Verify types. Invalid types can be constructed when assertions are off.

Make the verifier more robust by avoiding unprotected cast<> calls. Notably,
Assert1(isa<>); cast<> is not safe as Assert1 does not terminate the program.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81179 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Nick Lewycky 2009-09-08 01:23:52 +00:00
parent 45336a6f22
commit 49072473ba

View File

@ -50,12 +50,14 @@
#include "llvm/ModuleProvider.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
@ -105,8 +107,7 @@ PreVer("preverify", "Preliminary module verification");
static const PassInfo *const PreVerifyID = &PreVer;
namespace {
struct VISIBILITY_HIDDEN
Verifier : public FunctionPass, public InstVisitor<Verifier> {
struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
static char ID; // Pass ID, replacement for typeid
bool Broken; // Is this module found to be broken?
bool RealPass; // Are we not being run by a PassManager?
@ -124,6 +125,9 @@ namespace {
/// an instruction in the same block.
SmallPtrSet<Instruction*, 16> InstsInThisBlock;
/// CheckedTypes - keep track of the types that have been checked already.
SmallSet<PATypeHolder, 16> CheckedTypes;
Verifier()
: FunctionPass(&ID),
Broken(false), RealPass(true), action(AbortProcessAction),
@ -282,6 +286,7 @@ namespace {
bool isReturnValue, const Value *V);
void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs,
const Value *V);
void VerifyType(const Type *Ty);
void WriteValue(const Value *V) {
if (!V) return;
@ -322,6 +327,15 @@ namespace {
WriteValue(V3);
Broken = true;
}
void CheckFailed(const Twine &Message, const Type* T1,
const Type* T2 = 0, const Type* T3 = 0) {
MessagesStr << Message.str() << "\n";
WriteType(T1);
WriteType(T2);
WriteType(T3);
Broken = true;
}
};
} // End anonymous namespace
@ -360,14 +374,14 @@ void Verifier::visitGlobalValue(GlobalValue &GV) {
Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
"Global is marked as dllimport, but not external", &GV);
Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
"Only global variables can have appending linkage!", &GV);
if (GV.hasAppendingLinkage()) {
GlobalVariable &GVar = cast<GlobalVariable>(GV);
Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
"Only global arrays can have appending linkage!", &GV);
GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
Assert1(GVar && isa<ArrayType>(GVar->getType()->getElementType()),
"Only global arrays can have appending linkage!", GVar);
}
}
@ -445,6 +459,8 @@ void Verifier::visitGlobalAlias(GlobalAlias &GA) {
}
void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
for (TypeSymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I)
VerifyType(I->second);
}
// VerifyParameterAttrs - Check the given attributes for an argument or return
@ -987,11 +1003,14 @@ void Verifier::visitPHINode(PHINode &PN) {
"PHI nodes not grouped at top of basic block!",
&PN, PN.getParent());
// Check that all of the operands of the PHI node have the same type as the
// result.
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
// Check that all of the values of the PHI node have the same type as the
// result, and that the incoming blocks are really basic blocks.
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
"PHI node operands are not the same type as the result!", &PN);
Assert1(PN.getOperand(PHINode::getOperandNumForIncomingBlock(i)),
"PHI node incoming block is not a BasicBlock!", &PN);
}
// All other PHI node constraints are checked in the visitBasicBlock method.
@ -1001,13 +1020,20 @@ void Verifier::visitPHINode(PHINode &PN) {
void Verifier::VerifyCallSite(CallSite CS) {
Instruction *I = CS.getInstruction();
Assert1(isa<PointerType>(CS.getCalledValue()->getType()),
"Called function must be a pointer!", I);
const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
Assert1(isa<FunctionType>(FPTy->getElementType()),
"Called function is not pointer to function type!", I);
const PointerType *FPTy =
dyn_cast<PointerType>(CS.getCalledValue()->getType());
if (!FPTy) {
CheckFailed("Called function must be a pointer!", I);
visitInstruction(*I);
return;
}
const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
const FunctionType *FTy = dyn_cast<FunctionType>(FPTy->getElementType());
if (!FTy) {
CheckFailed("Called function is not pointer to function type!", I);
visitInstruction(*I);
return;
}
// Verify that the correct number of arguments are being passed
if (FTy->isVarArg())
@ -1212,22 +1238,29 @@ void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
}
void Verifier::visitLoadInst(LoadInst &LI) {
const Type *ElTy =
cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
Assert2(ElTy == LI.getType(),
"Load result type does not match pointer operand type!", &LI, ElTy);
Assert1(ElTy != Type::getMetadataTy(LI.getContext()),
"Can't load metadata!", &LI);
const PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
