rewrite DwarfEHPrepare to use SSAUpdater to promote its allocas

instead of PromoteMemToReg.  This allows it to stop using DF and DT,
eliminating a computation of DT and DF from clang -O3.  Clang is now
down to 2 runs of DomFrontier.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112457 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2010-08-29 19:54:28 +00:00
parent c34c2200a8
commit 4455608818
2 changed files with 134 additions and 24 deletions

View File

@ -26,6 +26,7 @@
#include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetLowering.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm; using namespace llvm;
STATISTIC(NumLandingPadsSplit, "Number of landing pads split"); STATISTIC(NumLandingPadsSplit, "Number of landing pads split");
@ -33,6 +34,8 @@ STATISTIC(NumUnwindsLowered, "Number of unwind instructions lowered");
STATISTIC(NumExceptionValuesMoved, "Number of eh.exception calls moved"); STATISTIC(NumExceptionValuesMoved, "Number of eh.exception calls moved");
STATISTIC(NumStackTempsIntroduced, "Number of stack temporaries introduced"); STATISTIC(NumStackTempsIntroduced, "Number of stack temporaries introduced");
static void PromoteAlloca(AllocaInst *AI);
namespace { namespace {
class DwarfEHPrepare : public FunctionPass { class DwarfEHPrepare : public FunctionPass {
const TargetMachine *TM; const TargetMachine *TM;
@ -56,7 +59,6 @@ namespace {
// Dominator info is used when turning stack temporaries into registers. // Dominator info is used when turning stack temporaries into registers.
DominatorTree *DT; DominatorTree *DT;
DominanceFrontier *DF;
// The function we are running on. // The function we are running on.
Function *F; Function *F;
@ -114,21 +116,17 @@ namespace {
/// PromoteStoreInst - Perform Mem2Reg on a StoreInst. /// PromoteStoreInst - Perform Mem2Reg on a StoreInst.
bool PromoteStoreInst(StoreInst *SI) { bool PromoteStoreInst(StoreInst *SI) {
if (!SI || !DT || !DF) return false;
AllocaInst *AI = dyn_cast<AllocaInst>(SI->getOperand(1)); AllocaInst *AI = dyn_cast<AllocaInst>(SI->getOperand(1));
if (!AI || !isAllocaPromotable(AI)) return false; if (!AI || !isAllocaPromotable(AI)) return false;
// Turn the alloca into a register. PromoteAlloca(AI);
std::vector<AllocaInst*> Allocas(1, AI);
PromoteMemToReg(Allocas, *DT, *DF);
return true; return true;
} }
/// PromoteEHPtrStore - Promote the storing of an EH pointer into a /// PromoteEHPtrStore - Promote the storing of an EH pointer into a
/// register. This should get rid of the store and subsequent loads. /// register. This should get rid of the store and subsequent loads.
bool PromoteEHPtrStore(IntrinsicInst *II) { bool PromoteEHPtrStore(IntrinsicInst *II) {
if (!DT || !DF) return false; if (!CompileFast) return false;
bool Changed = false; bool Changed = false;
StoreInst *SI; StoreInst *SI;
@ -141,7 +139,7 @@ namespace {
if (SI) break; if (SI) break;
} }
if (!PromoteStoreInst(SI)) if (SI && !PromoteStoreInst(SI))
break; break;
Changed = true; Changed = true;
@ -160,14 +158,8 @@ namespace {
virtual bool runOnFunction(Function &Fn); virtual bool runOnFunction(Function &Fn);
// getAnalysisUsage - We need dominance frontiers for memory promotion.
virtual void getAnalysisUsage(AnalysisUsage &AU) const { virtual void getAnalysisUsage(AnalysisUsage &AU) const {
if (!CompileFast)
AU.addRequired<DominatorTree>();
AU.addPreserved<DominatorTree>(); AU.addPreserved<DominatorTree>();
if (!CompileFast)
AU.addRequired<DominanceFrontier>();
AU.addPreserved<DominanceFrontier>();
} }
const char *getPassName() const { const char *getPassName() const {
@ -183,6 +175,128 @@ FunctionPass *llvm::createDwarfEHPass(const TargetMachine *tm, bool fast) {
