating point constant pool reference
APFloat *ConstPoolFP; // Floating point constant pool reference
Constant *ConstantValue; // Fully resolved constant for ConstantVal case.
InlineAsmDescriptor *IAD;
};
};
static ValID createLocalID(unsigned Num) {
ValID D; D.Type = LocalID; D.Num = Num; return D;
@ -119,7 +119,7 @@ struct ValID {
ValID D; D.Type = ConstUIntVal; D.UConstPool64 = Val; return D;
}
static ValID create(double Val) {
static ValID create(APFloat *Val) {
ValID D; D.Type = ConstFPVal; D.ConstPoolFP = Val; return D;
}
@ -168,7 +168,7 @@ struct ValID {
case GlobalID : return '@' + utostr(Num);
case LocalName : return *Name;
case GlobalName : return *Name;
case ConstFPVal : return ftostr(ConstPoolFP);
case ConstFPVal : return ftostr(*ConstPoolFP);
case ConstNullVal : return "null";
case ConstUndefVal : return "undef";
case ConstZeroVal : return "zeroinitializer";
@ -194,7 +194,8 @@ struct ValID {
case GlobalName: return *Name < *V.Name;
case ConstSIntVal: return ConstPool64 < V.ConstPool64;
case ConstUIntVal: return UConstPool64 < V.UConstPool64;
case ConstFPVal: return ConstPoolFP < V.ConstPoolFP;
case ConstFPVal: return ConstPoolFP->compare(*V.ConstPoolFP) ==
APFloat::cmpLessThan;
case ConstNullVal: return false;
case ConstUndefVal: return false;
case ConstZeroVal: return false;
@ -212,7 +213,8 @@ struct ValID {
case GlobalName: return *Name == *(V.Name);
case ConstSIntVal: return ConstPool64 == V.ConstPool64;
case ConstUIntVal: return UConstPool64 == V.UConstPool64;
case ConstFPVal: return ConstPoolFP == V.ConstPoolFP;
case ConstFPVal: return ConstPoolFP->compare(*V.ConstPoolFP) ==
APFloat::cmpEqual;
case ConstantVal: return ConstantValue == V.ConstantValue;
case ConstNullVal: return true;
case ConstUndefVal: return true;

View File

@ -355,7 +355,7 @@ typedef union YYSTYPE {
uint64_t UInt64Val;
int SIntVal;
unsigned UIntVal;
double FPVal;
llvm::APFloat *FPVal;
bool BoolVal;
std::string *StrVal; // This memory must be deleted

View File

@ -412,11 +412,15 @@ static Value *getExistingVal(const Type *Ty, const ValID &D) {
}
case ValID::ConstFPVal: // Is it a floating point const pool reference?
if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) {
if (!ConstantFP::isValueValidForType(Ty, *D.ConstPoolFP)) {
GenerateError("FP constant invalid for type");
return 0;
}
return ConstantFP::get(Ty, D.ConstPoolFP);
// Lexer has no type info, so builds all FP constants as double.
// Fix this here.
if (Ty==Type::FloatTy)
D.ConstPoolFP->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty, *D.ConstPoolFP);
case ValID::ConstNullVal: // Is it a null value?
if (!isa<PointerType>(Ty)) {
@ -992,7 +996,7 @@ Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
uint64_t UInt64Val;
int SIntVal;
unsigned UIntVal;
double FPVal;
llvm::APFloat *FPVal;
bool BoolVal;
std::string *StrVal; // This memory must be deleted
@ -1862,9 +1866,13 @@ ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
CHECK_FOR_ERROR
}
| FPType FPVAL { // Float & Double constants
if (!ConstantFP::isValueValidForType($1, $2))
if (!ConstantFP::isValueValidForType($1, *$2))
GEN_ERROR("Floating point constant invalid for type");
$$ = ConstantFP::get($1, $2);
// Lexer has no type info, so builds all FP constants as double.
// Fix this here.
if ($1==Type::FloatTy)
$2->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
$$ = ConstantFP::get($1, *$2);
CHECK_FOR_ERROR
};

View File

@ -412,11 +412,15 @@ static Value *getExistingVal(const Type *Ty, const ValID &D) {
}
case ValID::ConstFPVal: // Is it a floating point const pool reference?
if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) {
if (!ConstantFP::isValueValidForType(Ty, *D.ConstPoolFP)) {
GenerateError("FP constant invalid for type");
return 0;
}
return ConstantFP::get(Ty, D.ConstPoolFP);
// Lexer has no type info, so builds all FP constants as double.
// Fix this here.
if (Ty==Type::FloatTy)
D.ConstPoolFP->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty, *D.ConstPoolFP);
case ValID::ConstNullVal: // Is it a null value?
if (!isa<PointerType>(Ty)) {
@ -992,7 +996,7 @@ Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
uint64_t UInt64Val;
int SIntVal;
unsigned UIntVal;
double FPVal;
llvm::APFloat *FPVal;
bool BoolVal;
std::string *StrVal; // This memory must be deleted
@ -1862,9 +1866,13 @@ ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
CHECK_FOR_ERROR
}
| FPType FPVAL { // Float & Double constants
if (!ConstantFP::isValueValidForType($1, $2))
if (!ConstantFP::isValueValidForType($1, *$2))
GEN_ERROR("Floating point constant invalid for type");
$$ = ConstantFP::get($1, $2);
// Lexer has no type info, so builds all FP constants as double.
// Fix this here.
if ($1==Type::FloatTy)
$2->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
$$ = ConstantFP::get($1, *$2);
CHECK_FOR_ERROR
};

