[PM/AA] Extract the ModRef enums from the AliasAnalysis class in

preparation for de-coupling the AA implementations.

In order to do this, they had to become fake-scoped using the
traditional LLVM pattern of a leading initialism. These can't be actual
scoped enumerations because they're bitfields and thus inherently we use
them as integers.

I've also renamed the behavior enums that are specific to reasoning
about the mod/ref behavior of functions when called. This makes it more
clear that they have a very narrow domain of applicability.

I think there is a significantly cleaner API for all of this, but
I don't want to try to do really substantive changes for now, I just
want to refactor the things away from analysis groups so I'm preserving
the exact original design and just cleaning up the names, style, and
lifting out of the class.

Differential Revision: http://reviews.llvm.org/D10564

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242963 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chandler Carruth 2015-07-22 23:15:57 +00:00
parent 90b20e96a1
commit 52ab0bc417
32 changed files with 542 additions and 529 deletions

View File

@ -84,6 +84,77 @@ enum AliasResult {
MustAlias,
};
/// Flags indicating whether a memory access modifies or references memory.
///
/// This is no access at all, a modification, a reference, or both
/// a modification and a reference. These are specifically structured such that
/// they form a two bit matrix and bit-tests for 'mod' or 'ref' work with any
/// of the possible values.
enum ModRefInfo {
/// The access neither references nor modifies the value stored in memory.
MRI_NoModRef = 0,
/// The access references the value stored in memory.
MRI_Ref = 1,
/// The access modifies the value stored in memory.
MRI_Mod = 2,
/// The access both references and modifies the value stored in memory.
MRI_ModRef = MRI_Ref | MRI_Mod
};
/// The locations at which a function might access memory.
///
/// These are primarily used in conjunction with the \c AccessKind bits to
/// describe both the nature of access and the locations of access for a
/// function call.
enum FunctionModRefLocation {
/// Base case is no access to memory.
FMRL_Nowhere = 0,
/// Access to memory via argument pointers.
FMRL_ArgumentPointees = 4,
/// Access to any memory.
FMRL_Anywhere = 8 | FMRL_ArgumentPointees
};
/// Summary of how a function affects memory in the program.
///
/// Loads from constant globals are not considered memory accesses for this
/// interface. Also, functions may freely modify stack space local to their
/// invocation without having to report it through these interfaces.
enum FunctionModRefBehavior {
/// This function does not perform any non-local loads or stores to memory.
///
/// This property corresponds to the GCC 'const' attribute.
/// This property corresponds to the LLVM IR 'readnone' attribute.
/// This property corresponds to the IntrNoMem LLVM intrinsic flag.
FMRB_DoesNotAccessMemory = FMRL_Nowhere | MRI_NoModRef,
/// The only memory references in this function (if it has any) are
/// non-volatile loads from objects pointed to by its pointer-typed
/// arguments, with arbitrary offsets.
///
/// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
FMRB_OnlyReadsArgumentPointees = FMRL_ArgumentPointees | MRI_Ref,
/// The only memory references in this function (if it has any) are
/// non-volatile loads and stores from objects pointed to by its
/// pointer-typed arguments, with arbitrary offsets.
///
/// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
FMRB_OnlyAccessesArgumentPointees = FMRL_ArgumentPointees | MRI_ModRef,
/// This function does not perform any non-local stores or volatile loads,
/// but may read from any memory location.
///
/// This property corresponds to the GCC 'pure' attribute.
/// This property corresponds to the LLVM IR 'readonly' attribute.
/// This property corresponds to the IntrReadMem LLVM intrinsic flag.
FMRB_OnlyReadsMemory = FMRL_Anywhere | MRI_Ref,
/// This indicates that the function could not be classified into one of the
/// behaviors above.
FMRB_UnknownModRefBehavior = FMRL_Anywhere | MRI_ModRef
};
class AliasAnalysis {
protected:
const DataLayout *DL;
@ -185,71 +256,19 @@ public:
/// Simple mod/ref information...
///
/// ModRefResult - Represent the result of a mod/ref query. Mod and Ref are
/// bits which may be or'd together.
///
enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
/// These values define additional bits used to define the
/// ModRefBehavior values.
enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
/// ModRefBehavior - Summary of how a function affects memory in the program.
/// Loads from constant globals are not considered memory accesses for this
/// interface. Also, functions may freely modify stack space local to their
/// invocation without having to report it through these interfaces.
enum ModRefBehavior {
/// DoesNotAccessMemory - This function does not perform any non-local loads
/// or stores to memory.
///
/// This property corresponds to the GCC 'const' attribute.
/// This property corresponds to the LLVM IR 'readnone' attribute.
/// This property corresponds to the IntrNoMem LLVM intrinsic flag.
DoesNotAccessMemory = Nowhere | NoModRef,
/// OnlyReadsArgumentPointees - The only memory references in this function
/// (if it has any) are non-volatile loads from objects pointed to by its
/// pointer-typed arguments, with arbitrary offsets.
///
/// This property corresponds to the LLVM IR 'argmemonly' attribute combined
/// with 'readonly' attribute.
/// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
OnlyReadsArgumentPointees = ArgumentPointees | Ref,
/// OnlyAccessesArgumentPointees - The only memory references in this
/// function (if it has any) are non-volatile loads and stores from objects
/// pointed to by its pointer-typed arguments, with arbitrary offsets.
///
/// This property corresponds to the LLVM IR 'argmemonly' attribute.
/// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
OnlyAccessesArgumentPointees = ArgumentPointees | ModRef,
/// OnlyReadsMemory - This function does not perform any non-local stores or
/// volatile loads, but may read from any memory location.
///
/// This property corresponds to the GCC 'pure' attribute.
/// This property corresponds to the LLVM IR 'readonly' attribute.
/// This property corresponds to the IntrReadMem LLVM intrinsic flag.
OnlyReadsMemory = Anywhere | Ref,
/// UnknownModRefBehavior - This indicates that the function could not be
/// classified into one of the behaviors above.
UnknownModRefBehavior = Anywhere | ModRef
};
/// Get the ModRef info associated with a pointer argument of a callsite. The
/// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
/// that these bits do not necessarily account for the overall behavior of
/// the function, but rather only provide additional per-argument
/// information.
virtual ModRefResult getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx);
virtual ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx);
/// getModRefBehavior - Return the behavior when calling the given call site.
virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
virtual FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS);
/// getModRefBehavior - Return the behavior when calling the given function.
/// For use when the call site is not known.
virtual ModRefBehavior getModRefBehavior(const Function *F);
virtual FunctionModRefBehavior getModRefBehavior(const Function *F);
/// doesNotAccessMemory - If the specified call is known to never read or
/// write memory, return true. If the call only reads from known-constant
@ -263,14 +282,14 @@ public:
/// This property corresponds to the GCC 'const' attribute.
///
bool doesNotAccessMemory(ImmutableCallSite CS) {
return getModRefBehavior(CS) == DoesNotAccessMemory;
return getModRefBehavior(CS) == FMRB_DoesNotAccessMemory;
}
/// doesNotAccessMemory - If the specified function is known to never read or
/// write memory, return true. For use when the call site is not known.
///
bool doesNotAccessMemory(const Function *F) {
return getModRefBehavior(F) == DoesNotAccessMemory;
return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
}
/// onlyReadsMemory - If the specified call is known to only read from
@ -297,39 +316,39 @@ public:
/// onlyReadsMemory - Return true if functions with the specified behavior are
/// known to only read from non-volatile memory (or not access memory at all).
///
static bool onlyReadsMemory(ModRefBehavior MRB) {
return !(MRB & Mod);
static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
return !(MRB & MRI_Mod);
}
/// onlyAccessesArgPointees - Return true if functions with the specified
/// behavior are known to read and write at most from objects pointed to by
/// their pointer-typed arguments (with arbitrary offsets).
///
static bool onlyAccessesArgPointees(ModRefBehavior MRB) {
