Actually implement some checking in the verifier.

These specific problems were ones Anand ran into in his work and seem not
uncommon for beginners.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1781 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-02-20 17:55:43 +00:00
parent 62cca70d34
commit 44d5bd9189

View File

@ -17,34 +17,33 @@
// . It should be illegal to put a label into any other type (like a structure) // . It should be illegal to put a label into any other type (like a structure)
// or to return one. [except constant arrays!] // or to return one. [except constant arrays!]
// . Right now 'add bool 0, 0' is valid. This isn't particularly good. // . Right now 'add bool 0, 0' is valid. This isn't particularly good.
// . Only phi nodes can be self referential: 'add int 0, 0 ; <int>:0' is bad // . Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
// . PHI nodes must have an entry for each predecessor, with no extras. // * PHI nodes must have an entry for each predecessor, with no extras.
// . All other things that are tested by asserts spread about the code... // * All basic blocks should only end with terminator insts, not contain them
// . All basic blocks should only end with terminator insts, not contain them // * The entry node to a method must not have predecessors
// . The entry node to a method must not have predecessors! // * All Instructions must be embeded into a basic block
// . Verify that none of the Value getType()'s are null. // . Verify that none of the Value getType()'s are null.
// . Method's cannot take a void typed parameter // . Method's cannot take a void typed parameter
// . Verify that a method's argument list agrees with it's declared type. // . Verify that a method's argument list agrees with it's declared type.
// . Verify that arrays and structures have fixed elements: No unsized arrays. // . Verify that arrays and structures have fixed elements: No unsized arrays.
// . All other things that are tested by asserts spread about the code...
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
#include "llvm/Analysis/Verifier.h" #include "llvm/Analysis/Verifier.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Pass.h"
#include "llvm/Method.h" #include "llvm/Method.h"
#include "llvm/Module.h" #include "llvm/Module.h"
#include "llvm/BasicBlock.h" #include "llvm/BasicBlock.h"
#include "llvm/Type.h" #include "llvm/Type.h"
using std::string; #include "llvm/iPHINode.h"
using std::vector; #include "llvm/Support/CFG.h"
#include "Support/STLExtras.h"
#include <algorithm>
// Error - Define a macro to do the common task of pushing a message onto the
// end of the error list and setting Bad to true.
//
#define Error(msg) do { ErrorMsgs.push_back(msg); Bad = true; } while (0)
#if 0
#define t(x) (1 << (unsigned)Type::x) #define t(x) (1 << (unsigned)Type::x)
#define SignedIntegralTypes (t(SByteTyID) | t(ShortTyID) | \ #define SignedIntegralTypes (t(SByteTyID) | t(ShortTyID) | \
t(IntTyID) | t(LongTyID)) t(IntTyID) | t(LongTyID))
static long UnsignedIntegralTypes = t(UByteTyID) | t(UShortTyID) | static long UnsignedIntegralTypes = t(UByteTyID) | t(UShortTyID) |
@ -53,42 +52,118 @@ static const long FloatingPointTypes = t(FloatTyID) | t(DoubleTyID);
static const long IntegralTypes = SignedIntegralTypes | UnsignedIntegralTypes; static const long IntegralTypes = SignedIntegralTypes | UnsignedIntegralTypes;
#if 0
static long ValidTypes[Type::FirstDerivedTyID] = { static long ValidTypes[Type::FirstDerivedTyID] = {
[(unsigned)Instruction::UnaryOps::Not] t(BoolTyID), [(unsigned)Instruction::UnaryOps::Not] t(BoolTyID),
//[Instruction::UnaryOps::Add] = IntegralTypes, //[Instruction::UnaryOps::Add] = IntegralTypes,
// [Instruction::Sub] = IntegralTypes, // [Instruction::Sub] = IntegralTypes,
}; };
#undef t
#endif #endif
#undef t // CheckFailed - A check failed, so print out the condition and the message that
// failed. This provides a nice place to put a breakpoint if you want to see
// why something is not correct.