View File

@ -626,13 +626,16 @@ bool BitcodeReader::ParseConstants() {
if (Record.empty())
return Error("Invalid FLOAT record");
if (CurTy == Type::FloatTy)
V = ConstantFP::get(CurTy, BitsToFloat(Record[0]));
V = ConstantFP::get(CurTy, APFloat((float)BitsToDouble(Record[0])));
else if (CurTy == Type::DoubleTy)
V = ConstantFP::get(CurTy, BitsToDouble(Record[0]));
// FIXME: Make long double constants work.
else if (CurTy == Type::X86_FP80Ty ||
CurTy == Type::FP128Ty || CurTy == Type::PPC_FP128Ty)
assert(0 && "Long double constants not handled yet.");
V = ConstantFP::get(CurTy, APFloat(BitsToDouble(Record[0])));
// FIXME: Make long double constants work. BitsToDouble does not make it.
else if (CurTy == Type::X86_FP80Ty)
V = ConstantFP::get(CurTy, APFloat(BitsToDouble(Record[0])));
else if (CurTy == Type::FP128Ty)
V = ConstantFP::get(CurTy, APFloat(BitsToDouble(Record[0])));
else if (CurTy == Type::PPC_FP128Ty)
assert(0 && "PowerPC long double constants not handled yet.");
else
V = UndefValue::get(CurTy);
break;

View File

@ -527,9 +527,10 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
Code = bitc::CST_CODE_FLOAT;
const Type *Ty = CFP->getType();
if (Ty == Type::FloatTy) {
Record.push_back(FloatToBits((float)CFP->getValue()));
Record.push_back(DoubleToBits((double)CFP->getValueAPF().
convertToFloat()));
} else if (Ty == Type::DoubleTy) {
Record.push_back(DoubleToBits((double)CFP->getValue()));
Record.push_back(DoubleToBits(CFP->getValueAPF().convertToDouble()));
// FIXME: make long double constants work.
} else if (Ty == Type::X86_FP80Ty ||
Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {

View File

@ -829,8 +829,8 @@ void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
// FP Constants are printed as integer constants to avoid losing
// precision...
double Val = CFP->getValue();
if (CFP->getType() == Type::DoubleTy) {
double Val = CFP->getValueAPF().convertToDouble();
if (TAI->getData64bitsDirective())
O << TAI->getData64bitsDirective() << DoubleToBits(Val) << "\t"
<< TAI->getCommentString() << " double value: " << Val << "\n";
@ -851,6 +851,7 @@ void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
}
return;
} else {
float Val = CFP->getValueAPF().convertToFloat();
O << TAI->getData32bitsDirective() << FloatToBits(Val)
<< "\t" << TAI->getCommentString() << " float " << Val << "\n";
return;

View File

@ -861,7 +861,8 @@ void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset,
break;
}
case Type::FloatTyID: {
uint64_t val = FloatToBits(cast<ConstantFP>(PC)->getValue());
uint64_t val = FloatToBits(cast<ConstantFP>(PC)->
getValueAPF().convertToFloat());
if (TD->isBigEndian())
val = ByteSwap_32(val);
ptr[0] = val;
@ -871,7 +872,8 @@ void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset,
break;
}
case Type::DoubleTyID: {
uint64_t val = DoubleToBits(cast<ConstantFP>(PC)->getValue());
uint64_t val = DoubleToBits(cast<ConstantFP>(PC)->
getValueAPF().convertToDouble());
if (TD->isBigEndian())
val = ByteSwap_64(val);
ptr[0] = val;

View File

@ -840,7 +840,7 @@ SDOperand SelectionDAGLowering::getValue(const Value *V) {
return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
&Ops[0], Ops.size());
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
return N = DAG.getConstantFP(CFP->getValue(), VT);
return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
} else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
unsigned NumElements = PTy->getNumElements();
MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
@ -2003,7 +2003,8 @@ void SelectionDAGLowering::visitSub(User &I) {
const Type *ElTy = DestTy->getElementType();
if (ElTy->isFloatingPoint()) {
unsigned VL = DestTy->getNumElements();
std::vector<Constant*> NZ(VL, ConstantFP::get(ElTy, -0.0));
std::vector<Constant*> NZ(VL, ConstantFP::get(ElTy,
ElTy==Type::FloatTy ? APFloat(-0.0f) : APFloat(-0.0)));
Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
if (CV == CNZ) {
SDOperand Op2 = getValue(I.getOperand(1));

View File

@ -525,10 +525,10 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
GenericValue Result;
switch (C->getType()->getTypeID()) {
case Type::FloatTyID:
Result.FloatVal = (float)cast<ConstantFP>(C)->getValue();
Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
break;
case Type::DoubleTyID:
Result.DoubleVal = (double)cast<ConstantFP>(C)->getValue();
Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
break;
case Type::IntegerTyID:
Result.IntVal = cast<ConstantInt>(C)->getValue();

View File

@ -206,8 +206,10 @@ GenericValue JIT::runFunction(Function *F,
switch (ArgTy->getTypeID()) {
default: assert(0 && "Unknown argument type for function call!");
case Type::IntegerTyID: C = ConstantInt::get(AV.IntVal); break;
case Type::FloatTyID: C = ConstantFP ::get(ArgTy, AV.FloatVal); break;
case Type::DoubleTyID: C = ConstantFP ::get(ArgTy, AV.DoubleVal); break;
case Type::FloatTyID: C = ConstantFP ::get(ArgTy, APFloat(AV.FloatVal));
break;
case Type::DoubleTyID: C = ConstantFP ::get(ArgTy, APFloat(AV.DoubleVal));
break;
case Type::PointerTyID:
void *ArgPtr = GVTOP(AV);
if (sizeof(void*) == 4) {