return !(MRB & Anywhere & ~ArgumentPointees);
static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
}
/// doesAccessArgPointees - Return true if functions with the specified
/// behavior are known to potentially read or write from objects pointed
/// to be their pointer-typed arguments (with arbitrary offsets).
///
static bool doesAccessArgPointees(ModRefBehavior MRB) {
return (MRB & ModRef) && (MRB & ArgumentPointees);
static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
return (MRB & MRI_ModRef) && (MRB & FMRL_ArgumentPointees);
}
/// getModRefInfo - Return information about whether or not an
/// instruction may read or write memory (without regard to a
/// specific location)
ModRefResult getModRefInfo(const Instruction *I) {
ModRefInfo getModRefInfo(const Instruction *I) {
if (auto CS = ImmutableCallSite(I)) {
auto MRB = getModRefBehavior(CS);
if (MRB & ModRef)
return ModRef;
else if (MRB & Ref)
return Ref;
else if (MRB & Mod)
return Mod;
return NoModRef;
if (MRB & MRI_ModRef)
return MRI_ModRef;
else if (MRB & MRI_Ref)
return MRI_Ref;
else if (MRB & MRI_Mod)
return MRI_Mod;
return MRI_NoModRef;
}
return getModRefInfo(I, MemoryLocation());
@ -338,7 +357,7 @@ public:
/// getModRefInfo - Return information about whether or not an instruction may
/// read or write the specified memory location. An instruction
/// that doesn't read or write memory may be trivially LICM'd for example.
ModRefResult getModRefInfo(const Instruction *I, const MemoryLocation &Loc) {
ModRefInfo getModRefInfo(const Instruction *I, const MemoryLocation &Loc) {
switch (I->getOpcode()) {
case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc);
case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc);
@ -350,132 +369,130 @@ public:
return getModRefInfo((const AtomicRMWInst*)I, Loc);
case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc);
case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
default: return NoModRef;
default:
return MRI_NoModRef;
}
}
/// getModRefInfo - A convenience wrapper.
ModRefResult getModRefInfo(const Instruction *I,
const Value *P, uint64_t Size) {
ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
uint64_t Size) {
return getModRefInfo(I, MemoryLocation(P, Size));
}
/// getModRefInfo (for call sites) - Return information about whether
/// a particular call site modifies or reads the specified memory location.
virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc);
virtual ModRefInfo getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc);
/// getModRefInfo (for call sites) - A convenience wrapper.
ModRefResult getModRefInfo(ImmutableCallSite CS,
const Value *P, uint64_t Size) {
ModRefInfo getModRefInfo(ImmutableCallSite CS, const Value *P,
uint64_t Size) {
return getModRefInfo(CS, MemoryLocation(P, Size));
}
/// getModRefInfo (for calls) - Return information about whether
/// a particular call modifies or reads the specified memory location.
ModRefResult getModRefInfo(const CallInst *C, const MemoryLocation &Loc) {
ModRefInfo getModRefInfo(const CallInst *C, const MemoryLocation &Loc) {
return getModRefInfo(ImmutableCallSite(C), Loc);
}
/// getModRefInfo (for calls) - A convenience wrapper.
ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
ModRefInfo getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
return getModRefInfo(C, MemoryLocation(P, Size));
}
/// getModRefInfo (for invokes) - Return information about whether
/// a particular invoke modifies or reads the specified memory location.
ModRefResult getModRefInfo(const InvokeInst *I, const MemoryLocation &Loc) {
ModRefInfo getModRefInfo(const InvokeInst *I, const MemoryLocation &Loc) {
return getModRefInfo(ImmutableCallSite(I), Loc);
}
/// getModRefInfo (for invokes) - A convenience wrapper.
ModRefResult getModRefInfo(const InvokeInst *I,
const Value *P, uint64_t Size) {
ModRefInfo getModRefInfo(const InvokeInst *I, const Value *P, uint64_t Size) {
return getModRefInfo(I, MemoryLocation(P, Size));
}
/// getModRefInfo (for loads) - Return information about whether
/// a particular load modifies or reads the specified memory location.
ModRefResult getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
/// getModRefInfo (for loads) - A convenience wrapper.
ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
ModRefInfo getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
return getModRefInfo(L, MemoryLocation(P, Size));
}
/// getModRefInfo (for stores) - Return information about whether
/// a particular store modifies or reads the specified memory location.
ModRefResult getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
/// getModRefInfo (for stores) - A convenience wrapper.
ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size){
ModRefInfo getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size) {
return getModRefInfo(S, MemoryLocation(P, Size));
}
/// getModRefInfo (for fences) - Return information about whether
/// a particular store modifies or reads the specified memory location.
ModRefResult getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
// Conservatively correct. (We could possibly be a bit smarter if
// Loc is a alloca that doesn't escape.)
return ModRef;
return MRI_ModRef;
}
/// getModRefInfo (for fences) - A convenience wrapper.
ModRefResult getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size){
ModRefInfo getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size) {
return getModRefInfo(S, MemoryLocation(P, Size));
}
/// getModRefInfo (for cmpxchges) - Return information about whether
/// a particular cmpxchg modifies or reads the specified memory location.
ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX,
const MemoryLocation &Loc);
ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
const MemoryLocation &Loc);
/// getModRefInfo (for cmpxchges) - A convenience wrapper.
ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX,
const Value *P, unsigned Size) {
ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
unsigned Size) {
return getModRefInfo(CX, MemoryLocation(P, Size));
}
/// getModRefInfo (for atomicrmws) - Return information about whether
/// a particular atomicrmw modifies or reads the specified memory location.
ModRefResult getModRefInfo(const AtomicRMWInst *RMW,
const MemoryLocation &Loc);
ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
/// getModRefInfo (for atomicrmws) - A convenience wrapper.
ModRefResult getModRefInfo(const AtomicRMWInst *RMW,
const Value *P, unsigned Size) {
ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
unsigned Size) {
return getModRefInfo(RMW, MemoryLocation(P, Size));
}
/// getModRefInfo (for va_args) - Return information about whether
/// a particular va_arg modifies or reads the specified memory location.
ModRefResult getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
/// getModRefInfo (for va_args) - A convenience wrapper.
ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size){
ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P, uint64_t Size) {
return getModRefInfo(I, MemoryLocation(P, Size));
}
/// getModRefInfo - Return information about whether a call and an instruction
/// may refer to the same memory locations.
ModRefResult getModRefInfo(Instruction *I,
ImmutableCallSite Call);
ModRefInfo getModRefInfo(Instruction *I, ImmutableCallSite Call);
/// getModRefInfo - Return information about whether two call sites may refer
/// to the same set of memory locations. See
/// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
/// for details.
virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2);
virtual ModRefInfo getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2);
/// callCapturesBefore - Return information about whether a particular call
/// site modifies or reads the specified memory location.
ModRefResult callCapturesBefore(const Instruction *I,
const MemoryLocation &MemLoc,
DominatorTree *DT);
ModRefInfo callCapturesBefore(const Instruction *I,
const MemoryLocation &MemLoc,
DominatorTree *DT);
/// callCapturesBefore - A convenience wrapper.
ModRefResult callCapturesBefore(const Instruction *I, const Value *P,
uint64_t Size, DominatorTree *DT) {
ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
uint64_t Size, DominatorTree *DT) {
return callCapturesBefore(I, MemoryLocation(P, Size), DT);
}
@ -499,12 +516,12 @@ public:
/// I1 and I2 must be in the same basic block.
bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
const MemoryLocation &Loc,
const ModRefResult Mode);
const ModRefInfo Mode);
/// canInstructionRangeModRef - A convenience wrapper.
bool canInstructionRangeModRef(const Instruction &I1,
const Instruction &I2, const Value *Ptr,
uint64_t Size, const ModRefResult Mode) {
bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
const Value *Ptr, uint64_t Size,
const ModRefInfo Mode) {
return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
}
};

