JIT: More nitty style tweakage, aka territory marking.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118973 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Daniel Dunbar 2010-11-13 02:48:57 +00:00
parent afd693cff3
commit 48dd875be1
2 changed files with 206 additions and 247 deletions

View File

@ -41,6 +41,8 @@ class MutexGuard;
class TargetData;
class Type;
/// \brief Helper class for helping synchronize access to the global address map
/// table.
class ExecutionEngineState {
public:
struct AddressMapConfig : public ValueMapConfig<const GlobalValue*> {
@ -70,8 +72,7 @@ private:
public:
ExecutionEngineState(ExecutionEngine &EE);
GlobalAddressMapTy &
getGlobalAddressMap(const MutexGuard &) {
GlobalAddressMapTy &getGlobalAddressMap(const MutexGuard &) {
return GlobalAddressMap;
}
@ -80,23 +81,41 @@ public:
return GlobalAddressReverseMap;
}
// Returns the address ToUnmap was mapped to.
/// \brief Erase an entry from the mapping table.
///
/// \returns The address that \arg ToUnmap was happed to.
void *RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap);
};
/// \brief Abstract interface for implementation execution of LLVM modules,
/// designed to support both interpreter and just-in-time (JIT) compiler
/// implementations.
class ExecutionEngine {
const TargetData *TD;
/// The state object holding the global address mapping, which must be
/// accessed synchronously.
//
// FIXME: There is no particular need the entire map needs to be
// synchronized. Wouldn't a reader-writer design be better here?
ExecutionEngineState EEState;
/// The target data for the platform for which execution is being performed.
const TargetData *TD;
/// Whether lazy JIT compilation is enabled.
bool CompilingLazily;
/// Whether JIT compilation of external global variables is allowed.
bool GVCompilationDisabled;
/// Whether the JIT should perform lookups of external symbols (e.g.,
/// using dlsym).
bool SymbolSearchingDisabled;
friend class EngineBuilder; // To allow access to JITCtor and InterpCtor.
protected:
/// Modules - This is a list of Modules that we are JIT'ing from. We use a
/// smallvector to optimize for the case where there is only one module.
/// The list of Modules that we are JIT'ing from. We use a SmallVector to
/// optimize for the case where there is only one module.
SmallVector<Module*, 1> Modules;
void setTargetData(const TargetData *td) {
@ -104,11 +123,11 @@ protected:
}
/// getMemoryforGV - Allocate memory for a global variable.
virtual char* getMemoryForGV(const GlobalVariable* GV);
virtual char *getMemoryForGV(const GlobalVariable *GV);
// To avoid having libexecutionengine depend on the JIT and interpreter
// libraries, the JIT and Interpreter set these functions to ctor pointers
// at startup time if they are linked in.
// libraries, the JIT and Interpreter set these functions to ctor pointers at
// startup time if they are linked in.
static ExecutionEngine *(*JITCtor)(
Module *M,
std::string *ErrorStr,
@ -123,8 +142,9 @@ protected:
std::string *ErrorStr);
/// LazyFunctionCreator - If an unknown function is needed, this function
/// pointer is invoked to create it. If this returns null, the JIT will abort.
void* (*LazyFunctionCreator)(const std::string &);
/// pointer is invoked to create it. If this returns null, the JIT will
/// abort.
void *(*LazyFunctionCreator)(const std::string &);
/// ExceptionTableRegister - If Exception Handling is set, the JIT will
/// register dwarf tables with this function.
@ -134,10 +154,10 @@ protected:
std::vector<void*> AllExceptionTables;
public:
/// lock - This lock is protects the ExecutionEngine, JIT, JITResolver and
/// lock - This lock protects the ExecutionEngine, JIT, JITResolver and
/// JITEmitter classes. It must be held while changing the internal state of
/// any of those classes.
sys::Mutex lock; // Used to make this class and subclasses thread-safe
sys::Mutex lock;
//===--------------------------------------------------------------------===//
// ExecutionEngine Startup
@ -148,20 +168,18 @@ public:
/// create - This is the factory method for creating an execution engine which
/// is appropriate for the current machine. This takes ownership of the
/// module.