View File

@ -604,17 +604,19 @@ void CWriter::printConstantVector(ConstantVector *CP) {
// only deal in IEEE FP).
//
static bool isFPCSafeToPrint(const ConstantFP *CFP) {
APFloat APF = APFloat(CFP->getValueAPF()); // copy
if (CFP->getType()==Type::FloatTy)
APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
char Buffer[100];
sprintf(Buffer, "%a", CFP->getValue());
sprintf(Buffer, "%a", APF.convertToDouble());
if (!strncmp(Buffer, "0x", 2) ||
!strncmp(Buffer, "-0x", 3) ||
!strncmp(Buffer, "+0x", 3))
return atof(Buffer) == CFP->getValue();
return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
return false;
#else
std::string StrVal = ftostr(CFP->getValue());
std::string StrVal = ftostr(APF);
while (StrVal[0] == ' ')
StrVal.erase(StrVal.begin());
@ -625,7 +627,7 @@ static bool isFPCSafeToPrint(const ConstantFP *CFP) {
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9')))
// Reparse stringized version!
return atof(StrVal.c_str()) == CFP->getValue();
return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
return false;
#endif
}
@ -882,9 +884,13 @@ void CWriter::printConstant(Constant *CPV) {
Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
<< "*)&FPConstant" << I->second << ')';
} else {
if (IsNAN(FPC->getValue())) {
double V = FPC->getType() == Type::FloatTy ?
FPC->getValueAPF().convertToFloat() :
FPC->getValueAPF().convertToDouble();
if (IsNAN(V)) {
// The value is NaN
// FIXME the actual NaN bits should be emitted.
// The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
// it's 0x7ff4.
const unsigned long QuietNaN = 0x7ff8UL;
@ -893,7 +899,7 @@ void CWriter::printConstant(Constant *CPV) {
// We need to grab the first part of the FP #
char Buffer[100];
uint64_t ll = DoubleToBits(FPC->getValue());
uint64_t ll = DoubleToBits(V);
sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
std::string Num(&Buffer[0], &Buffer[6]);
@ -905,9 +911,9 @@ void CWriter::printConstant(Constant *CPV) {
else
Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
<< Buffer << "\") /*nan*/ ";
} else if (IsInf(FPC->getValue())) {
} else if (IsInf(V)) {
// The value is Inf
if (FPC->getValue() < 0) Out << '-';
if (V < 0) Out << '-';
Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
<< " /*inf*/ ";
} else {
@ -915,12 +921,12 @@ void CWriter::printConstant(Constant *CPV) {
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
// Print out the constant as a floating point number.
char Buffer[100];
sprintf(Buffer, "%a", FPC->getValue());
sprintf(Buffer, "%a", V);
Num = Buffer;
#else
Num = ftostr(FPC->getValue());
Num = ftostr(FPC->getValueAPF());
#endif
Out << Num;
Out << Num;
}
}
break;
@ -1715,15 +1721,15 @@ void CWriter::printFloatingPointConstants(Function &F) {
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
!FPConstantMap.count(FPC)) {
double Val = FPC->getValue();
FPConstantMap[FPC] = FPCounter; // Number the FP constants
if (FPC->getType() == Type::DoubleTy) {
double Val = FPC->getValueAPF().convertToDouble();
Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
<< " = 0x" << std::hex << DoubleToBits(Val) << std::dec
<< "ULL; /* " << Val << " */\n";
} else if (FPC->getType() == Type::FloatTy) {
float Val = FPC->getValueAPF().convertToFloat();
Out << "static const ConstantFloatTy FPConstant" << FPCounter++
<< " = 0x" << std::hex << FloatToBits(Val) << std::dec
<< "U; /* " << Val << " */\n";

View File

@ -428,10 +428,10 @@ void MSILWriter::printConstLoad(const Constant* C) {
uint64_t X;
unsigned Size;
if (FP->getType()->getTypeID()==Type::FloatTyID) {
X = FloatToBits(FP->getValue());
X = FloatToBits(FP->getValueAPF().convertToFloat());
Size = 4;
} else {
X = DoubleToBits(FP->getValue());
X = DoubleToBits(FP->getValueAPF().convertToDouble());
Size = 8;
}
Out << "\tldc.r" << Size << "\t( " << utohexstr(X) << ')';
@ -1472,9 +1472,11 @@ void MSILWriter::printStaticConstant(const Constant* C, uint64_t& Offset) {
TySize = TD->getTypeSize(Ty);
const ConstantFP* FP = cast<ConstantFP>(C);
if (Ty->getTypeID() == Type::FloatTyID)
Out << "int32 (" << FloatToBits(FP->getValue()) << ')';
Out << "int32 (" <<
FloatToBits(FP->getValueAPF().convertToFloat()) << ')';
else
Out << "int64 (" << DoubleToBits(FP->getValue()) << ')';
Out << "int64 (" <<
DoubleToBits(FP->getValueAPF().convertToDouble()) << ')';
break;
}
case Type::ArrayTyID:

View File

@ -3412,11 +3412,11 @@ SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
const Type *OpNTy = MVT::getTypeForValueType(EltVT);
std::vector<Constant*> CV;
if (EltVT == MVT::f64) {
Constant *C = ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63)));
Constant *C = ConstantFP::get(OpNTy, APFloat(BitsToDouble(~(1ULL << 63))));
CV.push_back(C);
CV.push_back(C);
} else {
Constant *C = ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31)));
Constant *C = ConstantFP::get(OpNTy, APFloat(BitsToFloat(~(1U << 31))));
CV.push_back(C);
CV.push_back(C);
CV.push_back(C);
@ -3440,11 +3440,11 @@ SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
const Type *OpNTy = MVT::getTypeForValueType(EltVT);
std::vector<Constant*> CV;
if (EltVT == MVT::f64) {
Constant *C = ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63));
Constant *C = ConstantFP::get(OpNTy, APFloat(BitsToDouble(1ULL << 63)));
CV.push_back(C);
CV.push_back(C);
} else {
Constant *C = ConstantFP::get(OpNTy, BitsToFloat(1U << 31));
Constant *C = ConstantFP::get(OpNTy, APFloat(BitsToFloat(1U << 31)));
CV.push_back(C);
CV.push_back(C);
CV.push_back(C);
@ -3475,18 +3475,19 @@ SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
SrcVT = VT;
SrcTy = MVT::getTypeForValueType(SrcVT);
}
// First get the sign bit of second operand.
std::vector<Constant*> CV;
if (SrcVT == MVT::f64) {
CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
CV.push_back(ConstantFP::get(SrcTy, 0.0));
CV.push_back(ConstantFP::get(SrcTy, APFloat(BitsToDouble(1ULL << 63))));
CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0)));
} else {
CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
CV.push_back(ConstantFP::get(SrcTy, 0.0));
CV.push_back(ConstantFP::get(SrcTy, 0.0));
CV.push_back(ConstantFP::get(SrcTy, 0.0));
CV.push_back(ConstantFP::get(SrcTy, APFloat(BitsToFloat(1U << 31))));
CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0f)));
CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0f)));
CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0f)));
}
Constant *C = ConstantVector::get(CV);
SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
@ -3508,13 +3509,13 @@ SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
// Clear first operand sign bit.
CV.clear();
if (VT == MVT::f64) {
CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
CV.push_back(ConstantFP::get(SrcTy, 0.0));
CV.push_back(ConstantFP::get(SrcTy, APFloat(BitsToDouble(~(1ULL << 63)))));
CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0)));
} else {
CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
CV.push_back(ConstantFP::get(SrcTy, 0.0));
CV.push_back(ConstantFP::get(SrcTy, 0.0));
CV.push_back(ConstantFP::get(SrcTy, 0.0));
CV.push_back(ConstantFP::get(SrcTy, APFloat(BitsToFloat(~(1U << 31)))));
CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0f)));
CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0f)));
CV.push_back(ConstantFP::get(SrcTy, APFloat(0.0f)));
}
C = ConstantVector::get(CV);
CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);

View File

@ -1118,27 +1118,32 @@ public:
Value* base = ci->getOperand(1);
Value* expn = ci->getOperand(2);
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(base)) {
double Op1V = Op1->getValue();
if (Op1V == 1.0) // pow(1.0,x) -> 1.0
return ReplaceCallWith(ci, ConstantFP::get(Ty, 1.0));
if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
return false; // FIXME long double not yet supported
if (Op1->isExactlyValue(1.0)) // pow(1.0,x) -> 1.0
return ReplaceCallWith(ci, ConstantFP::get(Ty,
Ty==Type::FloatTy ? APFloat(1.0f) : APFloat(1.0)));
} else if (ConstantFP* Op2 = dyn_cast<ConstantFP>(expn)) {
double Op2V = Op2->getValue();
if (Op2V == 0.0) {
if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
return false; // FIXME long double not yet supported
if (Op2->getValueAPF().isZero()) {
// pow(x,0.0) -> 1.0
return ReplaceCallWith(ci, ConstantFP::get(Ty,1.0));
} else if (Op2V == 0.5) {
return ReplaceCallWith(ci, ConstantFP::get(Ty,
Ty==Type::FloatTy ? APFloat(1.0f) : APFloat(1.0)));
} else if (Op2->isExactlyValue(0.5)) {
// pow(x,0.5) -> sqrt(x)
CallInst* sqrt_inst = new CallInst(SLC.get_sqrt(), base,
ci->getName()+".pow",ci);
return ReplaceCallWith(ci, sqrt_inst);
} else if (Op2V == 1.0) {
} else if (Op2->isExactlyValue(1.0)) {
// pow(x,1.0) -> x
return ReplaceCallWith(ci, base);
} else if (Op2V == -1.0) {
} else if (Op2->isExactlyValue(-1.0)) {
// pow(x,-1.0) -> 1.0/x
Value *div_inst =
BinaryOperator::createFDiv(ConstantFP::get(Ty, 1.0), base,
ci->getName()+".pow", ci);
BinaryOperator::createFDiv(ConstantFP::get(Ty,
Ty==Type::FloatTy ? APFloat(1.0f) : APFloat(1.0)),
base, ci->getName()+".pow", ci);
return ReplaceCallWith(ci, div_inst);
}
}

View File

@ -2348,7 +2348,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
// "In IEEE floating point, x*1 is not equivalent to x for nans. However,
// ANSI says we can drop signals, so we can do this anyway." (from GCC)
if (Op1F->getValue() == 1.0)
if (Op1F->isExactlyValue(1.0))
return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
}

View File

@ -486,7 +486,10 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV,
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
//
std::string StrVal = ftostr(CFP->getValue());
bool isDouble = &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble;
double Val = (isDouble) ? CFP->getValueAPF().convertToDouble() :
CFP->getValueAPF().convertToFloat();
std::string StrVal = ftostr(CFP->getValueAPF());
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check that
@ -496,7 +499,7 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV,
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9')))
// Reparse stringized version!
if (atof(StrVal.c_str()) == CFP->getValue()) {
if (atof(StrVal.c_str()) == Val) {
Out << StrVal;
return;
}
@ -505,7 +508,7 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV,
// output the string in hexadecimal format!
assert(sizeof(double) == sizeof(uint64_t) &&
"assuming that double is 64 bits!");
Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
Out << "0x" << utohexstr(DoubleToBits(Val));
} else if (isa<ConstantAggregateZero>(CV)) {
Out << "zeroinitializer";