View File

@ -38,11 +38,11 @@ namespace llvm {
}
~LibCallAliasAnalysis() override;
ModRefResult getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override;
ModRefInfo getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override;
ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override {
ModRefInfo getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override {
// TODO: Could compare two direct calls against each other if we cared to.
return AliasAnalysis::getModRefInfo(CS1, CS2);
}
@ -62,9 +62,9 @@ namespace llvm {
}
private:
ModRefResult AnalyzeLibCallDetails(const LibCallFunctionInfo *FI,
ImmutableCallSite CS,
const MemoryLocation &Loc);
ModRefInfo AnalyzeLibCallDetails(const LibCallFunctionInfo *FI,
ImmutableCallSite CS,
const MemoryLocation &Loc);
};
} // End of llvm namespace

View File

@ -71,15 +71,15 @@ class InvokeInst;
/// any specific context knowledge. For example, if the function is known
/// to be readonly, this would be set to 'ref'. If known to be readnone,
/// this is set to NoModRef.
AliasAnalysis::ModRefResult UniversalBehavior;
ModRefInfo UniversalBehavior;
/// LocationMRInfo - This pair captures info about whether a specific
/// location is modified or referenced by a libcall.
struct LocationMRInfo {
/// LocationID - ID # of the accessed location or ~0U for array end.
unsigned LocationID;
/// MRInfo - Mod/Ref info for this location.
AliasAnalysis::ModRefResult MRInfo;
ModRefInfo MRInfo;
};
/// DetailsType - Indicate the sense of the LocationDetails array. This

