This patch teaches x86 fast-isel to generate the native div/idiv instructions

for the sdiv/srem/udiv/urem bitcode instructions.  This is done for the i8,
i16, and i32 types, as well as i64 for the x86_64 target.

Patch by Jim Stichnoth



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179715 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Eli Bendersky 2013-04-17 20:10:13 +00:00
parent 9c63f0d687
commit 50125482d3
3 changed files with 288 additions and 0 deletions

View File

@ -107,6 +107,8 @@ private:
bool X86SelectShift(const Instruction *I);
bool X86SelectDivRem(const Instruction *I);
bool X86SelectSelect(const Instruction *I);
bool X86SelectTrunc(const Instruction *I);
@ -1235,6 +1237,124 @@ bool X86FastISel::X86SelectShift(const Instruction *I) {
return true;
}
bool X86FastISel::X86SelectDivRem(const Instruction *I) {
const static unsigned NumTypes = 4; // i8, i16, i32, i64
const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
const static bool S = true; // IsSigned
const static bool U = false; // !IsSigned
const static unsigned Copy = TargetOpcode::COPY;
// For the X86 DIV/IDIV instruction, in most cases the dividend
// (numerator) must be in a specific register pair highreg:lowreg,
// producing the quotient in lowreg and the remainder in highreg.
// For most data types, to set up the instruction, the dividend is
// copied into lowreg, and lowreg is sign-extended or zero-extended
// into highreg. The exception is i8, where the dividend is defined
// as a single register rather than a register pair, and we
// therefore directly sign-extend or zero-extend the dividend into
// lowreg, instead of copying, and ignore the highreg.
const static struct DivRemEntry {
// The following portion depends only on the data type.
const TargetRegisterClass *RC;
unsigned LowInReg; // low part of the register pair
unsigned HighInReg; // high part of the register pair
// The following portion depends on both the data type and the operation.
struct DivRemResult {
unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
unsigned OpSignExtend; // Opcode for sign-extending lowreg into
// highreg, or copying a zero into highreg.
unsigned OpCopy; // Opcode for copying dividend into lowreg, or
// zero/sign-extending into lowreg for i8.
unsigned DivRemResultReg; // Register containing the desired result.
bool IsOpSigned; // Whether to use signed or unsigned form.
} ResultTable[NumOps];
} OpTable[NumTypes] = {
{ &X86::GR8RegClass, X86::AX, 0, {
{ X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
{ X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
{ X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
{ X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
}
}, // i8
{ &X86::GR16RegClass, X86::AX, X86::DX, {
{ X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
{ X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
{ X86::DIV16r, X86::MOV16r0, Copy, X86::AX, U }, // UDiv
{ X86::DIV16r, X86::MOV16r0, Copy, X86::DX, U }, // URem
}
}, // i16
{ &X86::GR32RegClass, X86::EAX, X86::EDX, {
{ X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
{ X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
{ X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
{ X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
}
}, // i32
{ &X86::GR64RegClass, X86::RAX, X86::RDX, {
{ X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
{ X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
{ X86::DIV64r, X86::MOV64r0, Copy, X86::RAX, U }, // UDiv
{ X86::DIV64r, X86::MOV64r0, Copy, X86::RDX, U }, // URem
}
}, // i64
};
MVT VT;
if (!isTypeLegal(I->getType(), VT))
return false;
unsigned TypeIndex, OpIndex;
switch (VT.SimpleTy) {
default: return false;
case MVT::i8: TypeIndex = 0; break;
case MVT::i16: TypeIndex = 1; break;
case MVT::i32: TypeIndex = 2; break;
case MVT::i64: TypeIndex = 3;
if (!Subtarget->is64Bit())
return false;
break;
}
switch (I->getOpcode()) {
default: llvm_unreachable("Unexpected div/rem opcode");
case Instruction::SDiv: OpIndex = 0; break;
case Instruction::SRem: OpIndex = 1; break;
case Instruction::UDiv: OpIndex = 2; break;
case Instruction::URem: OpIndex = 3; break;
}
const DivRemEntry &TypeEntry = OpTable[TypeIndex];
const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
unsigned Op0Reg = getRegForValue(I->getOperand(0));
if (Op0Reg == 0)
return false;
unsigned Op1Reg = getRegForValue(I->getOperand(1));
if (Op1Reg == 0)
return false;
// Move op0 into low-order input register.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
// Zero-extend or sign-extend into high-order input register.
if (OpEntry.OpSignExtend) {
if (OpEntry.IsOpSigned)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(OpEntry.OpSignExtend));
else
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(OpEntry.OpSignExtend), TypeEntry.HighInReg);
}
// Generate the DIV/IDIV instruction.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
// Copy output register into result register.
unsigned ResultReg = createResultReg(TypeEntry.RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Copy), ResultReg).addReg(OpEntry.DivRemResultReg);
UpdateValueMap(I, ResultReg);
return true;
}
bool X86FastISel::X86SelectSelect(const Instruction *I) {
MVT VT;
if (!isTypeLegal(I->getType(), VT))
@ -2084,6 +2204,11 @@ X86FastISel::TargetSelectInstruction(const Instruction *I) {
case Instruction::AShr:
case Instruction::Shl:
return X86SelectShift(I);
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem:
return X86SelectDivRem(I);
case Instruction::Select:
return X86SelectSelect(I);
case Instruction::Trunc:

View File

@ -0,0 +1,41 @@
; RUN: llc -mtriple=x86_64-none-linux -fast-isel -fast-isel-abort < %s | FileCheck %s
define i64 @test_sdiv64(i64 %dividend, i64 %divisor) nounwind {
entry:
%result = sdiv i64 %dividend, %divisor
ret i64 %result
}
; CHECK: test_sdiv64:
; CHECK: cqto
; CHECK: idivq
define i64 @test_srem64(i64 %dividend, i64 %divisor) nounwind {
entry:
%result = srem i64 %dividend, %divisor
ret i64 %result
}
; CHECK: test_srem64:
; CHECK: cqto
; CHECK: idivq
define i64 @test_udiv64(i64 %dividend, i64 %divisor) nounwind {
entry:
%result = udiv i64 %dividend, %divisor
ret i64 %result
}
; CHECK: test_udiv64:
; CHECK: xorl
; CHECK: divq
define i64 @test_urem64(i64 %dividend, i64 %divisor) nounwind {
entry:
%result = urem i64 %dividend, %divisor
ret i64 %result
}
; CHECK: test_urem64:
; CHECK: xorl
; CHECK: divq

View File

@ -0,0 +1,122 @@
; RUN: llc -mtriple=x86_64-none-linux -fast-isel -fast-isel-abort < %s | FileCheck %s
; RUN: llc -mtriple=i686-none-linux -fast-isel -fast-isel-abort < %s | FileCheck %s
define i8 @test_sdiv8(i8 %dividend, i8 %divisor) nounwind {
entry:
%result = sdiv i8 %dividend, %divisor
ret i8 %result
}
; CHECK: test_sdiv8:
; CHECK: movsbw
; CHECK: idivb
define i8 @test_srem8(i8 %dividend, i8 %divisor) nounwind {
entry:
%result = srem i8 %dividend, %divisor
ret i8 %result
}
; CHECK: test_srem8:
; CHECK: movsbw
; CHECK: idivb
define i8 @test_udiv8(i8 %dividend, i8 %divisor) nounwind {
entry:
%result = udiv i8 %dividend, %divisor
ret i8 %result
}
; CHECK: test_udiv8:
; CHECK: movzbw
; CHECK: divb
define i8 @test_urem8(i8 %dividend, i8 %divisor) nounwind {
entry:
%result = urem i8 %dividend, %divisor
ret i8 %result
}
; CHECK: test_urem8:
; CHECK: movzbw
; CHECK: divb
define i16 @test_sdiv16(i16 %dividend, i16 %divisor) nounwind {
entry:
%result = sdiv i16 %dividend, %divisor
ret i16 %result
}
; CHECK: test_sdiv16:
; CHECK: cwtd
; CHECK: idivw
define i16 @test_srem16(i16 %dividend, i16 %divisor) nounwind {
entry:
%result = srem i16 %dividend, %divisor
ret i16 %result
}
; CHECK: test_srem16:
; CHECK: cwtd
; CHECK: idivw
define i16 @test_udiv16(i16 %dividend, i16 %divisor) nounwind {
entry:
%result = udiv i16 %dividend, %divisor
ret i16 %result
}
; CHECK: test_udiv16:
; CHECK: xorl
; CHECK: divw
define i16 @test_urem16(i16 %dividend, i16 %divisor) nounwind {
entry:
%result = urem i16 %dividend, %divisor
ret i16 %result
}
; CHECK: test_urem16:
; CHECK: xorl
; CHECK: divw
define i32 @test_sdiv32(i32 %dividend, i32 %divisor) nounwind {
entry:
%result = sdiv i32 %dividend, %divisor
ret i32 %result
}
; CHECK: test_sdiv32:
; CHECK: cltd
; CHECK: idivl
define i32 @test_srem32(i32 %dividend, i32 %divisor) nounwind {
entry:
%result = srem i32 %dividend, %divisor
ret i32 %result
}
; CHECK: test_srem32:
; CHECK: cltd
; CHECK: idivl
define i32 @test_udiv32(i32 %dividend, i32 %divisor) nounwind {
entry:
%result = udiv i32 %dividend, %divisor
ret i32 %result
}
; CHECK: test_udiv32:
; CHECK: xorl
; CHECK: divl
define i32 @test_urem32(i32 %dividend, i32 %divisor) nounwind {
entry:
%result = urem i32 %dividend, %divisor
ret i32 %result
}
; CHECK: test_urem32:
; CHECK: xorl
; CHECK: divl