View File

@ -68,7 +68,7 @@ static Constant *CastConstantVector(ConstantVector *CV,
for (unsigned i = 0; i != SrcNumElts; ++i) {
ConstantInt *CI = cast<ConstantInt>(CV->getOperand(i));
double V = CI->getValue().bitsToDouble();
Result.push_back(ConstantFP::get(Type::DoubleTy, V));
Result.push_back(ConstantFP::get(Type::DoubleTy, APFloat(V)));
}
return ConstantVector::get(Result);
}
@ -76,7 +76,7 @@ static Constant *CastConstantVector(ConstantVector *CV,
for (unsigned i = 0; i != SrcNumElts; ++i) {
ConstantInt *CI = cast<ConstantInt>(CV->getOperand(i));
float V = CI->getValue().bitsToFloat();
Result.push_back(ConstantFP::get(Type::FloatTy, V));
Result.push_back(ConstantFP::get(Type::FloatTy, APFloat(V)));
}
return ConstantVector::get(Result);
}
@ -87,7 +87,8 @@ static Constant *CastConstantVector(ConstantVector *CV,
if (SrcEltTy->getTypeID() == Type::DoubleTyID) {
for (unsigned i = 0; i != SrcNumElts; ++i) {
uint64_t V =
DoubleToBits(cast<ConstantFP>(CV->getOperand(i))->getValue());
DoubleToBits(cast<ConstantFP>(CV->getOperand(i))->
getValueAPF().convertToDouble());
Constant *C = ConstantInt::get(Type::Int64Ty, V);
Result.push_back(ConstantExpr::getBitCast(C, DstEltTy ));
}
@ -96,7 +97,8 @@ static Constant *CastConstantVector(ConstantVector *CV,
assert(SrcEltTy->getTypeID() == Type::FloatTyID);
for (unsigned i = 0; i != SrcNumElts; ++i) {
uint32_t V = FloatToBits(cast<ConstantFP>(CV->getOperand(i))->getValue());
uint32_t V = FloatToBits(cast<ConstantFP>(CV->getOperand(i))->
getValueAPF().convertToFloat());
Constant *C = ConstantInt::get(Type::Int32Ty, V);
Result.push_back(ConstantExpr::getBitCast(C, DstEltTy));
}
@ -175,20 +177,31 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
switch (opc) {
case Instruction::FPTrunc:
case Instruction::FPExt:
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V))
return ConstantFP::get(DestTy, FPC->getValue());
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
APFloat Val = FPC->getValueAPF();
Val.convert(DestTy==Type::FloatTy ? APFloat::IEEEsingle :
APFloat::IEEEdouble,
APFloat::rmNearestTiesToEven);
return ConstantFP::get(DestTy, Val);
}
return 0; // Can't fold.
case Instruction::FPToUI:
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
APFloat V = FPC->getValueAPF();
bool isDouble = &V.getSemantics()==&APFloat::IEEEdouble;
uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Val(APIntOps::RoundDoubleToAPInt(FPC->getValue(), DestBitWidth));
APInt Val(APIntOps::RoundDoubleToAPInt(isDouble ? V.convertToDouble() :
(double)V.convertToFloat(), DestBitWidth));
return ConstantInt::get(Val);
}
return 0; // Can't fold.
case Instruction::FPToSI:
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
APFloat V = FPC->getValueAPF();
bool isDouble = &V.getSemantics()==&APFloat::IEEEdouble;
uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Val(APIntOps::RoundDoubleToAPInt(FPC->getValue(), DestBitWidth));
APInt Val(APIntOps::RoundDoubleToAPInt(isDouble ? V.convertToDouble() :
(double)V.convertToFloat(), DestBitWidth));
return ConstantInt::get(Val);
}
return 0; // Can't fold.
@ -201,12 +214,22 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
return ConstantInt::get(DestTy, 0);
return 0; // Other pointer types cannot be casted
case Instruction::UIToFP:
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
return ConstantFP::get(DestTy, CI->getValue().roundToDouble());
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
if (DestTy==Type::FloatTy)
return ConstantFP::get(DestTy,
APFloat((float)CI->getValue().roundToDouble()));
else
return ConstantFP::get(DestTy, APFloat(CI->getValue().roundToDouble()));
}
return 0;
case Instruction::SIToFP:
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
return ConstantFP::get(DestTy, CI->getValue().signedRoundToDouble());
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
double d = CI->getValue().signedRoundToDouble();
if (DestTy==Type::FloatTy)
return ConstantFP::get(DestTy, APFloat((float)d));
else
return ConstantFP::get(DestTy, APFloat(d));
}
return 0;
case Instruction::ZExt:
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
@ -309,9 +332,9 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
if (DestTy->isFloatingPoint()) {
if (DestTy == Type::FloatTy)
return ConstantFP::get(DestTy, CI->getValue().bitsToFloat());
return ConstantFP::get(DestTy, APFloat(CI->getValue().bitsToFloat()));
assert(DestTy == Type::DoubleTy && "Unknown FP type!");
return ConstantFP::get(DestTy, CI->getValue().bitsToDouble());
return ConstantFP::get(DestTy, APFloat(CI->getValue().bitsToDouble()));
}
// Otherwise, can't fold this (vector?)
return 0;
@ -322,11 +345,13 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
// FP -> Integral.
if (DestTy == Type::Int32Ty) {
APInt Val(32, 0);
return ConstantInt::get(Val.floatToBits(FP->getValue()));
return ConstantInt::get(Val.floatToBits(FP->
getValueAPF().convertToFloat()));
} else {
assert(DestTy == Type::Int64Ty && "only support f32/f64 for now!");
APInt Val(64, 0);
return ConstantInt::get(Val.doubleToBits(FP->getValue()));
return ConstantInt::get(Val.doubleToBits(FP->
getValueAPF().convertToDouble()));
}
}
return 0;
@ -660,39 +685,50 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
}
} else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
double C1Val = CFP1->getValue();
double C2Val = CFP2->getValue();
APFloat C1V = CFP1->getValueAPF();
APFloat C2V = CFP2->getValueAPF();
APFloat C3V = C1V; // copy for modification
bool isDouble = CFP1->getType()==Type::DoubleTy;