View File

@ -60,14 +60,14 @@ bool AliasAnalysis::pointsToConstantMemory(const MemoryLocation &Loc,
return AA->pointsToConstantMemory(Loc, OrLocal);
}
AliasAnalysis::ModRefResult
AliasAnalysis::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
ModRefInfo AliasAnalysis::getArgModRefInfo(ImmutableCallSite CS,
unsigned ArgIdx) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
return AA->getArgModRefInfo(CS, ArgIdx);
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
ModRefInfo AliasAnalysis::getModRefInfo(Instruction *I,
ImmutableCallSite Call) {
// We may have two calls
if (auto CS = ImmutableCallSite(I)) {
// Check if the two calls modify the same memory
@ -78,27 +78,27 @@ AliasAnalysis::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
// is that if the call references what this instruction
// defines, it must be clobbered by this location.
const MemoryLocation DefLoc = MemoryLocation::get(I);
if (getModRefInfo(Call, DefLoc) != AliasAnalysis::NoModRef)
return AliasAnalysis::ModRef;
if (getModRefInfo(Call, DefLoc) != MRI_NoModRef)
return MRI_ModRef;
}
return AliasAnalysis::NoModRef;
return MRI_NoModRef;
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
ModRefInfo AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
ModRefBehavior MRB = getModRefBehavior(CS);
if (MRB == DoesNotAccessMemory)
return NoModRef;
auto MRB = getModRefBehavior(CS);
if (MRB == FMRB_DoesNotAccessMemory)
return MRI_NoModRef;
ModRefResult Mask = ModRef;
ModRefInfo Mask = MRI_ModRef;
if (onlyReadsMemory(MRB))
Mask = Ref;
Mask = MRI_Ref;
if (onlyAccessesArgPointees(MRB)) {
bool doesAlias = false;
ModRefResult AllArgsMask = NoModRef;
ModRefInfo AllArgsMask = MRI_NoModRef;
if (doesAccessArgPointees(MRB)) {
for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
AI != AE; ++AI) {
@ -109,57 +109,59 @@ AliasAnalysis::getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
MemoryLocation ArgLoc =
MemoryLocation::getForArgument(CS, ArgIdx, *TLI);
if (!isNoAlias(ArgLoc, Loc)) {
ModRefResult ArgMask = getArgModRefInfo(CS, ArgIdx);
ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx);
doesAlias = true;
AllArgsMask = ModRefResult(AllArgsMask | ArgMask);
AllArgsMask = ModRefInfo(AllArgsMask | ArgMask);
}
}
}
if (!doesAlias)
return NoModRef;
Mask = ModRefResult(Mask & AllArgsMask);
return MRI_NoModRef;
Mask = ModRefInfo(Mask & AllArgsMask);
}
// If Loc is a constant memory location, the call definitely could not
// modify the memory location.
if ((Mask & Mod) && pointsToConstantMemory(Loc))
Mask = ModRefResult(Mask & ~Mod);
if ((Mask & MRI_Mod) && pointsToConstantMemory(Loc))
Mask = ModRefInfo(Mask & ~MRI_Mod);
// If this is the end of the chain, don't forward.
if (!AA) return Mask;
// Otherwise, fall back to the next AA in the chain. But we can merge
// in any mask we've managed to compute.
return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
return ModRefInfo(AA->getModRefInfo(CS, Loc) & Mask);
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
ModRefInfo AliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
// If CS1 or CS2 are readnone, they don't interact.
ModRefBehavior CS1B = getModRefBehavior(CS1);
if (CS1B == DoesNotAccessMemory) return NoModRef;
auto CS1B = getModRefBehavior(CS1);
if (CS1B == FMRB_DoesNotAccessMemory)
return MRI_NoModRef;
ModRefBehavior CS2B = getModRefBehavior(CS2);
if (CS2B == DoesNotAccessMemory) return NoModRef;
auto CS2B = getModRefBehavior(CS2);
if (CS2B == FMRB_DoesNotAccessMemory)
return MRI_NoModRef;
// If they both only read from memory, there is no dependence.
if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
return NoModRef;
return MRI_NoModRef;
AliasAnalysis::ModRefResult Mask = ModRef;
ModRefInfo Mask = MRI_ModRef;
// If CS1 only reads memory, the only dependence on CS2 can be
// from CS1 reading memory written by CS2.
if (onlyReadsMemory(CS1B))
Mask = ModRefResult(Mask & Ref);
Mask = ModRefInfo(Mask & MRI_Ref);
// If CS2 only access memory through arguments, accumulate the mod/ref
// information from CS1's references to the memory referenced by
// CS2's arguments.
if (onlyAccessesArgPointees(CS2B)) {
AliasAnalysis::ModRefResult R = NoModRef;
ModRefInfo R = MRI_NoModRef;
if (doesAccessArgPointees(CS2B)) {
for (ImmutableCallSite::arg_iterator
I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
@ -171,13 +173,13 @@ AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
// ArgMask indicates what CS2 might do to CS2ArgLoc, and the dependence of
// CS1 on that location is the inverse.
ModRefResult ArgMask = getArgModRefInfo(CS2, CS2ArgIdx);
if (ArgMask == Mod)
ArgMask = ModRef;
else if (ArgMask == Ref)
ArgMask = Mod;
ModRefInfo ArgMask = getArgModRefInfo(CS2, CS2ArgIdx);
if (ArgMask == MRI_Mod)
ArgMask = MRI_ModRef;
else if (ArgMask == MRI_Ref)
ArgMask = MRI_Mod;
R = ModRefResult((R | (getModRefInfo(CS1, CS2ArgLoc) & ArgMask)) & Mask);
R = ModRefInfo((R | (getModRefInfo(CS1, CS2ArgLoc) & ArgMask)) & Mask);
if (R == Mask)
break;
}
@ -188,7 +190,7 @@ AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
// If CS1 only accesses memory through arguments, check if CS2 references
// any of the memory referenced by CS1's arguments. If not, return NoModRef.
if (onlyAccessesArgPointees(CS1B)) {
AliasAnalysis::ModRefResult R = NoModRef;
ModRefInfo R = MRI_NoModRef;
if (doesAccessArgPointees(CS1B)) {
for (ImmutableCallSite::arg_iterator
I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
@ -201,11 +203,13 @@ AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
// ArgMask indicates what CS1 might do to CS1ArgLoc; if CS1 might Mod
// CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If CS1
// might Ref, then we care only about a Mod by CS2.
ModRefResult ArgMask = getArgModRefInfo(CS1, CS1ArgIdx);
ModRefResult ArgR = getModRefInfo(CS2, CS1ArgLoc);
if (((ArgMask & Mod) != NoModRef && (ArgR & ModRef) != NoModRef) ||
((ArgMask & Ref) != NoModRef && (ArgR & Mod) != NoModRef))
R = ModRefResult((R | ArgMask) & Mask);
ModRefInfo ArgMask = getArgModRefInfo(CS1, CS1ArgIdx);
ModRefInfo ArgR = getModRefInfo(CS2, CS1ArgLoc);
if (((ArgMask & MRI_Mod) != MRI_NoModRef &&
(ArgR & MRI_ModRef) != MRI_NoModRef) ||
((ArgMask & MRI_Ref) != MRI_NoModRef &&
(ArgR & MRI_Mod) != MRI_NoModRef))
R = ModRefInfo((R | ArgMask) & Mask);
if (R == Mask)
break;
@ -219,14 +223,13 @@ AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
// Otherwise, fall back to the next AA in the chain. But we can merge
// in any mask we've managed to compute.
return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
