mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-07-25 13:24:46 +00:00
Combine the implementations of the core part of the SSAUpdater and
MachineSSAUpdater to avoid duplicating all the code. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103060 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@@ -12,7 +12,6 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "ssaupdater"
|
||||
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/Support/AlignOf.h"
|
||||
@@ -20,40 +19,17 @@
|
||||
#include "llvm/Support/CFG.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
||||
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
|
||||
using namespace llvm;
|
||||
|
||||
/// BBInfo - Per-basic block information used internally by SSAUpdater.
|
||||
/// The predecessors of each block are cached here since pred_iterator is
|
||||
/// slow and we need to iterate over the blocks at least a few times.
|
||||
class SSAUpdater::BBInfo {
|
||||
public:
|
||||
BasicBlock *BB; // Back-pointer to the corresponding block.
|
||||
Value *AvailableVal; // Value to use in this block.
|
||||
BBInfo *DefBB; // Block that defines the available value.
|
||||
int BlkNum; // Postorder number.
|
||||
BBInfo *IDom; // Immediate dominator.
|
||||
unsigned NumPreds; // Number of predecessor blocks.
|
||||
BBInfo **Preds; // Array[NumPreds] of predecessor blocks.
|
||||
PHINode *PHITag; // Marker for existing PHIs that match.
|
||||
|
||||
BBInfo(BasicBlock *ThisBB, Value *V)
|
||||
: BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0),
|
||||
NumPreds(0), Preds(0), PHITag(0) { }
|
||||
};
|
||||
|
||||
typedef DenseMap<BasicBlock*, SSAUpdater::BBInfo*> BBMapTy;
|
||||
|
||||
typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
|
||||
static AvailableValsTy &getAvailableVals(void *AV) {
|
||||
return *static_cast<AvailableValsTy*>(AV);
|
||||
}
|
||||
|
||||
static BBMapTy *getBBMap(void *BM) {
|
||||
return static_cast<BBMapTy*>(BM);
|
||||
}
|
||||
|
||||
SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
|
||||
: AV(0), PrototypeValue(0), BM(0), InsertedPHIs(NewPHI) {}
|
||||
: AV(0), PrototypeValue(0), InsertedPHIs(NewPHI) {}
|
||||
|
||||
SSAUpdater::~SSAUpdater() {
|
||||
delete &getAvailableVals(AV);
|
||||
@@ -105,9 +81,7 @@ static bool IsEquivalentPHI(PHINode *PHI,
|
||||
/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
|
||||
/// live at the end of the specified block.
|
||||
Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
|
||||
assert(BM == 0 && "Unexpected Internal State");
|
||||
Value *Res = GetValueAtEndOfBlockInternal(BB);
|
||||
assert(BM == 0 && "Unexpected Internal State");
|
||||
return Res;
|
||||
}
|
||||
|
||||
@@ -231,6 +205,117 @@ void SSAUpdater::RewriteUse(Use &U) {
|
||||
U.set(V);
|
||||
}
|
||||
|
||||
/// PHIiter - Iterator for PHI operands. This is used for the PHI_iterator
|
||||
/// in the SSAUpdaterImpl template.
|
||||
namespace {
|
||||
class PHIiter {
|
||||
private:
|
||||
PHINode *PHI;
|
||||
unsigned idx;
|
||||
|
||||
public:
|
||||
explicit PHIiter(PHINode *P) // begin iterator
|
||||
: PHI(P), idx(0) {}
|
||||
PHIiter(PHINode *P, bool) // end iterator
|
||||
: PHI(P), idx(PHI->getNumIncomingValues()) {}
|
||||
|
||||
PHIiter &operator++() { ++idx; return *this; }
|
||||
bool operator==(const PHIiter& x) const { return idx == x.idx; }
|
||||
bool operator!=(const PHIiter& x) const { return !operator==(x); }
|
||||
Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
|
||||
BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
|
||||
};
|
||||
}
|
||||
|
||||
/// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template,
|
||||
/// specialized for SSAUpdater.