switch (Opcode) {
default:
break;
case Instruction::Add:
return ConstantFP::get(CFP1->getType(), C1Val + C2Val);
case Instruction::Add:
(void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
return ConstantFP::get(CFP1->getType(), C3V);
case Instruction::Sub:
return ConstantFP::get(CFP1->getType(), C1Val - C2Val);
case Instruction::Mul:
return ConstantFP::get(CFP1->getType(), C1Val * C2Val);
(void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
return ConstantFP::get(CFP1->getType(), C3V);
case Instruction::Mul:
(void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
return ConstantFP::get(CFP1->getType(), C3V);
case Instruction::FDiv:
if (CFP2->isExactlyValue(0.0) || CFP2->isExactlyValue(-0.0))
if (CFP1->isExactlyValue(0.0) || CFP1->isExactlyValue(-0.0))
// FIXME better to look at the return code
if (C2V.isZero())
if (C1V.isZero())
// IEEE 754, Section 7.1, #4
return ConstantFP::get(CFP1->getType(),
std::numeric_limits<double>::quiet_NaN());
else if (CFP2->isExactlyValue(-0.0) || C1Val < 0.0)
return ConstantFP::get(CFP1->getType(), isDouble ?
APFloat(std::numeric_limits<double>::quiet_NaN()) :
APFloat(std::numeric_limits<float>::quiet_NaN()));
else if (C2V.isNegZero() || C1V.isNegative())
// IEEE 754, Section 7.2, negative infinity case
return ConstantFP::get(CFP1->getType(),
-std::numeric_limits<double>::infinity());
return ConstantFP::get(CFP1->getType(), isDouble ?
APFloat(-std::numeric_limits<double>::infinity()) :
APFloat(-std::numeric_limits<float>::infinity()));
else
// IEEE 754, Section 7.2, positive infinity case
return ConstantFP::get(CFP1->getType(),
std::numeric_limits<double>::infinity());
return ConstantFP::get(CFP1->getType(), C1Val / C2Val);
return ConstantFP::get(CFP1->getType(), isDouble ?
APFloat(std::numeric_limits<double>::infinity()) :
APFloat(std::numeric_limits<float>::infinity()));
(void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
return ConstantFP::get(CFP1->getType(), C3V);
case Instruction::FRem:
if (CFP2->isExactlyValue(0.0) || CFP2->isExactlyValue(-0.0))
if (C2V.isZero())
// IEEE 754, Section 7.1, #5
return ConstantFP::get(CFP1->getType(),
std::numeric_limits<double>::quiet_NaN());
return ConstantFP::get(CFP1->getType(), std::fmod(C1Val, C2Val));
return ConstantFP::get(CFP1->getType(), isDouble ?
APFloat(std::numeric_limits<double>::quiet_NaN()) :
APFloat(std::numeric_limits<float>::quiet_NaN()));
(void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
return ConstantFP::get(CFP1->getType(), C3V);
}
}
} else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) {
@ -1123,52 +1159,47 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
}
} else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
double C1Val = cast<ConstantFP>(C1)->getValue();
double C2Val = cast<ConstantFP>(C2)->getValue();
APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
APFloat::cmpResult R = C1V.compare(C2V);
switch (pred) {
default: assert(0 && "Invalid FCmp Predicate"); return 0;
case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
case FCmpInst::FCMP_TRUE: return ConstantInt::getTrue();
case FCmpInst::FCMP_UNO:
return ConstantInt::get(Type::Int1Ty, C1Val != C1Val || C2Val != C2Val);
return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
case FCmpInst::FCMP_ORD:
return ConstantInt::get(Type::Int1Ty, C1Val == C1Val && C2Val == C2Val);
return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
case FCmpInst::FCMP_UEQ:
if (C1Val != C1Val || C2Val != C2Val)
return ConstantInt::getTrue();
/* FALL THROUGH */
return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
R==APFloat::cmpEqual);
case FCmpInst::FCMP_OEQ:
return ConstantInt::get(Type::Int1Ty, C1Val == C2Val);
return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
case FCmpInst::FCMP_UNE:
if (C1Val != C1Val || C2Val != C2Val)
return ConstantInt::getTrue();
/* FALL THROUGH */
return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
case FCmpInst::FCMP_ONE:
return ConstantInt::get(Type::Int1Ty, C1Val != C2Val);
return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_ULT:
if (C1Val != C1Val || C2Val != C2Val)
return ConstantInt::getTrue();
/* FALL THROUGH */
return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
R==APFloat::cmpLessThan);
case FCmpInst::FCMP_OLT:
return ConstantInt::get(Type::Int1Ty, C1Val < C2Val);
return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
case FCmpInst::FCMP_UGT:
if (C1Val != C1Val || C2Val != C2Val)
return ConstantInt::getTrue();
/* FALL THROUGH */
return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_OGT:
return ConstantInt::get(Type::Int1Ty, C1Val > C2Val);
return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_ULE:
if (C1Val != C1Val || C2Val != C2Val)
return ConstantInt::getTrue();
/* FALL THROUGH */
return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
case FCmpInst::FCMP_OLE:
return ConstantInt::get(Type::Int1Ty, C1Val <= C2Val);
return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
R==APFloat::cmpEqual);
case FCmpInst::FCMP_UGE:
if (C1Val != C1Val || C2Val != C2Val)
return ConstantInt::getTrue();
/* FALL THROUGH */
return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
case FCmpInst::FCMP_OGE:
return ConstantInt::get(Type::Int1Ty, C1Val >= C2Val);
return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
R==APFloat::cmpEqual);
}
} else if (const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1)) {
if (const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2)) {