return ModRefInfo(AA->getModRefInfo(CS1, CS2) & Mask);
}
AliasAnalysis::ModRefBehavior
AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
FunctionModRefBehavior AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
ModRefBehavior Min = UnknownModRefBehavior;
auto Min = FMRB_UnknownModRefBehavior;
// Call back into the alias analysis with the other form of getModRefBehavior
// to see if it can give a better response.
@ -238,11 +241,10 @@ AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
// Otherwise, fall back to the next AA in the chain. But we can merge
// in any result we've managed to compute.
return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
return FunctionModRefBehavior(AA->getModRefBehavior(CS) & Min);
}
AliasAnalysis::ModRefBehavior
AliasAnalysis::getModRefBehavior(const Function *F) {
FunctionModRefBehavior AliasAnalysis::getModRefBehavior(const Function *F) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
return AA->getModRefBehavior(F);
}
@ -251,116 +253,114 @@ AliasAnalysis::getModRefBehavior(const Function *F) {
// AliasAnalysis non-virtual helper method implementation
//===----------------------------------------------------------------------===//
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const LoadInst *L, const MemoryLocation &Loc) {
ModRefInfo AliasAnalysis::getModRefInfo(const LoadInst *L,
const MemoryLocation &Loc) {
// Be conservative in the face of volatile/atomic.
if (!L->isUnordered())
return ModRef;
return MRI_ModRef;
// If the load address doesn't alias the given address, it doesn't read
// or write the specified memory.
if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc))
return NoModRef;
return MRI_NoModRef;
// Otherwise, a load just reads.
return Ref;
return MRI_Ref;
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const StoreInst *S, const MemoryLocation &Loc) {
ModRefInfo AliasAnalysis::getModRefInfo(const StoreInst *S,
const MemoryLocation &Loc) {
// Be conservative in the face of volatile/atomic.
if (!S->isUnordered())
return ModRef;
return MRI_ModRef;
if (Loc.Ptr) {
// If the store address cannot alias the pointer in question, then the
// specified memory cannot be modified by the store.
if (!alias(MemoryLocation::get(S), Loc))
return NoModRef;
return MRI_NoModRef;
// If the pointer is a pointer to constant memory, then it could not have
// been modified by this store.
if (pointsToConstantMemory(Loc))
return NoModRef;
return MRI_NoModRef;
}
// Otherwise, a store just writes.
return Mod;
return MRI_Mod;
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc) {
ModRefInfo AliasAnalysis::getModRefInfo(const VAArgInst *V,
const MemoryLocation &Loc) {
if (Loc.Ptr) {
// If the va_arg address cannot alias the pointer in question, then the
// specified memory cannot be accessed by the va_arg.
if (!alias(MemoryLocation::get(V), Loc))
return NoModRef;
return MRI_NoModRef;
// If the pointer is a pointer to constant memory, then it could not have
// been modified by this va_arg.
if (pointsToConstantMemory(Loc))
return NoModRef;
return MRI_NoModRef;
}
// Otherwise, a va_arg reads and writes.
return ModRef;
return MRI_ModRef;
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX,
const MemoryLocation &Loc) {
ModRefInfo AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX,
const MemoryLocation &Loc) {
// Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
if (CX->getSuccessOrdering() > Monotonic)
return ModRef;
return MRI_ModRef;
// If the cmpxchg address does not alias the location, it does not access it.
if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc))
return NoModRef;
return MRI_NoModRef;
return ModRef;
return MRI_ModRef;
}
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW,
const MemoryLocation &Loc) {
ModRefInfo AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW,
const MemoryLocation &Loc) {
// Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
if (RMW->getOrdering() > Monotonic)
return ModRef;
return MRI_ModRef;
// If the atomicrmw address does not alias the location, it does not access it.
if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc))
return NoModRef;
return MRI_NoModRef;
return ModRef;
return MRI_ModRef;
}
// FIXME: this is really just shoring-up a deficiency in alias analysis.
// BasicAA isn't willing to spend linear time determining whether an alloca
// was captured before or after this particular call, while we are. However,
// with a smarter AA in place, this test is just wasting compile time.
AliasAnalysis::ModRefResult AliasAnalysis::callCapturesBefore(
const Instruction *I, const MemoryLocation &MemLoc, DominatorTree *DT) {
ModRefInfo AliasAnalysis::callCapturesBefore(const Instruction *I,
const MemoryLocation &MemLoc,
DominatorTree *DT) {
if (!DT)
return AliasAnalysis::ModRef;
return MRI_ModRef;
const Value *Object = GetUnderlyingObject(MemLoc.Ptr, *DL);
if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
isa<Constant>(Object))
return AliasAnalysis::ModRef;
return MRI_ModRef;
ImmutableCallSite CS(I);
if (!CS.getInstruction() || CS.getInstruction() == Object)
return AliasAnalysis::ModRef;
return MRI_ModRef;
if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
/* StoreCaptures */ true, I, DT,
/* include Object */ true))
return AliasAnalysis::ModRef;
return MRI_ModRef;
unsigned ArgNo = 0;
AliasAnalysis::ModRefResult R = AliasAnalysis::NoModRef;
ModRefInfo R = MRI_NoModRef;
for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
CI != CE; ++CI, ++ArgNo) {
// Only look at the no-capture or byval pointer arguments. If this
@ -379,10 +379,10 @@ AliasAnalysis::ModRefResult AliasAnalysis::callCapturesBefore(
if (CS.doesNotAccessMemory(ArgNo))
continue;
if (CS.onlyReadsMemory(ArgNo)) {
R = AliasAnalysis::Ref;
R = MRI_Ref;
continue;
}
return AliasAnalysis::ModRef;
return MRI_ModRef;
}
return R;
}
@ -422,7 +422,7 @@ uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
///
bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
const MemoryLocation &Loc) {
return canInstructionRangeModRef(BB.front(), BB.back(), Loc, Mod);
return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod);
}
/// canInstructionRangeModRef - Return true if it is possible for the
@ -433,7 +433,7 @@ bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
bool AliasAnalysis::canInstructionRangeModRef(const Instruction &I1,
const Instruction &I2,
const MemoryLocation &Loc,
const ModRefResult Mode) {
const ModRefInfo Mode) {
assert(I1.getParent() == I2.getParent() &&
"Instructions not in same basic block!");
BasicBlock::const_iterator I = &I1;