|
||||
namespace llvm {
|
||||
template<>
|
||||
class SSAUpdaterTraits<SSAUpdater> {
|
||||
public:
|
||||
typedef BasicBlock BlkT;
|
||||
typedef Value *ValT;
|
||||
typedef PHINode PhiT;
|
||||
|
||||
typedef succ_iterator BlkSucc_iterator;
|
||||
static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
|
||||
static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
|
||||
|
||||
typedef PHIiter PHI_iterator;
|
||||
static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
|
||||
static inline PHI_iterator PHI_end(PhiT *PHI) {
|
||||
return PHI_iterator(PHI, true);
|
||||
}
|
||||
|
||||
/// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
|
||||
/// vector, set Info->NumPreds, and allocate space in Info->Preds.
|
||||
static void FindPredecessorBlocks(BasicBlock *BB,
|
||||
SmallVectorImpl<BasicBlock*> *Preds) {
|
||||
// We can get our predecessor info by walking the pred_iterator list,
|
||||
// but it is relatively slow. If we already have PHI nodes in this
|
||||
// block, walk one of them to get the predecessor list instead.
|
||||
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
|
||||
for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
|
||||
Preds->push_back(SomePhi->getIncomingBlock(PI));
|
||||
} else {
|
||||
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
|
||||
Preds->push_back(*PI);
|
||||
}
|
||||
}
|
||||
|
||||
/// GetUndefVal - Get an undefined value of the same type as the value
|
||||
/// being handled.
|
||||
static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
|
||||
return UndefValue::get(Updater->PrototypeValue->getType());
|
||||
}
|
||||
|
||||
/// CreateEmptyPHI - Create a new PHI instruction in the specified block.
|
||||
/// Reserve space for the operands but do not fill them in yet.
|
||||
static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
|
||||
SSAUpdater *Updater) {
|
||||
PHINode *PHI = PHINode::Create(Updater->PrototypeValue->getType(),
|
||||
Updater->PrototypeValue->getName(),
|
||||
&BB->front());
|
||||
PHI->reserveOperandSpace(NumPreds);
|
||||
return PHI;
|
||||
}
|
||||
|
||||
/// AddPHIOperand - Add the specified value as an operand of the PHI for
|
||||
/// the specified predecessor block.
|
||||
static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
|
||||
PHI->addIncoming(Val, Pred);
|
||||
}
|
||||
|
||||
/// InstrIsPHI - Check if an instruction is a PHI.
|
||||
///
|
||||
static PHINode *InstrIsPHI(Instruction *I) {
|
||||
return dyn_cast<PHINode>(I);
|
||||
}
|
||||
|
||||
/// ValueIsPHI - Check if a value is a PHI.
|
||||
///
|
||||
static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
|
||||
return dyn_cast<PHINode>(Val);
|
||||
}
|
||||
|
||||
/// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
|
||||
/// operands, i.e., it was just added.
|
||||
static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
|
||||
PHINode *PHI = ValueIsPHI(Val, Updater);
|
||||
if (PHI && PHI->getNumIncomingValues() == 0)
|
||||
return PHI;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// GetPHIValue - For the specified PHI instruction, return the value
|
||||
/// that it defines.
|
||||
static Value *GetPHIValue(PHINode *PHI) {
|
||||
return PHI;
|
||||
}
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
|
||||
/// for the specified BB and if so, return it. If not, construct SSA form by
|
||||
/// first calculating the required placement of PHIs and then inserting new
|
||||
@@ -240,418 +325,6 @@ Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
|
||||
if (Value *V = AvailableVals[BB])
|
||||
return V;
|
||||
|
||||
// Pool allocation used internally by GetValueAtEndOfBlock.
|
||||
BumpPtrAllocator Allocator;
|
||||
BBMapTy BBMapObj;
|
||||
BM = &BBMapObj;
|
||||
|
||||
SmallVector<BBInfo*, 100> BlockList;
|
||||
BuildBlockList(BB, &BlockList, &Allocator);
|
||||
|
||||
// Special case: bail out if BB is unreachable.
|
||||
if (BlockList.size() == 0) {
|
||||
BM = 0;
|
||||
return UndefValue::get(PrototypeValue->getType());
|
||||
}
|
||||
|
||||
FindDominators(&BlockList);
|
||||
FindPHIPlacement(&BlockList);
|
||||
FindAvailableVals(&BlockList);
|
||||
|
||||
BM = 0;
|
||||
return BBMapObj[BB]->DefBB->AvailableVal;
|
||||
}
|
||||
|
||||
/// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
|
||||
/// vector, set Info->NumPreds, and allocate space in Info->Preds.