View File

@ -107,11 +107,13 @@ Constant *Constant::getNullValue(const Type *Ty) {
case Type::IntegerTyID:
return ConstantInt::get(Ty, 0);
case Type::FloatTyID:
return ConstantFP::get(Ty, APFloat(0.0f));
case Type::DoubleTyID:
return ConstantFP::get(Ty, APFloat(0.0));
case Type::X86_FP80TyID:
case Type::PPC_FP128TyID:
case Type::FP128TyID:
return ConstantFP::get(Ty, 0.0);
return ConstantFP::get(Ty, APFloat(0.0)); //FIXME
case Type::PointerTyID:
return ConstantPointerNull::get(cast<PointerType>(Ty));
case Type::StructTyID:
@ -238,11 +240,6 @@ ConstantInt *ConstantInt::get(const APInt& V) {
// ConstantFP
//===----------------------------------------------------------------------===//
ConstantFP::ConstantFP(const Type *Ty, double V)
: Constant(Ty, ConstantFPVal, 0, 0),
Val(Ty==Type::FloatTy ? APFloat((float)V) : APFloat(V)) {
}
ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
: Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
// temporary
@ -293,27 +290,6 @@ typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*,
static ManagedStatic<FPMapTy> FPConstants;
ConstantFP *ConstantFP::get(const Type *Ty, double V) {
if (Ty == Type::FloatTy) {
DenseMapAPFloatKeyInfo::KeyTy Key(APFloat((float)V));
ConstantFP *&Slot = (*FPConstants)[Key];
if (Slot) return Slot;
return Slot = new ConstantFP(Ty, APFloat((float)V));
} else if (Ty == Type::DoubleTy) {
// Without the redundant cast, the following is taken to be
// a function declaration. What a language.
DenseMapAPFloatKeyInfo::KeyTy Key(APFloat((double)V));
ConstantFP *&Slot = (*FPConstants)[Key];
if (Slot) return Slot;
return Slot = new ConstantFP(Ty, APFloat(V));
} else if (Ty == Type::X86_FP80Ty ||
Ty == Type::PPC_FP128Ty || Ty == Type::FP128Ty) {
assert(0 && "Long double constants not handled yet.");
} else {
assert(0 && "Unknown FP Type!");
}
}
ConstantFP *ConstantFP::get(const Type *Ty, const APFloat& V) {
// temporary
if (Ty==Type::FloatTy)
@ -1934,12 +1910,15 @@ Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) {
if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
if (PTy->getElementType()->isFloatingPoint()) {
std::vector<Constant*> zeros(PTy->getNumElements(),
ConstantFP::get(PTy->getElementType(),-0.0));
ConstantFP::get(PTy->getElementType(),
PTy->getElementType()==Type::FloatTy ?
APFloat(-0.0f) : APFloat(0.0)));
return ConstantVector::get(PTy, zeros);
}
if (Ty->isFloatingPoint())
return ConstantFP::get(Ty, -0.0);
return ConstantFP::get(Ty, Ty==Type::FloatTy ? APFloat(-0.0f) :
APFloat(-0.0));
return Constant::getNullValue(Ty);
}

View File

@ -159,7 +159,7 @@ struct ValID {
char *Name; // If it's a named reference. Memory must be free'd.
int64_t ConstPool64; // Constant pool reference. This is the value
uint64_t UConstPool64;// Unsigned constant pool reference.
double ConstPoolFP; // Floating point constant pool reference
APFloat *ConstPoolFP; // Floating point constant pool reference
Constant *ConstantValue; // Fully resolved constant for ConstantVal case.
InlineAsmDescriptor *IAD;
};
@ -187,7 +187,7 @@ struct ValID {
return D;
}
static ValID create(double Val) {
static ValID create(APFloat* Val) {
ValID D; D.Type = ConstFPVal; D.ConstPoolFP = Val;
D.S.makeSignless();
return D;
@ -245,7 +245,7 @@ struct ValID {
switch (Type) {
case NumberVal : return std::string("#") + itostr(Num);
case NameVal : return Name;
case ConstFPVal : return ftostr(ConstPoolFP);
case ConstFPVal : return ftostr(*ConstPoolFP);
case ConstNullVal : return "null";
case ConstUndefVal : return "undef";
case ConstZeroVal : return "zeroinitializer";
@ -271,7 +271,8 @@ struct ValID {
case NameVal: return strcmp(Name, V.Name) < 0;
case ConstSIntVal: return ConstPool64 < V.ConstPool64;
case ConstUIntVal: return UConstPool64 < V.UConstPool64;
case ConstFPVal: return ConstPoolFP < V.ConstPoolFP;
case ConstFPVal: return ConstPoolFP->compare(*V.ConstPoolFP) ==
APFloat::cmpLessThan;
case ConstNullVal: return false;
case ConstUndefVal: return false;
case ConstZeroVal: return false;

File diff suppressed because it is too large Load Diff

View File

@ -410,8 +410,10 @@ shufflevector { RET_TOK(OtherOpVal, ShuffleVectorOp, SHUFFLEVECTOR); }
return SINTVAL;
}
{FPConstant} { Upgradelval.FPVal = atof(yytext); return FPVAL; }
{HexFPConstant} { Upgradelval.FPVal = HexToFP(yytext); return FPVAL; }
{FPConstant} { Upgradelval.FPVal = new APFloat(atof(yytext)); return FPVAL; }
{HexFPConstant} { Upgradelval.FPVal = new APFloat(HexToFP(yytext));
return FPVAL;
}
<<EOF>> {
/* Make sure to free the internal buffers for flex when we are

View File

@ -410,8 +410,10 @@ shufflevector { RET_TOK(OtherOpVal, ShuffleVectorOp, SHUFFLEVECTOR); }
return SINTVAL;
}
{FPConstant} { Upgradelval.FPVal = atof(yytext); return FPVAL; }
{HexFPConstant} { Upgradelval.FPVal = HexToFP(yytext); return FPVAL; }
{FPConstant} { Upgradelval.FPVal = new APFloat(atof(yytext)); return FPVAL; }
{HexFPConstant} { Upgradelval.FPVal = new APFloat(HexToFP(yytext));
return FPVAL;
}
<<EOF>> {
/* Make sure to free the internal buffers for flex when we are