View File

@ -62,15 +62,16 @@ namespace {
<< Must*100/AASum<<"%\n\n";
}
errs() << " " << MRSum << " Total Mod/Ref Queries Performed\n";
errs() << " " << MRSum << " Total MRI_Mod/MRI_Ref Queries Performed\n";
if (MRSum) {
printLine("no mod/ref", NoMR, MRSum);
printLine("ref", JustRef, MRSum);
printLine("mod", JustMod, MRSum);
printLine("mod/ref", MR, MRSum);
errs() << " Mod/Ref Analysis Counter Summary: " <<NoMR*100/MRSum
<< "%/" << JustRef*100/MRSum << "%/" << JustMod*100/MRSum
<< "%/" << MR*100/MRSum <<"%\n\n";
errs() << " MRI_Mod/MRI_Ref Analysis Counter Summary: "
<< NoMR * 100 / MRSum << "%/" << JustRef * 100 / MRSum << "%/"
<< JustMod * 100 / MRSum << "%/" << MR * 100 / MRSum
<< "%\n\n";
}
}
}
@ -108,10 +109,10 @@ namespace {
AliasResult alias(const MemoryLocation &LocA,
const MemoryLocation &LocB) override;
ModRefResult getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override;
ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override {
ModRefInfo getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override;
ModRefInfo getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override {
return AliasAnalysis::getModRefInfo(CS1,CS2);
}
};
@ -150,20 +151,31 @@ AliasResult AliasAnalysisCounter::alias(const MemoryLocation &LocA,
return R;
}
AliasAnalysis::ModRefResult
AliasAnalysisCounter::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
ModRefResult R = getAnalysis<AliasAnalysis>().getModRefInfo(CS, Loc);
ModRefInfo AliasAnalysisCounter::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
ModRefInfo R = getAnalysis<AliasAnalysis>().getModRefInfo(CS, Loc);
const char *MRString = nullptr;
switch (R) {
case NoModRef: NoMR++; MRString = "NoModRef"; break;
case Ref: JustRef++; MRString = "JustRef"; break;
case Mod: JustMod++; MRString = "JustMod"; break;
case ModRef: MR++; MRString = "ModRef"; break;
case MRI_NoModRef:
NoMR++;
MRString = "MRI_NoModRef";
break;
case MRI_Ref:
JustRef++;
MRString = "JustRef";
break;
case MRI_Mod:
JustMod++;
MRString = "JustMod";
break;
case MRI_ModRef:
MR++;
MRString = "MRI_ModRef";
break;
}
if (PrintAll || (PrintAllFailures && R == ModRef)) {
if (PrintAll || (PrintAllFailures && R == MRI_ModRef)) {
errs() << MRString << ": Ptr: ";
errs() << "[" << Loc.Size << "B] ";
Loc.Ptr->printAsOperand(errs(), true, M);

View File

@ -292,19 +292,19 @@ bool AAEval::runOnFunction(Function &F) {
if (ElTy->isSized()) Size = AA.getTypeStoreSize(ElTy);
switch (AA.getModRefInfo(*C, *V, Size)) {
case AliasAnalysis::NoModRef:
case MRI_NoModRef:
PrintModRefResults("NoModRef", PrintNoModRef, I, *V, F.getParent());
++NoModRefCount;
break;
case AliasAnalysis::Mod:
case MRI_Mod:
PrintModRefResults("Just Mod", PrintMod, I, *V, F.getParent());
++ModCount;
break;
case AliasAnalysis::Ref:
case MRI_Ref:
PrintModRefResults("Just Ref", PrintRef, I, *V, F.getParent());
++RefCount;
break;
case AliasAnalysis::ModRef:
case MRI_ModRef:
PrintModRefResults("Both ModRef", PrintModRef, I, *V, F.getParent());
++ModRefCount;
break;
@ -319,19 +319,19 @@ bool AAEval::runOnFunction(Function &F) {
if (D == C)
continue;
switch (AA.getModRefInfo(*C, *D)) {
case AliasAnalysis::NoModRef:
case MRI_NoModRef:
PrintModRefResults("NoModRef", PrintNoModRef, *C, *D, F.getParent());
++NoModRefCount;
break;
case AliasAnalysis::Mod:
case MRI_Mod:
PrintModRefResults("Just Mod", PrintMod, *C, *D, F.getParent());
++ModCount;
break;
case AliasAnalysis::Ref:
case MRI_Ref:
PrintModRefResults("Just Ref", PrintRef, *C, *D, F.getParent());
++RefCount;
break;
case AliasAnalysis::ModRef:
case MRI_ModRef:
PrintModRefResults("Both ModRef", PrintModRef, *C, *D, F.getParent());
++ModRefCount;
break;

View File

@ -103,14 +103,14 @@ namespace {
return AliasAnalysis::alias(LocA, LocB);
}
ModRefResult getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override {
ModRefInfo getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override {
assert(Vals.find(Loc.Ptr) != Vals.end() && "Never seen value in AA before");
return AliasAnalysis::getModRefInfo(CS, Loc);
}
ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override {
ModRefInfo getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override {
return AliasAnalysis::getModRefInfo(CS1,CS2);
}

View File

@ -167,8 +167,7 @@ bool AliasSet::aliasesPointer(const Value *Ptr, uint64_t Size,
if (!UnknownInsts.empty()) {
for (unsigned i = 0, e = UnknownInsts.size(); i != e; ++i)
if (AA.getModRefInfo(UnknownInsts[i],
MemoryLocation(Ptr, Size, AAInfo)) !=
AliasAnalysis::NoModRef)
MemoryLocation(Ptr, Size, AAInfo)) != MRI_NoModRef)
return true;
}
@ -182,16 +181,14 @@ bool AliasSet::aliasesUnknownInst(const Instruction *Inst,
for (unsigned i = 0, e = UnknownInsts.size(); i != e; ++i) {
ImmutableCallSite C1(getUnknownInst(i)), C2(Inst);
if (!C1 || !C2 ||
AA.getModRefInfo(C1, C2) != AliasAnalysis::NoModRef ||
AA.getModRefInfo(C2, C1) != AliasAnalysis::NoModRef)
if (!C1 || !C2 || AA.getModRefInfo(C1, C2) != MRI_NoModRef ||
AA.getModRefInfo(C2, C1) != MRI_NoModRef)
return true;
}
for (iterator I = begin(), E = end(); I != E; ++I)
if (AA.getModRefInfo(
Inst, MemoryLocation(I.getPointer(), I.getSize(), I.getAAInfo())) !=
AliasAnalysis::NoModRef)
if (AA.getModRefInfo(Inst, MemoryLocation(I.getPointer(), I.getSize(),
I.getAAInfo())) != MRI_NoModRef)
return true;
return false;