Assert1(PTy, "Load operand must be a pointer.", &LI);
if (PTy) {
const Type *ElTy = PTy->getElementType();
Assert2(ElTy == LI.getType(),
"Load result type does not match pointer operand type!", &LI, ElTy);
Assert1(ElTy != Type::getMetadataTy(LI.getContext()),
"Can't load metadata!", &LI);
}
visitInstruction(LI);
}
void Verifier::visitStoreInst(StoreInst &SI) {
const Type *ElTy =
cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
Assert2(ElTy == SI.getOperand(0)->getType(),
"Stored value type does not match pointer operand type!", &SI, ElTy);
Assert1(ElTy != Type::getMetadataTy(SI.getContext()),
"Can't store metadata!", &SI);
const PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
Assert1(PTy, "Load operand must be a pointer.", &SI);
if (PTy) {
const Type *ElTy = PTy->getElementType();
Assert2(ElTy == SI.getOperand(0)->getType(),
"Stored value type does not match pointer operand type!",
&SI, ElTy);
Assert1(ElTy != Type::getMetadataTy(SI.getContext()),
"Can't store metadata!", &SI);
}
visitInstruction(SI);
}
@ -1303,11 +1336,11 @@ void Verifier::visitInstruction(Instruction &I) {
// instruction, it is an error!
for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI) {
Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
*UI);
Instruction *Used = cast<Instruction>(*UI);
Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
" embedded in a basic block!", &I, Used);
if (Instruction *Used = dyn_cast<Instruction>(*UI))
Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
" embedded in a basic block!", &I, Used);
else
CheckFailed("Use of instruction is not an instruction!", *UI);
}
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
@ -1357,7 +1390,9 @@ void Verifier::visitInstruction(Instruction &I) {
// value in the predecessor basic blocks they correspond to.
BasicBlock *UseBlock = BB;
if (isa<PHINode>(I))
UseBlock = cast<BasicBlock>(I.getOperand(i+1));
UseBlock = dyn_cast<BasicBlock>(I.getOperand(i+1));
// Avoid crash. The verifier will find this module broken anyways.
if (!UseBlock) UseBlock = BB;
if (isa<PHINode>(I) && UseBlock == OpBlock) {
// Special case of a phi node in the normal destination or the unwind
@ -1390,9 +1425,9 @@ void Verifier::visitInstruction(Instruction &I) {
} else if (isa<PHINode>(I)) {
// PHI nodes are more difficult than other nodes because they actually
// "use" the value in the predecessor basic blocks they correspond to.
BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
Assert2(DT->dominates(OpBlock, PredBB) ||
!DT->isReachableFromEntry(PredBB),
BasicBlock *PredBB = dyn_cast<BasicBlock>(I.getOperand(i+1));
Assert2(PredBB && (DT->dominates(OpBlock, PredBB) ||
!DT->isReachableFromEntry(PredBB)),
"Instruction does not dominate all uses!", Op, &I);
} else {
if (OpBlock == BB) {
@ -1413,6 +1448,67 @@ void Verifier::visitInstruction(Instruction &I) {
}
}
InstsInThisBlock.insert(&I);
VerifyType(I.getType());
}
/// VerifyType - Verify that a type is well formed.
///
void Verifier::VerifyType(const Type *Ty) {
// We insert complex types into CheckedTypes even if they failed verification
// to prevent emitting messages about them multiple times if
switch (Ty->getTypeID()) {
case Type::FunctionTyID: {
if (!CheckedTypes.insert(Ty)) return;
const FunctionType *FTy = cast<FunctionType>(Ty);
const Type *RetTy = FTy->getReturnType();
Assert2(FunctionType::isValidReturnType(RetTy),
"Function type with invalid return type", RetTy, FTy);
VerifyType(RetTy);
for (int i = 0, e = FTy->getNumParams(); i != e; ++i) {
const Type *ElTy = FTy->getParamType(i);
Assert2(FunctionType::isValidArgumentType(ElTy),
"Function type with invalid parameter type", ElTy, FTy);
VerifyType(ElTy);
}
} break;
case Type::StructTyID: {
if (!CheckedTypes.insert(Ty)) return;
const StructType *STy = cast<StructType>(Ty);
for (int i = 0, e = STy->getNumElements(); i != e; ++i) {
const Type *ElTy = STy->getElementType(i);
Assert2(StructType::isValidElementType(ElTy),
"Structure type with invalid element type", ElTy, STy);
VerifyType(ElTy);
}
} break;
case Type::ArrayTyID: {
if (!CheckedTypes.insert(Ty)) return;
const ArrayType *ATy = cast<ArrayType>(Ty);
Assert1(ArrayType::isValidElementType(ATy->getElementType()),
"Array type with invalid element type", ATy);
VerifyType(ATy->getElementType());
} break;
case Type::PointerTyID: {
if (!CheckedTypes.insert(Ty)) return;
const PointerType *PTy = cast<PointerType>(Ty);
Assert1(PointerType::isValidElementType(PTy->getElementType()),
"Pointer type with invalid element type", PTy);
VerifyType(PTy->getElementType());
}
case Type::VectorTyID: {
if (!CheckedTypes.insert(Ty)) return;
const VectorType *VTy = cast<VectorType>(Ty);
Assert1(VectorType::isValidElementType(VTy->getElementType()),
"Vector type with invalid element type", VTy);
VerifyType(VTy->getElementType());
}
default:
return;
}
}
// Flags used by TableGen to mark intrinsic parameters with the