///
/// \param GVsWithCode - Allocating globals with code breaks
/// freeMachineCodeForFunction and is probably unsafe and bad for performance.
/// However, we have clients who depend on this behavior, so we must support
/// it. Eventually, when we're willing to break some backwards compatability,
/// this flag should be flipped to false, so that by default
/// freeMachineCodeForFunction works.
static ExecutionEngine *create(Module *M,
bool ForceInterpreter = false,
std::string *ErrorStr = 0,
CodeGenOpt::Level OptLevel =
CodeGenOpt::Default,
// Allocating globals with code breaks
// freeMachineCodeForFunction and is probably
// unsafe and bad for performance. However,
// we have clients who depend on this
// behavior, so we must support it.
// Eventually, when we're willing to break
// some backwards compatability, this flag
// should be flipped to false, so that by
// default freeMachineCodeForFunction works.
bool GVsWithCode = true);
/// createJIT - This is the factory method for creating a JIT for the current
@ -186,11 +204,10 @@ public:
Modules.push_back(M);
}
//===----------------------------------------------------------------------===//
//===--------------------------------------------------------------------===//
const TargetData *getTargetData() const { return TD; }
/// removeModule - Remove a Module from the list of modules. Returns true if
/// M is found.
virtual bool removeModule(Module *M);
@ -202,17 +219,19 @@ public:
/// runFunction - Execute the specified function with the specified arguments,
/// and return the result.
///
virtual GenericValue runFunction(Function *F,
const std::vector<GenericValue> &ArgValues) = 0;
/// runStaticConstructorsDestructors - This method is used to execute all of
/// the static constructors or destructors for a program, depending on the
/// value of isDtors.
/// the static constructors or destructors for a program.
///
/// \param isDtors - Run the destructors instead of constructors.
void runStaticConstructorsDestructors(bool isDtors);
/// runStaticConstructorsDestructors - This method is used to execute all of
/// the static constructors or destructors for a module, depending on the
/// value of isDtors.
/// the static constructors or destructors for a particular module.
///
/// \param isDtors - Run the destructors instead of constructors.
void runStaticConstructorsDestructors(Module *module, bool isDtors);
@ -231,8 +250,8 @@ public:
/// GlobalValue is destroyed.
void addGlobalMapping(const GlobalValue *GV, void *Addr);
/// clearAllGlobalMappings - Clear all global mappings and start over again
/// use in dynamic compilation scenarios when you want to move globals
/// clearAllGlobalMappings - Clear all global mappings and start over again,
/// for use in dynamic compilation scenarios to move globals.
void clearAllGlobalMappings();
/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
@ -248,12 +267,10 @@ public:
/// getPointerToGlobalIfAvailable - This returns the address of the specified
/// global value if it is has already been codegen'd, otherwise it returns
/// null.
///
void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
/// getPointerToGlobal - This returns the address of the specified global
/// value. This may involve code generation if it's a function.
///
/// value. This may involve code generation if it's a function.
void *getPointerToGlobal(const GlobalValue *GV);
/// getPointerToFunction - The different EE's represent function bodies in
@ -261,20 +278,17 @@ public:
/// pointer should look like. When F is destroyed, the ExecutionEngine will
/// remove its global mapping and free any machine code. Be sure no threads
/// are running inside F when that happens.
///
virtual void *getPointerToFunction(Function *F) = 0;
/// getPointerToBasicBlock - The different EE's represent basic blocks in
/// different ways. Return the representation for a blockaddress of the
/// specified block.
///
virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0;
/// getPointerToFunctionOrStub - If the specified function has been
/// code-gen'd, return a pointer to the function. If not, compile it, or use
/// a stub to implement lazy compilation if available. See
/// getPointerToFunction for the requirements on destroying F.