return new DwarfEHPrepare(tm, fast); return new DwarfEHPrepare(tm, fast);
} }
/// PromoteAlloca - This promotes an alloca to registers when we know that it
/// only has non-volatile loads and stores to it.
static void PromoteAlloca(AllocaInst *AI) {
assert(isAllocaPromotable(AI));
// First step: bucket up uses of the pointers by the block they occur in.
// This is important because we have to handle multiple defs/uses in a block
// ourselves: SSAUpdater is purely for cross-block references.
// FIXME: Want a TinyVector<Instruction*> since there is usually 0/1 element.
DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock;
for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
UI != E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
UsesByBlock[User->getParent()].push_back(User);
}
SSAUpdater SSA;
// It wants to know some value of the same type as what we'll be inserting.
Value *SomeValue;
if (isa<LoadInst>(*AI->use_begin()))
SomeValue = *AI->use_begin();
else
SomeValue = cast<StoreInst>(*AI->use_begin())->getOperand(0);
SSA.Initialize(SomeValue);
// Okay, now we can iterate over all the blocks in the loop with uses,
// processing them. Keep track of which loads are loading a live-in value.
SmallVector<LoadInst*, 32> LiveInLoads;
for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
UI != E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
std::vector<Instruction*> &BlockUses = UsesByBlock[User->getParent()];
// If this block has already been processed, ignore this repeat use.
if (BlockUses.empty()) continue;
// Okay, this is the first use in the block. If this block just has a
// single user in it, we can rewrite it trivially.
if (BlockUses.size() == 1) {
// If it is a store, it is a trivial def of the value in the block.
if (isa<StoreInst>(User)) {
SSA.AddAvailableValue(User->getParent(),
cast<StoreInst>(User)->getOperand(0));
} else {
// Otherwise it is a load, queue it to rewrite as a live-in load.
LiveInLoads.push_back(cast<LoadInst>(User));
}
BlockUses.clear();
continue;
}
// Otherwise, check to see if this block is all loads. If so, we can queue
// them all as live in loads.
bool HasStore = false;
for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
if (isa<StoreInst>(BlockUses[i])) {
HasStore = true;
break;
}
}
if (!HasStore) {
for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
BlockUses.clear();
continue;
}
// Otherwise, we have mixed loads and stores (or just a bunch of stores).
// Since SSAUpdater is purely for cross-block values, we need to determine
// the order of these instructions in the block. If the first use in the
// block is a load, then it uses the live in value. The last store defines
// the live out value. We handle this by doing a linear scan of the block.
BasicBlock *BB = User->getParent();
Value *StoredValue = 0;
for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
if (LoadInst *L = dyn_cast<LoadInst>(II)) {
// If this is a load to an unrelated pointer, ignore it.
if (L->getOperand(0) != AI) continue;
// If we haven't seen a store yet, this is a live in use, otherwise
// use the stored value.
if (StoredValue)
L->replaceAllUsesWith(StoredValue);
else
LiveInLoads.push_back(L);
continue;
}
if (StoreInst *S = dyn_cast<StoreInst>(II)) {
// If this is a store to an unrelated pointer, ignore it.
if (S->getOperand(1) != AI) continue;
// Remember that this is the active value in the block.
StoredValue = S->getOperand(0);
}
}
// The last stored value that happened is the live-out for the block.
assert(StoredValue && "Already checked that there is a store in block");
SSA.AddAvailableValue(BB, StoredValue);
BlockUses.clear();
}
// Okay, now we rewrite all loads that use live-in values in the loop,