View File

@ -479,11 +479,11 @@ namespace {
return Alias;
}
ModRefResult getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override;
ModRefInfo getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override;
ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override;
ModRefInfo getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override;
/// pointsToConstantMemory - Chase pointers until we find a (constant
/// global) or not.
@ -491,16 +491,15 @@ namespace {
bool OrLocal) override;
/// Get the location associated with a pointer argument of a callsite.
ModRefResult getArgModRefInfo(ImmutableCallSite CS,
unsigned ArgIdx) override;
ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) override;
/// getModRefBehavior - Return the behavior when calling the given
/// call site.
ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
/// getModRefBehavior - Return the behavior when calling the given function.
/// For use when the call site is not known.
ModRefBehavior getModRefBehavior(const Function *F) override;
FunctionModRefBehavior getModRefBehavior(const Function *F) override;
/// getAdjustedAnalysisPointer - This method is used when a pass implements
/// an analysis interface through multiple inheritance. If needed, it
@ -676,33 +675,33 @@ static bool isMemsetPattern16(const Function *MS,
}
/// getModRefBehavior - Return the behavior when calling the given call site.
AliasAnalysis::ModRefBehavior
FunctionModRefBehavior
BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
if (CS.doesNotAccessMemory())
// Can't do better than this.
return DoesNotAccessMemory;
return FMRB_DoesNotAccessMemory;
ModRefBehavior Min = UnknownModRefBehavior;
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
// If the callsite knows it only reads memory, don't return worse
// than that.
if (CS.onlyReadsMemory())
Min = OnlyReadsMemory;
Min = FMRB_OnlyReadsMemory;
if (CS.onlyAccessesArgMemory())
Min = ModRefBehavior(Min & OnlyAccessesArgumentPointees);
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
// The AliasAnalysis base class has some smarts, lets use them.
return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
return FunctionModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
}
/// getModRefBehavior - Return the behavior when calling the given function.
/// For use when the call site is not known.
AliasAnalysis::ModRefBehavior
FunctionModRefBehavior
BasicAliasAnalysis::getModRefBehavior(const Function *F) {
// If the function declares it doesn't access memory, we can't do better.
if (F->doesNotAccessMemory())
return DoesNotAccessMemory;
return FMRB_DoesNotAccessMemory;
// For intrinsics, we can check the table.
if (Intrinsic::ID iid = F->getIntrinsicID()) {
@ -711,26 +710,26 @@ BasicAliasAnalysis::getModRefBehavior(const Function *F) {
#undef GET_INTRINSIC_MODREF_BEHAVIOR
}
ModRefBehavior Min = UnknownModRefBehavior;
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
// If the function declares it only reads memory, go with that.
if (F->onlyReadsMemory())
Min = OnlyReadsMemory;
Min = FMRB_OnlyReadsMemory;
if (F->onlyAccessesArgMemory())
Min = ModRefBehavior(Min & OnlyAccessesArgumentPointees);
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
const TargetLibraryInfo &TLI =
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
if (isMemsetPattern16(F, TLI))
Min = OnlyAccessesArgumentPointees;
Min = FMRB_OnlyAccessesArgumentPointees;
// Otherwise be conservative.
return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
return FunctionModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
}
AliasAnalysis::ModRefResult
BasicAliasAnalysis::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
ModRefInfo BasicAliasAnalysis::getArgModRefInfo(ImmutableCallSite CS,
unsigned ArgIdx) {
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()))
switch (II->getIntrinsicID()) {
default:
@ -740,7 +739,7 @@ BasicAliasAnalysis::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
case Intrinsic::memmove:
assert((ArgIdx == 0 || ArgIdx == 1) &&
"Invalid argument index for memory intrinsic");
return ArgIdx ? Ref : Mod;
return ArgIdx ? MRI_Ref : MRI_Mod;
}
// We can bound the aliasing properties of memset_pattern16 just as we can
@ -751,7 +750,7 @@ BasicAliasAnalysis::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
isMemsetPattern16(CS.getCalledFunction(), *TLI)) {
assert((ArgIdx == 0 || ArgIdx == 1) &&
"Invalid argument index for memset_pattern16");
return ArgIdx ? Ref : Mod;
return ArgIdx ? MRI_Ref : MRI_Mod;
}
// FIXME: Handle memset_pattern4 and memset_pattern8 also.
@ -775,9 +774,8 @@ bool BasicAliasAnalysis::doInitialization(Module &M) {
/// specified memory object. Since we only look at local properties of this
/// function, we really can't say much about this query. We do, however, use
/// simple "address taken" analysis on local objects.
AliasAnalysis::ModRefResult
BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
ModRefInfo BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
"AliasAnalysis query involving multiple functions!");
@ -791,7 +789,7 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
if (isa<AllocaInst>(Object))
if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
if (CI->isTailCall())
return NoModRef;
return MRI_NoModRef;
// If the pointer is to a locally allocated object that does not escape,
// then the call can not mod/ref the pointer unless the call takes the pointer
@ -820,27 +818,26 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
}
if (!PassedAsArg)
return NoModRef;
return MRI_NoModRef;
}
// While the assume intrinsic is marked as arbitrarily writing so that
// proper control dependencies will be maintained, it never aliases any
// particular memory location.
if (isAssumeIntrinsic(CS))
return NoModRef;
return MRI_NoModRef;
// The AliasAnalysis base class has some smarts, lets use them.
return AliasAnalysis::getModRefInfo(CS, Loc);
}
AliasAnalysis::ModRefResult
BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
ModRefInfo BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
// While the assume intrinsic is marked as arbitrarily writing so that
// proper control dependencies will be maintained, it never aliases any
// particular memory location.
if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
return NoModRef;
return MRI_NoModRef;
// The AliasAnalysis base class has some smarts, lets use them.
return AliasAnalysis::getModRefInfo(CS1, CS2);