///
virtual void *getPointerToFunctionOrStub(Function *F) {
// Default implementation, just codegen the function.
return getPointerToFunction(F);
@ -288,23 +302,25 @@ public:
///
const GlobalValue *getGlobalValueAtAddress(void *Addr);
/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
/// Ptr is the address of the memory at which to store Val, cast to
/// GenericValue *. It is not a pointer to a GenericValue containing the
/// address at which to store Val.
void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
const Type *Ty);
void InitializeMemory(const Constant *Init, void *Addr);
/// recompileAndRelinkFunction - This method is used to force a function
/// which has already been compiled to be compiled again, possibly
/// after it has been modified. Then the entry to the old copy is overwritten
/// with a branch to the new copy. If there was no old copy, this acts
/// just like VM::getPointerToFunction().
///
/// recompileAndRelinkFunction - This method is used to force a function which
/// has already been compiled to be compiled again, possibly after it has been
/// modified. Then the entry to the old copy is overwritten with a branch to
/// the new copy. If there was no old copy, this acts just like
/// VM::getPointerToFunction().
virtual void *recompileAndRelinkFunction(Function *F) = 0;
/// freeMachineCodeForFunction - Release memory in the ExecutionEngine
/// corresponding to the machine code emitted to execute this function, useful
/// for garbage-collecting generated code.
///
virtual void freeMachineCodeForFunction(Function *F) = 0;
/// getOrEmitGlobalVariable - Return the address of the specified global
@ -382,8 +398,8 @@ public:
ExceptionTableDeregister = F;
}
/// RegisterTable - Registers the given pointer as an exception table. It uses
/// the ExceptionTableRegister function.
/// RegisterTable - Registers the given pointer as an exception table. It
/// uses the ExceptionTableRegister function.
void RegisterTable(void* res) {
if (ExceptionTableRegister) {
ExceptionTableRegister(res);
@ -392,7 +408,7 @@ public:
}
/// DeregisterAllTables - Deregisters all previously registered pointers to an
/// exception tables. It uses the ExceptionTableoDeregister function.
/// exception tables. It uses the ExceptionTableoDeregister function.
void DeregisterAllTables();
protected:
@ -400,9 +416,6 @@ protected:
void emitGlobals();
// EmitGlobalVariable - This method emits the specified global variable to the
// address specified in GlobalAddresses, or allocates new memory if it's not
// already in the map.
void EmitGlobalVariable(const GlobalVariable *GV);
GenericValue getConstantValue(const Constant *C);
@ -423,8 +436,7 @@ namespace EngineKind {
/// stack-allocating a builder, chaining the various set* methods, and
/// terminating it with a .create() call.
class EngineBuilder {
private:
private:
Module *M;
EngineKind::Kind WhichEngine;
std::string *ErrorStr;
@ -437,7 +449,6 @@ class EngineBuilder {
SmallVector<std::string, 4> MAttrs;
/// InitEngine - Does the common initialization of default options.
///
void InitEngine() {
WhichEngine = EngineKind::Either;
ErrorStr = NULL;
@ -447,7 +458,7 @@ class EngineBuilder {
CMModel = CodeModel::Default;
}
public:
public:
/// EngineBuilder - Constructor for EngineBuilder. If create() is called and
/// is successful, the created engine takes ownership of the module.
EngineBuilder(Module *m) : M(m) {

View File

@ -19,6 +19,7 @@
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
@ -51,7 +52,7 @@ ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
ExecutionEngine::ExecutionEngine(Module *M)
: EEState(*this),
LazyFunctionCreator(0),
ExceptionTableRegister(0),
ExceptionTableRegister(0),
ExceptionTableDeregister(0) {
CompilingLazily = false;
GVCompilationDisabled = false;
@ -68,24 +69,23 @@ ExecutionEngine::~ExecutionEngine() {
void ExecutionEngine::DeregisterAllTables() {
if (ExceptionTableDeregister) {
std::vector<void*>::iterator it = AllExceptionTables.begin();
std::vector<void*>::iterator ite = AllExceptionTables.end();
for (; it != ite; ++it)
for (std::vector<void*>::iterator it = AllExceptionTables.begin(),
ie = AllExceptionTables.end(); it != ie; ++it)
ExceptionTableDeregister(*it);
AllExceptionTables.clear();
}
}
namespace {
// This class automatically deletes the memory block when the GlobalVariable is
// destroyed.