|
||||
static void FindPredecessorBlocks(SSAUpdater::BBInfo *Info,
|
||||
SmallVectorImpl<BasicBlock*> *Preds,
|
||||
BumpPtrAllocator *Allocator) {
|
||||
// We can get our predecessor info by walking the pred_iterator list,
|
||||
// but it is relatively slow. If we already have PHI nodes in this
|
||||
// block, walk one of them to get the predecessor list instead.
|
||||
BasicBlock *BB = Info->BB;
|
||||
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
|
||||
for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
|
||||
Preds->push_back(SomePhi->getIncomingBlock(PI));
|
||||
} else {
|
||||
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
|
||||
Preds->push_back(*PI);
|
||||
}
|
||||
|
||||
Info->NumPreds = Preds->size();
|
||||
Info->Preds = static_cast<SSAUpdater::BBInfo**>
|
||||
(Allocator->Allocate(Info->NumPreds * sizeof(SSAUpdater::BBInfo*),
|
||||
AlignOf<SSAUpdater::BBInfo*>::Alignment));
|
||||
}
|
||||
|
||||
/// BuildBlockList - Starting from the specified basic block, traverse back
|
||||
/// through its predecessors until reaching blocks with known values. Create
|
||||
/// BBInfo structures for the blocks and append them to the block list.
|
||||
void SSAUpdater::BuildBlockList(BasicBlock *BB, BlockListTy *BlockList,
|
||||
BumpPtrAllocator *Allocator) {
|
||||
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
||||
BBMapTy *BBMap = getBBMap(BM);
|
||||
SmallVector<BBInfo*, 10> RootList;
|
||||
SmallVector<BBInfo*, 64> WorkList;
|
||||
|
||||
BBInfo *Info = new (*Allocator) BBInfo(BB, 0);
|
||||
(*BBMap)[BB] = Info;
|
||||
WorkList.push_back(Info);
|
||||
|
||||
// Search backward from BB, creating BBInfos along the way and stopping when
|
||||
// reaching blocks that define the value. Record those defining blocks on
|
||||
// the RootList.
|
||||
SmallVector<BasicBlock*, 10> Preds;
|
||||
while (!WorkList.empty()) {
|
||||
Info = WorkList.pop_back_val();
|
||||
Preds.clear();
|
||||
FindPredecessorBlocks(Info, &Preds, Allocator);
|
||||
|
||||
// Treat an unreachable predecessor as a definition with 'undef'.
|
||||
if (Info->NumPreds == 0) {
|
||||
Info->AvailableVal = UndefValue::get(PrototypeValue->getType());
|
||||
Info->DefBB = Info;
|
||||
RootList.push_back(Info);
|
||||
continue;
|
||||
}
|
||||
|
||||
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||||
BasicBlock *Pred = Preds[p];
|
||||
// Check if BBMap already has a BBInfo for the predecessor block.
|
||||
BBMapTy::value_type &BBMapBucket = BBMap->FindAndConstruct(Pred);
|
||||
if (BBMapBucket.second) {
|
||||
Info->Preds[p] = BBMapBucket.second;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Create a new BBInfo for the predecessor.
|
||||
Value *PredVal = AvailableVals.lookup(Pred);
|
||||
BBInfo *PredInfo = new (*Allocator) BBInfo(Pred, PredVal);
|
||||
BBMapBucket.second = PredInfo;
|
||||
Info->Preds[p] = PredInfo;
|
||||
|
||||
if (PredInfo->AvailableVal) {
|
||||
RootList.push_back(PredInfo);
|
||||
continue;
|
||||
}
|
||||
WorkList.push_back(PredInfo);
|
||||
}
|
||||
}
|
||||
|
||||
// Now that we know what blocks are backwards-reachable from the starting
|
||||
// block, do a forward depth-first traversal to assign postorder numbers
|
||||
// to those blocks.
|
||||
BBInfo *PseudoEntry = new (*Allocator) BBInfo(0, 0);
|
||||
unsigned BlkNum = 1;
|
||||
|
||||
// Initialize the worklist with the roots from the backward traversal.
