Factor some code from the DomTree and PostDomTree calculate methods up into

each one's runOnFunction method.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42563 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Owen Anderson 2007-10-03 03:20:17 +00:00
parent 7687bd0b2b
commit 471ab54df7
5 changed files with 30 additions and 25 deletions

View File

@ -27,11 +27,7 @@ struct PostDominatorTree : public DominatorTreeBase {
PostDominatorTree() :
DominatorTreeBase((intptr_t)&ID, true) {}
virtual bool runOnFunction(Function &F) {
reset(); // Reset from the last time we were run...
PDTcalculate(*this, F);
return false;
}
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();

View File

@ -19,24 +19,6 @@
namespace llvm {
void PDTcalculate(PostDominatorTree& PDT, Function &F) {
// Step #0: Scan the function looking for the root nodes of the post-dominance
// relationships. These blocks, which have no successors, end with return and
// unwind instructions.
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
TerminatorInst *Insn = I->getTerminator();
if (Insn->getNumSuccessors() == 0) {
// Unreachable block is not a root node.
if (!isa<UnreachableInst>(Insn))
PDT.Roots.push_back(I);
}
// Prepopulate maps so that we don't get iterator invalidation issues later.
PDT.IDoms[I] = 0;
PDT.DomTreeNodes[I] = 0;
}
PDT.Vertex.push_back(0);
// Step #1: Number blocks in depth-first order and initialize variables used
// in later stages of the algorithm.
unsigned N = 0;

View File

@ -28,6 +28,29 @@ char PostDominanceFrontier::ID = 0;
static RegisterPass<PostDominatorTree>
F("postdomtree", "Post-Dominator Tree Construction", true);
bool PostDominatorTree::runOnFunction(Function &F) {
reset(); // Reset from the last time we were run...
// Initialize the roots list
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
TerminatorInst *Insn = I->getTerminator();
if (Insn->getNumSuccessors() == 0) {
// Unreachable block is not a root node.
if (!isa<UnreachableInst>(Insn))
Roots.push_back(I);
}
// Prepopulate maps so that we don't get iterator invalidation issues later.
IDoms[I] = 0;
DomTreeNodes[I] = 0;
}
Vertex.push_back(0);
PDTcalculate(*this, F);
return false;
}
//===----------------------------------------------------------------------===//
// PostDominanceFrontier Implementation
//===----------------------------------------------------------------------===//

View File

@ -40,8 +40,6 @@ void DTcalculate(DominatorTree& DT, Function &F) {
// Add a node for the root...
DT.DomTreeNodes[Root] = DT.RootNode = new DomTreeNode(Root, 0);
DT.Vertex.push_back(0);
// Step #1: Number blocks in depth-first order and initialize variables used
// in later stages of the algorithm.
unsigned N = DFSPass<GraphTraits<BasicBlock*> >(DT, Root, 0);

View File

@ -350,7 +350,13 @@ void DominatorTreeBase::dump() {
bool DominatorTree::runOnFunction(Function &F) {
reset(); // Reset from the last time we were run...
// Initialize roots
Roots.push_back(&F.getEntryBlock());
IDoms[&F.getEntryBlock()] = 0;
DomTreeNodes[&F.getEntryBlock()] = 0;
Vertex.push_back(0);
DTcalculate(*this, F);
return false;
}