/// \brief Helper class which uses a value handler to automatically deletes the
/// memory block when the GlobalVariable is destroyed.
class GVMemoryBlock : public CallbackVH {
GVMemoryBlock(const GlobalVariable *GV)
: CallbackVH(const_cast<GlobalVariable*>(GV)) {}
public:
// Returns the address the GlobalVariable should be written into. The
// GVMemoryBlock object prefixes that.
/// \brief Returns the address the GlobalVariable should be written into. The
/// GVMemoryBlock object prefixes that.
static char *Create(const GlobalVariable *GV, const TargetData& TD) {
const Type *ElTy = GV->getType()->getElementType();
size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
@ -107,13 +107,12 @@ public:
};
} // anonymous namespace
char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
return GVMemoryBlock::Create(GV, *getTargetData());
}
/// removeModule - Remove a Module from the list of modules.
bool ExecutionEngine::removeModule(Module *M) {
for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
E = Modules.end(); I != E; ++I) {
Module *Found = *I;
if (Found == M) {
@ -125,9 +124,6 @@ bool ExecutionEngine::removeModule(Module *M) {
return false;
}
/// FindFunctionNamed - Search all of the active modules to find the one that
/// defines FnName. This is very slow operation and shouldn't be used for
/// general code.
Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
if (Function *F = Modules[i]->getFunction(FnName))
@ -137,10 +133,13 @@ Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
}
void *ExecutionEngineState::RemoveMapping(
const MutexGuard &, const GlobalValue *ToUnmap) {
void *ExecutionEngineState::RemoveMapping(const MutexGuard &,
const GlobalValue *ToUnmap) {
GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
void *OldVal;
// FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
// GlobalAddressMap.
if (I == GlobalAddressMap.end())
OldVal = 0;
else {
@ -152,21 +151,16 @@ void *ExecutionEngineState::RemoveMapping(
return OldVal;
}
/// addGlobalMapping - Tell the execution engine that the specified global is
/// at the specified location. This is used internally as functions are JIT'd
/// and as global variables are laid out in memory. It can and should also be
/// used by clients of the EE that want to have an LLVM global overlay
/// existing data in memory.
void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
MutexGuard locked(lock);
DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
<< "\' to [" << Addr << "]\n";);
void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
CurVal = Addr;
// If we are using the reverse mapping, add it too
// If we are using the reverse mapping, add it too.
if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
AssertingVH<const GlobalValue> &V =
EEState.getGlobalAddressReverseMap(locked)[Addr];
@ -175,32 +169,23 @@ void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
}
}
/// clearAllGlobalMappings - Clear all global mappings and start over again
/// use in dynamic compilation scenarios when you want to move globals
void ExecutionEngine::clearAllGlobalMappings() {
MutexGuard locked(lock);
EEState.getGlobalAddressMap(locked).clear();
EEState.getGlobalAddressReverseMap(locked).clear();
}
/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
/// particular module, because it has been removed from the JIT.
void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
MutexGuard locked(lock);
for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
EEState.RemoveMapping(locked, FI);
}
for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
GI != GE; ++GI) {
for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
GI != GE; ++GI)
EEState.RemoveMapping(locked, GI);
}
}
/// updateGlobalMapping - Replace an existing mapping for GV with a new
/// address. This updates both maps as required. If "Addr" is null, the
/// entry for the global is removed from the mappings.
void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
MutexGuard locked(lock);
@ -208,18 +193,17 @@ void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
EEState.getGlobalAddressMap(locked);
// Deleting from the mapping?
if (Addr == 0) {
if (Addr == 0)
return EEState.RemoveMapping(locked, GV);
}
void *&CurVal = Map[GV];
void *OldVal = CurVal;
if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
CurVal = Addr;
// If we are using the reverse mapping, add it too
// If we are using the reverse mapping, add it too.
if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
AssertingVH<const GlobalValue> &V =
EEState.getGlobalAddressReverseMap(locked)[Addr];
@ -229,20 +213,14 @@ void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
return OldVal;
}
/// getPointerToGlobalIfAvailable - This returns the address of the specified
/// global value if it is has already been codegen'd, otherwise it returns null.
