Enable double to float shrinking optimizations for binary functions like 'fmin/fmax'. Fix radar:15283121

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197434 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Yi Jiang 2013-12-16 22:42:40 +00:00
parent 89452cf827
commit 4faf2ba0c7
6 changed files with 172 additions and 9 deletions

View File

@ -251,6 +251,18 @@ namespace llvm {
floorf,
/// long double floorl(long double x);
floorl,
/// double fmax(double x, double y);
fmax,
/// float fmaxf(float x, float y);
fmaxf,
/// long double fmaxl(long double x, long double y);
fmaxl,
/// double fmin(double x, double y);
fmin,
/// float fminf(float x, float y);
fminf,
/// long double fminl(long double x, long double y);
fminl,
/// double fmod(double x, double y);
fmod,
/// float fmodf(float x, float y);
@ -703,6 +715,8 @@ public:
case LibFunc::sqrt: case LibFunc::sqrtf: case LibFunc::sqrtl:
case LibFunc::sqrt_finite: case LibFunc::sqrtf_finite:
case LibFunc::sqrtl_finite:
case LibFunc::fmax: case LibFunc::fmaxf: case LibFunc::fmaxl:
case LibFunc::fmin: case LibFunc::fminf: case LibFunc::fminl:
case LibFunc::floor: case LibFunc::floorf: case LibFunc::floorl:
case LibFunc::nearbyint: case LibFunc::nearbyintf: case LibFunc::nearbyintl:
case LibFunc::ceil: case LibFunc::ceilf: case LibFunc::ceill:

View File

@ -83,6 +83,14 @@ namespace llvm {
Value *EmitUnaryFloatFnCall(Value *Op, StringRef Name, IRBuilder<> &B,
const AttributeSet &Attrs);
/// EmitUnaryFloatFnCall - Emit a call to the binary function named 'Name'
/// (e.g. 'fmin'). This function is known to take type matching 'Op1' and
/// 'Op2' and return one value with the same type. If 'Op1/Op2' are long
/// double, 'l' is added as the suffix of name, if 'Op1/Op2' are float, we
/// add a 'f' suffix.
Value *EmitBinaryFloatFnCall(Value *Op1, Value *Op2, StringRef Name,
IRBuilder<> &B, const AttributeSet &Attrs);
/// EmitPutChar - Emit a call to the putchar function. This assumes that Char
/// is an integer.
Value *EmitPutChar(Value *Char, IRBuilder<> &B, const DataLayout *TD,

View File

@ -140,6 +140,12 @@ const char* TargetLibraryInfo::StandardNames[LibFunc::NumLibFuncs] =
"floor",
"floorf",
"floorl",
"fmax",
"fmaxf",
"fmaxl",
"fmin",
"fminf",
"fminl",
"fmod",
"fmodf",
"fmodl",
@ -453,6 +459,8 @@ static void initialize(TargetLibraryInfo &TLI, const Triple &T,
TLI.setUnavailable(LibFunc::fabsf); // Win32 and Win64 both lack fabsf
TLI.setUnavailable(LibFunc::fabsl);
TLI.setUnavailable(LibFunc::floorl);
TLI.setUnavailable(LibFunc::fmaxl);
TLI.setUnavailable(LibFunc::fminl);
TLI.setUnavailable(LibFunc::fmodl);
TLI.setUnavailable(LibFunc::frexpl);
TLI.setUnavailable(LibFunc::logl);
@ -523,6 +531,8 @@ static void initialize(TargetLibraryInfo &TLI, const Triple &T,
TLI.setUnavailable(LibFunc::coshf);
TLI.setUnavailable(LibFunc::expf);
TLI.setUnavailable(LibFunc::floorf);
TLI.setUnavailable(LibFunc::fminf);
TLI.setUnavailable(LibFunc::fmaxf);
TLI.setUnavailable(LibFunc::fmodf);
TLI.setUnavailable(LibFunc::logf);
TLI.setUnavailable(LibFunc::powf);