// inserting PHI nodes as necessary.
for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
LoadInst *ALoad = LiveInLoads[i];
ALoad->replaceAllUsesWith(SSA.GetValueInMiddleOfBlock(ALoad->getParent()));
}
// Now that everything is rewritten, delete the old instructions from the body
// of the loop. They should all be dead now.
for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
UI != E; ++UI)
cast<Instruction>(*UI)->eraseFromParent();
}
/// HasCatchAllInSelector - Return true if the intrinsic instruction has a /// HasCatchAllInSelector - Return true if the intrinsic instruction has a
/// catch-all. /// catch-all.
bool DwarfEHPrepare::HasCatchAllInSelector(IntrinsicInst *II) { bool DwarfEHPrepare::HasCatchAllInSelector(IntrinsicInst *II) {
@ -525,11 +639,9 @@ bool DwarfEHPrepare::NormalizeLandingPads() {
// Add a fallthrough from NewBB to the original landing pad. // Add a fallthrough from NewBB to the original landing pad.
BranchInst::Create(LPad, NewBB); BranchInst::Create(LPad, NewBB);
// Now update DominatorTree and DominanceFrontier analysis information. // Now update DominatorTree analysis information if it is around.
if (DT) if (DT)
DT->splitBlock(NewBB); DT->splitBlock(NewBB);
if (DF)
DF->splitBlock(NewBB);
// Remember the newly constructed landing pad. The original landing pad // Remember the newly constructed landing pad. The original landing pad
// LPad is no longer a landing pad now that all unwind edges have been // LPad is no longer a landing pad now that all unwind edges have been
@ -655,10 +767,9 @@ bool DwarfEHPrepare::FinishStackTemporaries() {
/// PromoteStackTemporaries - Turn any stack temporaries we introduced into /// PromoteStackTemporaries - Turn any stack temporaries we introduced into
/// registers if possible. /// registers if possible.
bool DwarfEHPrepare::PromoteStackTemporaries() { bool DwarfEHPrepare::PromoteStackTemporaries() {
if (ExceptionValueVar && DT && DF && isAllocaPromotable(ExceptionValueVar)) { // Turn the exception temporary into registers and phi nodes if possible.
// Turn the exception temporary into registers and phi nodes if possible. if (ExceptionValueVar && isAllocaPromotable(ExceptionValueVar)) {
std::vector<AllocaInst*> Allocas(1, ExceptionValueVar); PromoteAlloca(ExceptionValueVar);
PromoteMemToReg(Allocas, *DT, *DF);
return true; return true;
} }
return false; return false;
@ -712,7 +823,6 @@ bool DwarfEHPrepare::runOnFunction(Function &Fn) {
// Initialize internal state. // Initialize internal state.
DT = getAnalysisIfAvailable<DominatorTree>(); DT = getAnalysisIfAvailable<DominatorTree>();
DF = getAnalysisIfAvailable<DominanceFrontier>();
ExceptionValueVar = 0; ExceptionValueVar = 0;
F = &Fn; F = &Fn;
@ -731,7 +841,7 @@ bool DwarfEHPrepare::runOnFunction(Function &Fn) {
// Initialize any stack temporaries we introduced. // Initialize any stack temporaries we introduced.
Changed |= FinishStackTemporaries(); Changed |= FinishStackTemporaries();
// Turn any stack temporaries into registers if possible. // Turn any stack temporaries into registers.
if (!CompileFast) if (!CompileFast)
Changed |= PromoteStackTemporaries(); Changed |= PromoteStackTemporaries();

View File

@ -793,7 +793,7 @@ void LICM::PromoteAliasSet(AliasSet &AS) {
} }
if (StoreInst *S = dyn_cast<StoreInst>(II)) { if (StoreInst *S = dyn_cast<StoreInst>(II)) {
// If this is a load to an unrelated pointer, ignore it. // If this is a store to an unrelated pointer, ignore it.
if (!PointerMustAliases.count(S->getOperand(1))) continue; if (!PointerMustAliases.count(S->getOperand(1))) continue;
// Remember that this is the active value in the block. // Remember that this is the active value in the block.