///
void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
MutexGuard locked(lock);
ExecutionEngineState::GlobalAddressMapTy::iterator I =
EEState.getGlobalAddressMap(locked).find(GV);
return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
}
/// getGlobalValueAtAddress - Return the LLVM global value object that starts
/// at the specified address.
///
const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
MutexGuard locked(lock);
@ -311,54 +289,50 @@ void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
return Array;
}
/// runStaticConstructorsDestructors - This method is used to execute all of
/// the static constructors or destructors for a module, depending on the
/// value of isDtors.
void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
bool isDtors) {
const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
// Execute global ctors/dtors for each module in the program.
GlobalVariable *GV = module->getNamedGlobal(Name);
GlobalVariable *GV = module->getNamedGlobal(Name);
// If this global has internal linkage, or if it has a use, then it must be
// an old-style (llvmgcc3) static ctor with __main linked in and in use. If
// this is the case, don't execute any of the global ctors, __main will do
// it.
if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
// Should be an array of '{ int, void ()* }' structs. The first value is
// the init priority, which we ignore.
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
if (!InitList) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
if (ConstantStruct *CS =
dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
Constant *FP = CS->getOperand(1);
if (FP->isNullValue())
break; // Found a null terminator, exit.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
if (CE->isCast())
FP = CE->getOperand(0);
if (Function *F = dyn_cast<Function>(FP)) {
// Execute the ctor/dtor function!
runFunction(F, std::vector<GenericValue>());
}
}
// If this global has internal linkage, or if it has a use, then it must be
// an old-style (llvmgcc3) static ctor with __main linked in and in use. If
// this is the case, don't execute any of the global ctors, __main will do
// it.
if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
// Should be an array of '{ int, void ()* }' structs. The first value is
// the init priority, which we ignore.
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
if (!InitList) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
ConstantStruct *CS =
dyn_cast<ConstantStruct>(InitList->getOperand(i));
if (!CS) continue;
if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
Constant *FP = CS->getOperand(1);
if (FP->isNullValue())
break; // Found a null terminator, exit.
// Strip off constant expression casts.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
if (CE->isCast())
FP = CE->getOperand(0);
// Execute the ctor/dtor function!
if (Function *F = dyn_cast<Function>(FP))
runFunction(F, std::vector<GenericValue>());
// FIXME: It is marginally lame that we just do nothing here if we see an
// entry we don't recognize. It might not be unreasonable for the verifier
// to not even allow this and just assert here.
}
}
/// runStaticConstructorsDestructors - This method is used to execute all of
/// the static constructors or destructors for a program, depending on the
/// value of isDtors.
void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
// Execute global ctors/dtors for each module in the program.
for (unsigned m = 0, e = Modules.size(); m != e; ++m)
runStaticConstructorsDestructors(Modules[m], isDtors);
for (unsigned i = 0, e = Modules.size(); i != e; ++i)
runStaticConstructorsDestructors(Modules[i], isDtors);
}
#ifndef NDEBUG
@ -372,9 +346,6 @@ static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
}
#endif
/// runFunctionAsMain - This is a helper function which wraps runFunction to
/// handle the common task of starting up main with the specified argc, argv,
/// and envp parameters.