View File

@ -533,9 +533,13 @@ static Value *getExistingValue(const Type *Ty, const ValID &D) {
return ConstantInt::get(Ty, D.UConstPool64);
case ValID::ConstFPVal: // Is it a floating point const pool reference?
if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
if (!ConstantFP::isValueValidForType(Ty, *D.ConstPoolFP))
error("FP constant invalid for type");
return ConstantFP::get(Ty, D.ConstPoolFP);
// Lexer has no type info, so builds all FP constants as double.
// Fix this here.
if (Ty==Type::FloatTy)
D.ConstPoolFP->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty, *D.ConstPoolFP);
case ValID::ConstNullVal: // Is it a null value?
if (!isa<PointerType>(Ty))
@ -1773,7 +1777,7 @@ using namespace llvm;
uint64_t UInt64Val;
int SIntVal;
unsigned UIntVal;
double FPVal;
llvm::APFloat *FPVal;
bool BoolVal;
char *StrVal; // This memory is strdup'd!
@ -2514,9 +2518,13 @@ ConstVal
$$.S.makeUnsigned();
}
| FPType FPVAL { // Float & Double constants
if (!ConstantFP::isValueValidForType($1.T, $2))
if (!ConstantFP::isValueValidForType($1.T, *$2))
error("Floating point constant invalid for type");
$$.C = ConstantFP::get($1.T, $2);
// Lexer has no type info, so builds all FP constants as double.
// Fix this here.
if ($1.T==Type::FloatTy)
$2->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
$$.C = ConstantFP::get($1.T, *$2);
$$.S.makeSignless();
}
;

View File

@ -533,9 +533,13 @@ static Value *getExistingValue(const Type *Ty, const ValID &D) {
return ConstantInt::get(Ty, D.UConstPool64);
case ValID::ConstFPVal: // Is it a floating point const pool reference?
if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
if (!ConstantFP::isValueValidForType(Ty, *D.ConstPoolFP))
error("FP constant invalid for type");
return ConstantFP::get(Ty, D.ConstPoolFP);
// Lexer has no type info, so builds all FP constants as double.
// Fix this here.
if (Ty==Type::FloatTy)
D.ConstPoolFP->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty, *D.ConstPoolFP);
case ValID::ConstNullVal: // Is it a null value?
if (!isa<PointerType>(Ty))
@ -1773,7 +1777,7 @@ using namespace llvm;
uint64_t UInt64Val;
int SIntVal;
unsigned UIntVal;
double FPVal;
llvm::APFloat *FPVal;
bool BoolVal;
char *StrVal; // This memory is strdup'd!
@ -2514,9 +2518,13 @@ ConstVal
$$.S.makeUnsigned();
}
| FPType FPVAL { // Float & Double constants
if (!ConstantFP::isValueValidForType($1.T, $2))
if (!ConstantFP::isValueValidForType($1.T, *$2))
error("Floating point constant invalid for type");
$$.C = ConstantFP::get($1.T, $2);
// Lexer has no type info, so builds all FP constants as double.
// Fix this here.
if ($1.T==Type::FloatTy)
$2->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
$$.C = ConstantFP::get($1.T, *$2);
$$.S.makeSignless();
}
;

View File

@ -209,25 +209,30 @@ CppWriter::error(const std::string& msg) {
// result so that we don't lose precision.
void
CppWriter::printCFP(const ConstantFP *CFP) {
APFloat APF = APFloat(CFP->getValueAPF()); // copy
if (CFP->getType() == Type::FloatTy)
APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Out << "ConstantFP::get(";
if (CFP->getType() == Type::DoubleTy)
Out << "Type::DoubleTy, ";
else
Out << "Type::FloatTy, ";
Out << "APFloat(";
#if HAVE_PRINTF_A
char Buffer[100];
sprintf(Buffer, "%A", CFP->getValue());
sprintf(Buffer, "%A", APF.convertToDouble());
if ((!strncmp(Buffer, "0x", 2) ||
!strncmp(Buffer, "-0x", 3) ||
!strncmp(Buffer, "+0x", 3)) &&
(atof(Buffer) == CFP->getValue()))
APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
if (CFP->getType() == Type::DoubleTy)
Out << "BitsToDouble(" << Buffer << ")";
else
Out << "BitsToFloat(" << Buffer << ")";
else {
Out << "BitsToFloat((float)" << Buffer << ")";
Out << ")";
} else {
#endif
std::string StrVal = ftostr(CFP->getValue());
std::string StrVal = ftostr(CFP->getValueAPF());
while (StrVal[0] == ' ')
StrVal.erase(StrVal.begin());
@ -237,17 +242,21 @@ CppWriter::printCFP(const ConstantFP *CFP) {
if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
(atof(StrVal.c_str()) == CFP->getValue()))
(CFP->isExactlyValue(atof(StrVal.c_str())))) {
if (CFP->getType() == Type::DoubleTy)
Out << StrVal;
else
Out << StrVal;
Out << StrVal << "f";
}
else if (CFP->getType() == Type::DoubleTy)
Out << "BitsToDouble(0x" << std::hex << DoubleToBits(CFP->getValue())
Out << "BitsToDouble(0x" << std::hex
<< DoubleToBits(CFP->getValueAPF().convertToDouble())
<< std::dec << "ULL) /* " << StrVal << " */";
else
Out << "BitsToFloat(0x" << std::hex << FloatToBits(CFP->getValue())
Out << "BitsToFloat(0x" << std::hex
<< FloatToBits(CFP->getValueAPF().convertToFloat())
<< std::dec << "U) /* " << StrVal << " */";
Out << ")";
#if HAVE_PRINTF_A
}
#endif