View File

@ -286,6 +286,21 @@ Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
return CI;
}
/// Append a suffix to the function name according to the type of 'Op'.
static void AppendTypeSuffix(Value *Op, StringRef &Name, SmallString<20> &NameBuffer) {
if (!Op->getType()->isDoubleTy()) {
NameBuffer += Name;
if (Op->getType()->isFloatTy())
NameBuffer += 'f';
else
NameBuffer += 'l';
Name = NameBuffer;
}
return;
}
/// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
/// 'floor'). This function is known to take a single of type matching 'Op' and
/// returns one value with the same type. If 'Op' is a long double, 'l' is
@ -293,15 +308,7 @@ Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
Value *llvm::EmitUnaryFloatFnCall(Value *Op, StringRef Name, IRBuilder<> &B,
const AttributeSet &Attrs) {
SmallString<20> NameBuffer;
if (!Op->getType()->isDoubleTy()) {
// If we need to add a suffix, copy into NameBuffer.
NameBuffer += Name;
if (Op->getType()->isFloatTy())
NameBuffer += 'f'; // floorf
else
NameBuffer += 'l'; // floorl
Name = NameBuffer;
}
AppendTypeSuffix(Op, Name, NameBuffer);
Module *M = B.GetInsertBlock()->getParent()->getParent();
Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
@ -314,6 +321,27 @@ Value *llvm::EmitUnaryFloatFnCall(Value *Op, StringRef Name, IRBuilder<> &B,
return CI;
}
/// EmitBinaryFloatFnCall - Emit a call to the binary function named 'Name'
/// (e.g. 'fmin'). This function is known to take type matching 'Op1' and 'Op2'
/// and return one value with the same type. If 'Op1/Op2' are long double, 'l'
/// is added as the suffix of name, if 'Op1/Op2' is a float, we add a 'f'
/// suffix.
Value *llvm::EmitBinaryFloatFnCall(Value *Op1, Value *Op2, StringRef Name,
IRBuilder<> &B, const AttributeSet &Attrs) {
SmallString<20> NameBuffer;
AppendTypeSuffix(Op1, Name, NameBuffer);
Module *M = B.GetInsertBlock()->getParent()->getParent();
Value *Callee = M->getOrInsertFunction(Name, Op1->getType(),
Op1->getType(), Op2->getType(), NULL);
CallInst *CI = B.CreateCall2(Callee, Op1, Op2, Name);
CI->setAttributes(Attrs);
if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
return CI;
}
/// EmitPutChar - Emit a call to the putchar function. This assumes that Char
/// is an integer.
Value *llvm::EmitPutChar(Value *Char, IRBuilder<> &B, const DataLayout *TD,

View File

@ -1100,6 +1100,49 @@ struct UnaryDoubleFPOpt : public LibCallOptimization {
}
};
// Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
struct BinaryDoubleFPOpt : public LibCallOptimization {
bool CheckRetType;
BinaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 2 arguments of the same FP type, which match the
// result type.
if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
!FT->getParamType(0)->isFloatingPointTy())
return 0;
if (CheckRetType) {
// Check if all the uses for function like 'fmin/fmax' are converted to
// float.
for (Value::use_iterator UseI = CI->use_begin(); UseI != CI->use_end();
++UseI) {
FPTruncInst *Cast = dyn_cast<FPTruncInst>(*UseI);
if (Cast == 0 || !Cast->getType()->isFloatTy())
return 0;
}
}
// If this is something like 'fmin((double)floatval1, (double)floatval2)',
// we convert it to fminf.
FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
if (Cast1 == 0 || !Cast1->getOperand(0)->getType()->isFloatTy() ||
Cast2 == 0 || !Cast2->getOperand(0)->getType()->isFloatTy())
return 0;
// fmin((double)floatval1, (double)floatval2)
// -> (double)fmin(floatval1, floatval2)
Value *V = NULL;
Value *V1 = Cast1->getOperand(0);
Value *V2 = Cast2->getOperand(0);
V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
Callee->getAttributes());
return B.CreateFPExt(V, B.getDoubleTy());
}
};
struct UnsafeFPLibCallOptimization : public LibCallOptimization {
bool UnsafeFPShrink;
UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
@ -1981,6 +2024,7 @@ static MemSetOpt MemSet;
// Math library call optimizations.
static UnaryDoubleFPOpt UnaryDoubleFP(false);
static BinaryDoubleFPOpt BinaryDoubleFP(false);
static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
static SinCosPiOpt SinCosPi;
@ -2150,6 +2194,11 @@ LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst *CI) {
if (UnsafeFPShrink && hasFloatVersion(FuncName))
return &UnsafeUnaryDoubleFP;
return 0;
case LibFunc::fmin:
case LibFunc::fmax:
if (hasFloatVersion(FuncName))
return &BinaryDoubleFP;
return 0;
case LibFunc::memcpy_chk:
return &MemCpyChk;
default:

View File

@ -170,6 +170,58 @@ define i32 @test14(float %x, float %y) nounwind uwtable {
; CHECK-NEXT: fcmp oeq float %truncf, %y
}
define i32 @test15(float %x, float %y, float %z) nounwind uwtable {
%1 = fpext float %x to double
%2 = fpext float %y to double
%3 = call double @fmin(double %1, double %2) nounwind
%4 = fpext float %z to double
%5 = fcmp oeq double %3, %4
%6 = zext i1 %5 to i32
ret i32 %6
; CHECK-LABEL: @test15(
; CHECK-NEXT: %fminf = call float @fminf(float %x, float %y)
; CHECK-NEXT: fcmp oeq float %fminf, %z
}
define i32 @test16(float %x, float %y, float %z) nounwind uwtable {
%1 = fpext float %z to double
%2 = fpext float %x to double
%3 = fpext float %y to double
%4 = call double @fmin(double %2, double %3) nounwind
%5 = fcmp oeq double %1, %4
%6 = zext i1 %5 to i32
ret i32 %6
; CHECK-LABEL: @test16(
; CHECK-NEXT: %fminf = call float @fminf(float %x, float %y)
; CHECK-NEXT: fcmp oeq float %fminf, %z
}
define i32 @test17(float %x, float %y, float %z) nounwind uwtable {
%1 = fpext float %x to double
%2 = fpext float %y to double
%3 = call double @fmax(double %1, double %2) nounwind
%4 = fpext float %z to double
%5 = fcmp oeq double %3, %4
%6 = zext i1 %5 to i32
ret i32 %6
; CHECK-LABEL: @test17(
; CHECK-NEXT: %fmaxf = call float @fmaxf(float %x, float %y)
; CHECK-NEXT: fcmp oeq float %fmaxf, %z
}
define i32 @test18(float %x, float %y, float %z) nounwind uwtable {
%1 = fpext float %z to double
%2 = fpext float %x to double
%3 = fpext float %y to double
%4 = call double @fmax(double %2, double %3) nounwind
%5 = fcmp oeq double %1, %4
%6 = zext i1 %5 to i32
ret i32 %6
; CHECK-LABEL: @test18(
; CHECK-NEXT: %fmaxf = call float @fmaxf(float %x, float %y)
; CHECK-NEXT: fcmp oeq float %fmaxf, %z
}
declare double @fabs(double) nounwind readnone
declare double @ceil(double) nounwind readnone
declare double @floor(double) nounwind readnone
@ -177,3 +229,5 @@ declare double @nearbyint(double) nounwind readnone
declare double @rint(double) nounwind readnone
declare double @round(double) nounwind readnone
declare double @trunc(double) nounwind readnone
declare double @fmin(double, double) nounwind readnone
declare double @fmax(double, double) nounwind readnone