int ExecutionEngine::runFunctionAsMain(Function *Fn,
const std::vector<std::string> &argv,
const char * const * envp) {
@ -386,32 +357,20 @@ int ExecutionEngine::runFunctionAsMain(Function *Fn,
unsigned NumArgs = Fn->getFunctionType()->getNumParams();
const FunctionType *FTy = Fn->getFunctionType();
const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
switch (NumArgs) {
case 3:
if (FTy->getParamType(2) != PPInt8Ty) {
report_fatal_error("Invalid type for third argument of main() supplied");
}
// FALLS THROUGH
case 2:
if (FTy->getParamType(1) != PPInt8Ty) {
report_fatal_error("Invalid type for second argument of main() supplied");
}
// FALLS THROUGH
case 1:
if (!FTy->getParamType(0)->isIntegerTy(32)) {
report_fatal_error("Invalid type for first argument of main() supplied");
}
// FALLS THROUGH
case 0:
if (!FTy->getReturnType()->isIntegerTy() &&
!FTy->getReturnType()->isVoidTy()) {
report_fatal_error("Invalid return type of main() supplied");
}
break;
default:
report_fatal_error("Invalid number of arguments of main() supplied");
}
// Check the argument types.
if (NumArgs > 3)
report_fatal_error("Invalid number of arguments of main() supplied");
if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
report_fatal_error("Invalid type for third argument of main() supplied");
if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
report_fatal_error("Invalid type for second argument of main() supplied");
if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
report_fatal_error("Invalid type for first argument of main() supplied");
if (!FTy->getReturnType()->isIntegerTy() &&
!FTy->getReturnType()->isVoidTy())
report_fatal_error("Invalid return type of main() supplied");
ArgvArray CArgv;
ArgvArray CEnv;
if (NumArgs) {
@ -430,13 +389,10 @@ int ExecutionEngine::runFunctionAsMain(Function *Fn,
}
}
}
return runFunction(Fn, GVArgs).IntVal.getZExtValue();
}
/// If possible, create a JIT, unless the caller specifically requests an
/// Interpreter or there's an error. If even an Interpreter cannot be created,
/// NULL is returned.
///
ExecutionEngine *ExecutionEngine::create(Module *M,
bool ForceInterpreter,
std::string *ErrorStr,
@ -496,21 +452,18 @@ ExecutionEngine *EngineBuilder::create() {
if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
if (ErrorStr)
*ErrorStr = "JIT has not been linked in.";
}
}
return 0;
}
/// getPointerToGlobal - This returns the address of the specified global
/// value. This may involve code generation if it's a function.
///
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
return getPointerToFunction(F);
MutexGuard locked(lock);
void *p = EEState.getGlobalAddressMap(locked)[GV];
if (p)
return p;
if (void *P = EEState.getGlobalAddressMap(locked)[GV])
return P;
// Global variable might have been added since interpreter started.
if (GlobalVariable *GVar =
@ -518,12 +471,12 @@ void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
EmitGlobalVariable(GVar);
else
llvm_unreachable("Global hasn't had an address allocated yet!");
return EEState.getGlobalAddressMap(locked)[GV];
}
/// This function converts a Constant* into a GenericValue. The interesting
/// part is if C is a ConstantExpr.
/// @brief Get a GenericValue for a Constant*
/// \brief Converts a Constant* into a GenericValue, including handling of
/// ConstantExpr values.
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
// If its undefined, return the garbage.
if (isa<UndefValue>(C)) {
@ -543,12 +496,12 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
return Result;
}
// If the value is a ConstantExpr
// Otherwise, if the value is a ConstantExpr...
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Constant *Op0 = CE->getOperand(0);
switch (CE->getOpcode()) {
case Instruction::GetElementPtr: {
// Compute the index
// Compute the index
GenericValue Result = getConstantValue(Op0);
SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
uint64_t Offset =
@ -597,7 +550,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
else if (CE->getType()->isX86_FP80Ty()) {
const uint64_t zero[] = {0, 0};
APFloat apf = APFloat(APInt(80, 2, zero));
(void)apf.convertFromAPInt(GV.IntVal,
(void)apf.convertFromAPInt(GV.IntVal,
false,
APFloat::rmNearestTiesToEven);
GV.IntVal = apf.bitcastToAPInt();
@ -613,7 +566,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
else if (CE->getType()->isX86_FP80Ty()) {
const uint64_t zero[] = { 0, 0};
APFloat apf = APFloat(APInt(80, 2, zero));
(void)apf.convertFromAPInt(GV.IntVal,
(void)apf.convertFromAPInt(GV.IntVal,
true,
APFloat::rmNearestTiesToEven);
GV.IntVal = apf.bitcastToAPInt();
@ -633,7 +586,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
uint64_t v;
bool ignored;
(void)apf.convertToInteger(&v, BitWidth,
CE->getOpcode()==Instruction::FPToSI,
CE->getOpcode()==Instruction::FPToSI,
APFloat::rmTowardZero, &ignored);
GV.IntVal = v; // endian?