|
||||
while (!RootList.empty()) {
|
||||
Info = RootList.pop_back_val();
|
||||
Info->IDom = PseudoEntry;
|
||||
Info->BlkNum = -1;
|
||||
WorkList.push_back(Info);
|
||||
}
|
||||
|
||||
while (!WorkList.empty()) {
|
||||
Info = WorkList.back();
|
||||
|
||||
if (Info->BlkNum == -2) {
|
||||
// All the successors have been handled; assign the postorder number.
|
||||
Info->BlkNum = BlkNum++;
|
||||
// If not a root, put it on the BlockList.
|
||||
if (!Info->AvailableVal)
|
||||
BlockList->push_back(Info);
|
||||
WorkList.pop_back();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Leave this entry on the worklist, but set its BlkNum to mark that its
|
||||
// successors have been put on the worklist. When it returns to the top
|
||||
// the list, after handling its successors, it will be assigned a number.
|
||||
Info->BlkNum = -2;
|
||||
|
||||
// Add unvisited successors to the work list.
|
||||
for (succ_iterator SI = succ_begin(Info->BB), E = succ_end(Info->BB);
|
||||
SI != E; ++SI) {
|
||||
BBInfo *SuccInfo = (*BBMap)[*SI];
|
||||
if (!SuccInfo || SuccInfo->BlkNum)
|
||||
continue;
|
||||
SuccInfo->BlkNum = -1;
|
||||
WorkList.push_back(SuccInfo);
|
||||
}
|
||||
}
|
||||
PseudoEntry->BlkNum = BlkNum;
|
||||
}
|
||||
|
||||
/// IntersectDominators - This is the dataflow lattice "meet" operation for
|
||||
/// finding dominators. Given two basic blocks, it walks up the dominator
|
||||
/// tree until it finds a common dominator of both. It uses the postorder
|
||||
/// number of the blocks to determine how to do that.
|
||||
static SSAUpdater::BBInfo *IntersectDominators(SSAUpdater::BBInfo *Blk1,
|
||||
SSAUpdater::BBInfo *Blk2) {
|
||||
while (Blk1 != Blk2) {
|
||||
while (Blk1->BlkNum < Blk2->BlkNum) {
|
||||
Blk1 = Blk1->IDom;
|
||||
if (!Blk1)
|
||||
return Blk2;
|
||||
}
|
||||
while (Blk2->BlkNum < Blk1->BlkNum) {
|
||||
Blk2 = Blk2->IDom;
|
||||
if (!Blk2)
|
||||
return Blk1;
|
||||
}
|
||||
}
|
||||
return Blk1;
|
||||
}
|
||||
|
||||
/// FindDominators - Calculate the dominator tree for the subset of the CFG
|
||||
/// corresponding to the basic blocks on the BlockList. This uses the
|
||||
/// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey and
|
||||
/// Kennedy, published in Software--Practice and Experience, 2001, 4:1-10.
|
||||
/// Because the CFG subset does not include any edges leading into blocks that
|
||||
/// define the value, the results are not the usual dominator tree. The CFG
|
||||
/// subset has a single pseudo-entry node with edges to a set of root nodes
|
||||
/// for blocks that define the value. The dominators for this subset CFG are
|
||||
/// not the standard dominators but they are adequate for placing PHIs within
|
||||
/// the subset CFG.
|
||||
void SSAUpdater::FindDominators(BlockListTy *BlockList) {
|
||||
bool Changed;
|
||||
do {
|
||||
Changed = false;
|
||||
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
||||
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
||||
E = BlockList->rend(); I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
|
||||
// Start with the first predecessor.
|
||||
assert(Info->NumPreds > 0 && "unreachable block");
|
||||
BBInfo *NewIDom = Info->Preds[0];
|
||||
|
||||
// Iterate through the block's other predecessors.
|
||||
for (unsigned p = 1; p != Info->NumPreds; ++p) {
|
||||
BBInfo *Pred = Info->Preds[p];
|
||||
NewIDom = IntersectDominators(NewIDom, Pred);
|
||||
}
|
||||
|
||||
// Check if the IDom value has changed.
|
||||
if (NewIDom != Info->IDom) {
|
||||
Info->IDom = NewIDom;
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
} while (Changed);
|
||||
}
|
||||
|
||||
/// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
|
||||
/// any blocks containing definitions of the value. If one is found, then the
|
||||
/// successor of Pred is in the dominance frontier for the definition, and
|
||||
/// this function returns true.
