Implement Constant::isAllOnesValue(). Fix ConstantFolding to use the new api.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138469 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Nadav Rotem 2011-08-24 20:18:38 +00:00
parent df9ce6bbc5
commit 4c7c0f2353
5 changed files with 62 additions and 19 deletions

View File

@ -52,6 +52,10 @@ public:
/// getNullValue.
bool isNullValue() const;
/// isAllOnesValue - Return true if this is the value that would be returned by
/// getAllOnesValue.
bool isAllOnesValue() const;
/// isNegativeZeroValue - Return true if the value is what would be returned
/// by getZeroValueForNegation.
bool isNegativeZeroValue() const;

View File

@ -170,7 +170,7 @@ public:
/// to true.
/// @returns true iff this constant's bits are all set to true.
/// @brief Determine if the value is all ones.
bool isAllOnesValue() const {
bool isMinusOne() const {
return Val.isAllOnesValue();
}

View File

@ -45,16 +45,12 @@ using namespace llvm;
/// ConstantExpr if unfoldable.
static Constant *FoldBitCast(Constant *C, Type *DestTy,
const TargetData &TD) {
ConstantVector *CV = dyn_cast<ConstantVector>(C);
IntegerType *IntVTy = dyn_cast<IntegerType>(DestTy);
// When casting vectors to scalar integers, catch the
// obvious splat cases.
if (IntVTy && CV) {
if (CV->isNullValue()) return ConstantInt::getNullValue(IntVTy);
if (CV->isAllOnesValue()) return ConstantInt::getAllOnesValue(IntVTy);
}
// Catch the obvious splat cases.
if (C->isNullValue() && !DestTy->isX86_MMXTy())
return Constant::getNullValue(DestTy);
if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
return Constant::getAllOnesValue(DestTy);
// The code below only handles casts to vectors currently.
VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
if (DestVTy == 0)
@ -68,6 +64,7 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
}
// If this is a bitcast from constant vector -> vector, fold it.
ConstantVector *CV = dyn_cast<ConstantVector>(C);
if (CV == 0)
return ConstantExpr::getBitCast(C, DestTy);

View File

@ -62,6 +62,21 @@ bool Constant::isNullValue() const {
return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
}
bool Constant::isAllOnesValue() const {
// Check for -1 integers
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return CI->isMinusOne();
// Check for FP which are bitcasted from -1 integers
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
// Check for constant vectors
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
return CV->isAllOnesValue();
return false;
}
// Constructor to create a '0' constant of arbitrary type...
Constant *Constant::getNullValue(Type *Ty) {
switch (Ty->getTypeID()) {
@ -126,7 +141,7 @@ Constant *Constant::getAllOnesValue(Type *Ty) {
SmallVector<Constant*, 16> Elts;
VectorType *VTy = cast<VectorType>(Ty);
Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
assert(Elts[0] && "Not a vector integer type!");
assert(Elts[0] && "Invalid AllOnes value!");
return cast<ConstantVector>(ConstantVector::get(Elts));
}
@ -1064,13 +1079,16 @@ bool ConstantVector::isAllOnesValue() const {
// Check out first element.
const Constant *Elt = getOperand(0);
const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
if (!CI || !CI->isAllOnesValue()) return false;
const ConstantFP *CF = dyn_cast<ConstantFP>(Elt);
// Then make sure all remaining elements point to the same value.
for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
if (getOperand(I) != Elt)
return false;
return true;
// First value is all-ones.
return (CI && CI->isAllOnesValue()) ||
(CF && CF->isAllOnesValue());
}
/// getSplatValue - If this is a splat constant, where all of the

View File

@ -11,7 +11,7 @@ define i32 @test1(i64 %a) {
%t3 = xor <2 x i32> %t1, %t2
%t4 = extractelement <2 x i32> %t3, i32 0
ret i32 %t4
; CHECK: @test1
; CHECK: ret i32 0
}
@ -30,7 +30,7 @@ define float @test2(<2 x float> %A, <2 x i32> %B) {
%add = fadd float %tmp24, %tmp4
ret float %add
; CHECK: @test2
; CHECK-NEXT: %tmp24 = extractelement <2 x float> %A, i32 0
; CHECK-NEXT: bitcast <2 x i32> %B to <2 x float>
@ -55,7 +55,7 @@ define float @test3(<2 x float> %A, <2 x i64> %B) {
%add = fadd float %tmp24, %tmp4
ret float %add
; CHECK: @test3
; CHECK-NEXT: %tmp24 = extractelement <2 x float> %A, i32 1
; CHECK-NEXT: bitcast <2 x i64> %B to <4 x float>
@ -75,7 +75,7 @@ define <2 x i32> @test4(i32 %A, i32 %B){
; CHECK: @test4
; CHECK-NEXT: insertelement <2 x i32> undef, i32 %A, i32 0
; CHECK-NEXT: insertelement <2 x i32> {{.*}}, i32 %B, i32 1
; CHECK-NEXT: ret <2 x i32>
; CHECK-NEXT: ret <2 x i32>
}
@ -92,7 +92,7 @@ define <2 x float> @test5(float %A, float %B) {
; CHECK: @test5
; CHECK-NEXT: insertelement <2 x float> undef, float %A, i32 0
; CHECK-NEXT: insertelement <2 x float> {{.*}}, float %B, i32 1
; CHECK-NEXT: ret <2 x float>
; CHECK-NEXT: ret <2 x float>
}
define <2 x float> @test6(float %A){
@ -113,3 +113,27 @@ define i64 @ISPC0(i64 %in) {
; CHECK: @ISPC0
; CHECK: ret i64 0
}
define i64 @Vec2(i64 %in) {
%out = and i64 %in, xor (i64 bitcast (<4 x i16> <i16 0, i16 0, i16 0, i16 0> to i64), i64 0)
ret i64 %out
; CHECK: @Vec2
; CHECK: ret i64 0
}
define i64 @All11(i64 %in) {
%out = and i64 %in, xor (i64 bitcast (<2 x float> bitcast (i64 -1 to <2 x float>) to i64), i64 -1)
ret i64 %out
; CHECK: @All11
; CHECK: ret i64 0
}
define i32 @All111(i32 %in) {
%out = and i32 %in, xor (i32 bitcast (<1 x float> bitcast (i32 -1 to <1 x float>) to i32), i32 -1)
ret i32 %out
; CHECK: @All111
; CHECK: ret i32 0
}