}
@ -666,7 +619,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
else if (DestTy->isDoubleTy())
GV.DoubleVal = GV.IntVal.bitsToDouble();
break;
case Type::FloatTyID:
case Type::FloatTyID:
assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
GV.IntVal.floatToBits(GV.FloatVal);
break;
@ -722,9 +675,9 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
case Instruction::FMul:
GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
case Instruction::FDiv:
case Instruction::FDiv:
GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
case Instruction::FRem:
case Instruction::FRem:
GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
}
break;
@ -737,9 +690,9 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
case Instruction::FMul:
GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
case Instruction::FDiv:
case Instruction::FDiv:
GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
case Instruction::FRem:
case Instruction::FRem:
GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
}
break;
@ -761,11 +714,11 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
case Instruction::FDiv:
case Instruction::FDiv:
apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
case Instruction::FRem:
case Instruction::FRem:
apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
@ -778,16 +731,18 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
default:
break;
}
std::string msg;
raw_string_ostream Msg(msg);
Msg << "ConstantExpr not handled: " << *CE;
report_fatal_error(Msg.str());
SmallString<256> Msg;
raw_svector_ostream OS(Msg);
OS << "ConstantExpr not handled: " << *CE;
report_fatal_error(OS.str());
}
// Otherwise, we have a simple constant.
GenericValue Result;
switch (C->getType()->getTypeID()) {
case Type::FloatTyID:
Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
case Type::FloatTyID:
Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
break;
case Type::DoubleTyID:
Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
@ -814,11 +769,12 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
llvm_unreachable("Unknown constant pointer type!");
break;
default:
std::string msg;
raw_string_ostream Msg(msg);
Msg << "ERROR: Constant unimplemented for type: " << *C->getType();
report_fatal_error(Msg.str());
SmallString<256> Msg;
raw_svector_ostream OS(Msg);
OS << "ERROR: Constant unimplemented for type: " << *C->getType();
report_fatal_error(OS.str());
}
return Result;
}
@ -829,11 +785,11 @@ static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
uint8_t *Src = (uint8_t *)IntVal.getRawData();
if (sys::isLittleEndianHost())
if (sys::isLittleEndianHost()) {
// Little-endian host - the source is ordered from LSB to MSB. Order the
// destination from LSB to MSB: Do a straight copy.
memcpy(Dst, Src, StoreBytes);
else {
} else {
// Big-endian host - the source is an array of 64 bit words ordered from
// LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
// from MSB to LSB: Reverse the word order, but not the bytes in a word.
@ -848,10 +804,6 @@ static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
}
}
/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
/// is the address of the memory at which to store Val, cast to GenericValue *.
/// It is not a pointer to a GenericValue containing the address at which to
/// store Val.
void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
GenericValue *Ptr, const Type *Ty) {
const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
@ -942,16 +894,13 @@ void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
break;
}
default:
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Cannot load value of type " << *Ty << "!";
report_fatal_error(Msg.str());
SmallString<256> Msg;
raw_svector_ostream OS(Msg);
OS << "Cannot load value of type " << *Ty << "!";
report_fatal_error(OS.str());
}
}
// InitializeMemory - Recursive function to apply a Constant value into the
// specified memory location...
//
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
DEBUG(Init->dump());
@ -984,20 +933,17 @@ void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
return;
}
dbgs() << "Bad Type: " << *Init->getType() << "\n";
DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
llvm_unreachable("Unknown constant type to initialize memory with!");
}
/// EmitGlobals - Emit all of the global variables to memory, storing their
/// addresses into GlobalAddress. This must make sure to copy the contents of
/// their initializers into the memory.