//
static inline void CheckFailed(const char *Cond, const string &Message,
const Value *V1 = 0, const Value *V2 = 0) {
std::cerr << Message << "\n";
if (V1) std::cerr << V1 << "\n";
if (V2) std::cerr << V2 << "\n";
}
static bool verify(const BasicBlock *BB, vector<string> &ErrorMsgs) { // Assert - We know that cond should be true, if not print an error message.
bool Bad = false; #define Assert(C, M) \
if (BB->getTerminator() == 0) Error("Basic Block does not have terminator!"); do { if (!(C)) { CheckFailed(#C, M); Broken = true; } } while (0)
#define Assert1(C, M, V1) \
do { if (!(C)) { CheckFailed(#C, M, V1); Broken = true; } } while (0)
#define Assert2(C, M, V1, V2) \
do { if (!(C)) { CheckFailed(#C, M, V1, V2); Broken = true; } } while (0)
return Bad; // verifyInstruction - Verify that a non-terminator instruction is well formed.
//
static bool verifyInstruction(const Instruction *I) {
bool Broken = false;
assert(I->getParent() && "Instruction not embedded in basic block!");
Assert1(!isa<TerminatorInst>(I),
"Terminator instruction found embedded in basic block!\n", I);
// Check that all uses of the instruction, if they are instructions
// themselves, actually have parent basic blocks.
//
for (User::use_const_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI) {
if (Instruction *Used = dyn_cast<Instruction>(*UI))
Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
" embeded in a basic block!", I, Used);
}
// Check that PHI nodes look ok
if (const PHINode *PN = dyn_cast<PHINode>(I)) {
vector<const BasicBlock*> Preds(pred_begin(I->getParent()),
pred_end(I->getParent()));
// Loop over all of the incoming values, make sure that there are
// predecessors for each one...
//
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
const BasicBlock *BB = PN->getIncomingBlock(i);
vector<const BasicBlock*>::iterator PI =
find(Preds.begin(), Preds.end(), BB);
Assert2(PI != Preds.end(), "PHI node has entry for basic block that"
" is not a predecessor!", PN, BB);
if (PI != Preds.end()) Preds.erase(PI);
}
// There should be no entries left in the predecessor list...
for (vector<const BasicBlock*>::iterator I = Preds.begin(), E = Preds.end();
I != E; ++I)
Assert2(0, "PHI node does not have entry for a predecessor basic block!",
PN, *I);
}
return Broken;
} }
bool verify(const Method *M, vector<string> &ErrorMsgs) { // verifyBasicBlock - Verify that a basic block is well formed...
bool Bad = false; //
static bool verifyBasicBlock(const BasicBlock *BB) {
for (Method::const_iterator BBIt = M->begin(); bool Broken = false;
BBIt != M->end(); ++BBIt) Assert1(BB->getTerminator(), "Basic Block does not have terminator!\n", BB);
Bad |= verify(*BBIt, ErrorMsgs);
return Bad; // Verify all instructions, except the terminator...
Broken |= reduce_apply_bool(BB->begin(), BB->end()-1, verifyInstruction);
return Broken;
} }
bool verify(const Module *C, vector<string> &ErrorMsgs) {
bool Bad = false;
assert(Type::FirstDerivedTyID-1 < sizeof(long)*8 &&
"Resize ValidTypes table to handle more than 32 primitive types!");
for (Module::const_iterator MI = C->begin(); MI != C->end(); ++MI) // verifyMethod - Verify that a method is ok.
Bad |= verify(*MI, ErrorMsgs); //
static bool verifyMethod(const Method *M) {
return Bad; if (M->isExternal()) return false; // Can happen if called by verifyModule
bool Broken = false;
const BasicBlock *Entry = M->front();
Assert1(pred_begin(Entry) == pred_end(Entry),
"Entry block to method must not have predecessors!", Entry);
Broken |= reduce_apply_bool(M->begin(), M->end(), verifyBasicBlock);
return Broken;
}
namespace { // Anonymous namespace for class
struct VerifierPass : public MethodPass {
bool runOnMethod(Method *M) { verifyMethod(M); return false; }
};
}
Pass *createVerifierPass() {
return new VerifierPass();
}
// verifyModule - Check a module for errors, printing messages on stderr.
// Return true if the module is corrupt.
//
bool verifyModule(Module *M) {
return reduce_apply_bool(M->begin(), M->end(), verifyMethod);
} }