|
||||
static bool IsDefInDomFrontier(const SSAUpdater::BBInfo *Pred,
|
||||
const SSAUpdater::BBInfo *IDom) {
|
||||
for (; Pred != IDom; Pred = Pred->IDom) {
|
||||
if (Pred->DefBB == Pred)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers of
|
||||
/// the known definitions. Iteratively add PHIs in the dom frontiers until
|
||||
/// nothing changes. Along the way, keep track of the nearest dominating
|
||||
/// definitions for non-PHI blocks.
|
||||
void SSAUpdater::FindPHIPlacement(BlockListTy *BlockList) {
|
||||
bool Changed;
|
||||
do {
|
||||
Changed = false;
|
||||
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
||||
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
||||
E = BlockList->rend(); I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
|
||||
// If this block already needs a PHI, there is nothing to do here.
|
||||
if (Info->DefBB == Info)
|
||||
continue;
|
||||
|
||||
// Default to use the same def as the immediate dominator.
|
||||
BBInfo *NewDefBB = Info->IDom->DefBB;
|
||||
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||||
if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
|
||||
// Need a PHI here.
|
||||
NewDefBB = Info;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if anything changed.
|
||||
if (NewDefBB != Info->DefBB) {
|
||||
Info->DefBB = NewDefBB;
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
} while (Changed);
|
||||
}
|
||||
|
||||
/// FindAvailableVal - If this block requires a PHI, first check if an existing
|
||||
/// PHI matches the PHI placement and reaching definitions computed earlier,
|
||||
/// and if not, create a new PHI. Visit all the block's predecessors to
|
||||
/// calculate the available value for each one and fill in the incoming values
|
||||
/// for a new PHI.
|
||||
void SSAUpdater::FindAvailableVals(BlockListTy *BlockList) {
|
||||
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
||||
|
||||
// Go through the worklist in forward order (i.e., backward through the CFG)
|
||||
// and check if existing PHIs can be used. If not, create empty PHIs where
|
||||
// they are needed.
|
||||
for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end();
|
||||
I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
// Check if there needs to be a PHI in BB.
|
||||
if (Info->DefBB != Info)
|
||||
continue;
|
||||
|
||||
// Look for an existing PHI.
|
||||
FindExistingPHI(Info->BB, BlockList);
|
||||
if (Info->AvailableVal)
|
||||
continue;
|
||||
|
||||
PHINode *PHI = PHINode::Create(PrototypeValue->getType(),
|
||||
PrototypeValue->getName(),
|
||||
&Info->BB->front());
|
||||
PHI->reserveOperandSpace(Info->NumPreds);
|
||||
Info->AvailableVal = PHI;
|
||||
AvailableVals[Info->BB] = PHI;
|
||||
}
|
||||
|
||||
// Now go back through the worklist in reverse order to fill in the arguments
|
||||
// for any new PHIs added in the forward traversal.
|
||||
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
||||
E = BlockList->rend(); I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
|
||||
if (Info->DefBB != Info) {
|
||||
// Record the available value at join nodes to speed up subsequent
|
||||
// uses of this SSAUpdater for the same value.
|
||||
if (Info->NumPreds > 1)
|
||||
AvailableVals[Info->BB] = Info->DefBB->AvailableVal;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Check if this block contains a newly added PHI.
|
||||
PHINode *PHI = dyn_cast<PHINode>(Info->AvailableVal);
|
||||
if (!PHI || PHI->getNumIncomingValues() == Info->NumPreds)
|
||||
continue;
|
||||
|
||||
// Iterate through the block's predecessors.
|
||||
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||||
BBInfo *PredInfo = Info->Preds[p];
|
||||
BasicBlock *Pred = PredInfo->BB;
|
||||
// Skip to the nearest preceding definition.
|
||||
if (PredInfo->DefBB != PredInfo)
|
||||
PredInfo = PredInfo->DefBB;
|
||||
PHI->addIncoming(PredInfo->AvailableVal, Pred);
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n");
|
||||
|
||||
// If the client wants to know about all new instructions, tell it.
|
||||
if (InsertedPHIs) InsertedPHIs->push_back(PHI);
|
||||
}
|
||||
}
|
||||
|
||||
/// FindExistingPHI - Look through the PHI nodes in a block to see if any of
|
||||
/// them match what is needed.