///
void ExecutionEngine::emitGlobals() {
// Loop over all of the global variables in the program, allocating the memory
// to hold them. If there is more than one module, do a prepass over globals
// to figure out how the different modules should link together.
//
std::map<std::pair<std::string, const Type*>,
const GlobalValue*> LinkedGlobalsMap;
@ -1010,8 +956,8 @@ void ExecutionEngine::emitGlobals() {
if (GV->hasLocalLinkage() || GV->isDeclaration() ||
GV->hasAppendingLinkage() || !GV->hasName())
continue;// Ignore external globals and globals with internal linkage.
const GlobalValue *&GVEntry =
const GlobalValue *&GVEntry =
LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
// If this is the first time we've seen this global, it is the canonical
@ -1020,13 +966,13 @@ void ExecutionEngine::emitGlobals() {
GVEntry = GV;
continue;
}
// If the existing global is strong, never replace it.
if (GVEntry->hasExternalLinkage() ||
GVEntry->hasDLLImportLinkage() ||
GVEntry->hasDLLExportLinkage())
continue;
// Otherwise, we know it's linkonce/weak, replace it if this is a strong
// symbol. FIXME is this right for common?
if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
@ -1034,7 +980,7 @@ void ExecutionEngine::emitGlobals() {
}
}
}
std::vector<const GlobalValue*> NonCanonicalGlobals;
for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
Module &M = *Modules[m];
@ -1042,7 +988,7 @@ void ExecutionEngine::emitGlobals() {
I != E; ++I) {
// In the multi-module case, see what this global maps to.
if (!LinkedGlobalsMap.empty()) {
if (const GlobalValue *GVEntry =
if (const GlobalValue *GVEntry =
LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
// If something else is the canonical global, ignore this one.
if (GVEntry != &*I) {
@ -1051,7 +997,7 @@ void ExecutionEngine::emitGlobals() {
}
}
}
if (!I->isDeclaration()) {
addGlobalMapping(I, getMemoryForGV(I));
} else {
@ -1066,7 +1012,7 @@ void ExecutionEngine::emitGlobals() {
}
}
}
// If there are multiple modules, map the non-canonical globals to their
// canonical location.
if (!NonCanonicalGlobals.empty()) {
@ -1079,14 +1025,14 @@ void ExecutionEngine::emitGlobals() {
addGlobalMapping(GV, Ptr);
}
}
// Now that all of the globals are set up in memory, loop through them all
// Now that all of the globals are set up in memory, loop through them all
// and initialize their contents.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (!I->isDeclaration()) {
if (!LinkedGlobalsMap.empty()) {
if (const GlobalValue *GVEntry =
if (const GlobalValue *GVEntry =
LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
if (GVEntry != &*I) // Not the canonical variable.
continue;
@ -1108,11 +1054,11 @@ void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
GA = getMemoryForGV(GV);
addGlobalMapping(GV, GA);
}
// Don't initialize if it's thread local, let the client do it.
if (!GV->isThreadLocal())
InitializeMemory(GV->getInitializer(), GA);
const Type *ElTy = GV->getType()->getElementType();
size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
NumInitBytes += (unsigned)GVSize;
@ -1123,18 +1069,20 @@ ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
: EE(EE), GlobalAddressMap(this) {
}
sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex(
ExecutionEngineState *EES) {
sys::Mutex *
ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
return &EES->EE.lock;
}
void ExecutionEngineState::AddressMapConfig::onDelete(
ExecutionEngineState *EES, const GlobalValue *Old) {
void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
const GlobalValue *Old) {
void *OldVal = EES->GlobalAddressMap.lookup(Old);
EES->GlobalAddressReverseMap.erase(OldVal);
}
void ExecutionEngineState::AddressMapConfig::onRAUW(
ExecutionEngineState *, const GlobalValue *, const GlobalValue *) {
void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
const GlobalValue *,
const GlobalValue *) {
assert(false && "The ExecutionEngine doesn't know how to handle a"
" RAUW on a value it has a global mapping for.");
}