|
||||
void SSAUpdater::FindExistingPHI(BasicBlock *BB, BlockListTy *BlockList) {
|
||||
PHINode *SomePHI;
|
||||
for (BasicBlock::iterator It = BB->begin();
|
||||
(SomePHI = dyn_cast<PHINode>(It)); ++It) {
|
||||
if (CheckIfPHIMatches(SomePHI)) {
|
||||
RecordMatchingPHI(SomePHI);
|
||||
break;
|
||||
}
|
||||
// Match failed: clear all the PHITag values.
|
||||
for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end();
|
||||
I != E; ++I)
|
||||
(*I)->PHITag = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/// CheckIfPHIMatches - Check if a PHI node matches the placement and values
|
||||
/// in the BBMap.
|
||||
bool SSAUpdater::CheckIfPHIMatches(PHINode *PHI) {
|
||||
BBMapTy *BBMap = getBBMap(BM);
|
||||
SmallVector<PHINode*, 20> WorkList;
|
||||
WorkList.push_back(PHI);
|
||||
|
||||
// Mark that the block containing this PHI has been visited.
|
||||
(*BBMap)[PHI->getParent()]->PHITag = PHI;
|
||||
|
||||
while (!WorkList.empty()) {
|
||||
PHI = WorkList.pop_back_val();
|
||||
|
||||
// Iterate through the PHI's incoming values.
|
||||
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
|
||||
Value *IncomingVal = PHI->getIncomingValue(i);
|
||||
BBInfo *PredInfo = (*BBMap)[PHI->getIncomingBlock(i)];
|
||||
// Skip to the nearest preceding definition.
|
||||
if (PredInfo->DefBB != PredInfo)
|
||||
PredInfo = PredInfo->DefBB;
|
||||
|
||||
// Check if it matches the expected value.
|
||||
if (PredInfo->AvailableVal) {
|
||||
if (IncomingVal == PredInfo->AvailableVal)
|
||||
continue;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check if the value is a PHI in the correct block.
|
||||
PHINode *IncomingPHIVal = dyn_cast<PHINode>(IncomingVal);
|
||||
if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
|
||||
return false;
|
||||
|
||||
// If this block has already been visited, check if this PHI matches.
|
||||
if (PredInfo->PHITag) {
|
||||
if (IncomingPHIVal == PredInfo->PHITag)
|
||||
continue;
|
||||
return false;
|
||||
}
|
||||
PredInfo->PHITag = IncomingPHIVal;
|
||||
|
||||
WorkList.push_back(IncomingPHIVal);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// RecordMatchingPHI - For a PHI node that matches, record it and its input
|
||||
/// PHIs in both the BBMap and the AvailableVals mapping.
|
||||
void SSAUpdater::RecordMatchingPHI(PHINode *PHI) {
|
||||
BBMapTy *BBMap = getBBMap(BM);
|
||||
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
||||
SmallVector<PHINode*, 20> WorkList;
|
||||
WorkList.push_back(PHI);
|
||||
|
||||
// Record this PHI.
|
||||
BasicBlock *BB = PHI->getParent();
|
||||
AvailableVals[BB] = PHI;
|
||||
(*BBMap)[BB]->AvailableVal = PHI;
|
||||
|
||||
while (!WorkList.empty()) {
|
||||
PHI = WorkList.pop_back_val();
|
||||
|
||||
// Iterate through the PHI's incoming values.
|
||||
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
|
||||
PHINode *IncomingPHIVal = dyn_cast<PHINode>(PHI->getIncomingValue(i));
|
||||
if (!IncomingPHIVal) continue;
|
||||
BB = IncomingPHIVal->getParent();
|
||||
BBInfo *Info = (*BBMap)[BB];
|
||||
if (!Info || Info->AvailableVal)
|
||||
continue;
|
||||
|
||||
// Record the PHI and add it to the worklist.
|
||||
AvailableVals[BB] = IncomingPHIVal;
|
||||
Info->AvailableVal = IncomingPHIVal;
|
||||
WorkList.push_back(IncomingPHIVal);
|
||||
}
|
||||
}
|
||||
SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
|
||||
return Impl.GetValue(BB);
|
||||
}
|
||||
|
Reference in New Issue
Block a user