View File

@ -71,7 +71,7 @@ struct FunctionRecord {
bool MayReadAnyGlobal;
unsigned getInfoForGlobal(const GlobalValue *GV) const {
unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
unsigned Effect = MayReadAnyGlobal ? MRI_Ref : 0;
std::map<const GlobalValue *, unsigned>::const_iterator I =
GlobalInfo.find(GV);
if (I != GlobalInfo.end())
@ -168,51 +168,6 @@ public:
AU.setPreservesAll(); // Does not transform code
}
//------------------------------------------------
// Implement the AliasAnalysis API
//
AliasResult alias(const MemoryLocation &LocA,
const MemoryLocation &LocB) override;
ModRefResult getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override;
ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override {
return AliasAnalysis::getModRefInfo(CS1, CS2);
}
/// getModRefBehavior - Return the behavior of the specified function if
/// called from the specified call site. The call site may be null in which
/// case the most generic behavior of this function should be returned.
ModRefBehavior getModRefBehavior(const Function *F) override {
ModRefBehavior Min = UnknownModRefBehavior;
if (FunctionRecord *FR = getFunctionInfo(F)) {
if (FR->FunctionEffect == 0)
Min = DoesNotAccessMemory;
else if ((FR->FunctionEffect & Mod) == 0)
Min = OnlyReadsMemory;
}
return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
}
/// getModRefBehavior - Return the behavior of the specified function if
/// called from the specified call site. The call site may be null in which
/// case the most generic behavior of this function should be returned.
ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
ModRefBehavior Min = UnknownModRefBehavior;
if (const Function *F = CS.getCalledFunction())
if (FunctionRecord *FR = getFunctionInfo(F)) {
if (FR->FunctionEffect == 0)
Min = DoesNotAccessMemory;
else if ((FR->FunctionEffect & Mod) == 0)
Min = OnlyReadsMemory;
}
return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
}
/// getAdjustedAnalysisPointer - This method is used when a pass implements
/// an analysis interface through multiple inheritance. If needed, it
/// should override this to adjust the this pointer as needed for the
@ -223,6 +178,51 @@ public:
return this;
}
//------------------------------------------------
// Implement the AliasAnalysis API
//
AliasResult alias(const MemoryLocation &LocA,
const MemoryLocation &LocB) override;
ModRefInfo getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override;
ModRefInfo getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override {
return AliasAnalysis::getModRefInfo(CS1, CS2);
}
/// getModRefBehavior - Return the behavior of the specified function if
/// called from the specified call site. The call site may be null in which
/// case the most generic behavior of this function should be returned.
FunctionModRefBehavior getModRefBehavior(const Function *F) override {
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
if (FunctionRecord *FR = getFunctionInfo(F)) {
if (FR->FunctionEffect == 0)
Min = FMRB_DoesNotAccessMemory;
else if ((FR->FunctionEffect & MRI_Mod) == 0)
Min = FMRB_OnlyReadsMemory;
}
return FunctionModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
}
/// getModRefBehavior - Return the behavior of the specified function if
/// called from the specified call site. The call site may be null in which
/// case the most generic behavior of this function should be returned.
FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
if (const Function *F = CS.getCalledFunction())
if (FunctionRecord *FR = getFunctionInfo(F)) {
if (FR->FunctionEffect == 0)
Min = FMRB_DoesNotAccessMemory;
else if ((FR->FunctionEffect & MRI_Mod) == 0)
Min = FMRB_OnlyReadsMemory;
}
return FunctionModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
}
private:
/// getFunctionInfo - Return the function info for the function, or null if
/// we don't have anything useful to say about it.
@ -280,11 +280,11 @@ void GlobalsModRef::AnalyzeGlobals(Module &M) {
Handles.front().I = Handles.begin();
for (Function *Reader : Readers)
FunctionInfo[Reader].GlobalInfo[&GV] |= Ref;
FunctionInfo[Reader].GlobalInfo[&GV] |= MRI_Ref;
if (!GV.isConstant()) // No need to keep track of writers to constants
for (Function *Writer : Writers)
FunctionInfo[Writer].GlobalInfo[&GV] |= Mod;
FunctionInfo[Writer].GlobalInfo[&GV] |= MRI_Mod;
++NumNonAddrTakenGlobalVars;
// If this global holds a pointer type, see if it is an indirect global.
@ -455,13 +455,13 @@ void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
if (F->doesNotAccessMemory()) {
// Can't do better than that!
} else if (F->onlyReadsMemory()) {
FunctionEffect |= Ref;
FunctionEffect |= MRI_Ref;
if (!F->isIntrinsic())
// This function might call back into the module and read a global -
// consider every global as possibly being read by this function.
FR.MayReadAnyGlobal = true;
} else {
FunctionEffect |= ModRef;
FunctionEffect |= MRI_ModRef;
// Can't say anything useful unless it's an intrinsic - they don't
// read or write global variables of the kind considered here.
KnowNothing = !F->isIntrinsic();
@ -502,10 +502,10 @@ void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
// Scan the function bodies for explicit loads or stores.
for (auto *Node : SCC) {
if (FunctionEffect == ModRef)
if (FunctionEffect == MRI_ModRef)
break; // The mod/ref lattice saturates here.
for (Instruction &I : inst_range(Node->getFunction())) {
if (FunctionEffect == ModRef)
if (FunctionEffect == MRI_ModRef)
break; // The mod/ref lattice saturates here.
// We handle calls specially because the graph-relevant aspects are
@ -514,13 +514,13 @@ void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
if (isAllocationFn(&I, TLI) || isFreeCall(&I, TLI)) {
// FIXME: It is completely unclear why this is necessary and not
// handled by the above graph code.
FunctionEffect |= ModRef;
FunctionEffect |= MRI_ModRef;
} else if (Function *Callee = CS.getCalledFunction()) {
// The callgraph doesn't include intrinsic calls.
if (Callee->isIntrinsic()) {
ModRefBehavior Behaviour =
FunctionModRefBehavior Behaviour =
AliasAnalysis::getModRefBehavior(Callee);
FunctionEffect |= (Behaviour & ModRef);
FunctionEffect |= (Behaviour & MRI_ModRef);
}
}
continue;
@ -529,13 +529,13 @@ void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
// All non-call instructions we use the primary predicates for whether
// thay read or write memory.
if (I.mayReadFromMemory())
FunctionEffect |= Ref;
FunctionEffect |= MRI_Ref;
if (I.mayWriteToMemory())
FunctionEffect |= Mod;
FunctionEffect |= MRI_Mod;
}
}
if ((FunctionEffect & Mod) == 0)
if ((FunctionEffect & MRI_Mod) == 0)
++NumReadMemFunctions;
if (FunctionEffect == 0)
++NumNoMemFunctions;
@ -621,9 +621,9 @@ AliasResult GlobalsModRef::alias(const MemoryLocation &LocA,
return AliasAnalysis::alias(LocA, LocB);
}
AliasAnalysis::ModRefResult
GlobalsModRef::getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
unsigned Known = ModRef;
ModRefInfo GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
unsigned Known = MRI_ModRef;
// If we are asking for mod/ref info of a direct call with a pointer to a
// global we are tracking, return information if we have it.
@ -636,7 +636,7 @@ GlobalsModRef::getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
if (const FunctionRecord *FR = getFunctionInfo(F))
Known = FR->getInfoForGlobal(GV);
if (Known == NoModRef)
return NoModRef; // No need to query other mod/ref analyses
return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
if (Known == MRI_NoModRef)
return MRI_NoModRef; // No need to query other mod/ref analyses
return ModRefInfo(Known & AliasAnalysis::getModRefInfo(CS, Loc));
}

View File

@ -45,15 +45,16 @@ bool LibCallAliasAnalysis::runOnFunction(Function &F) {
/// AnalyzeLibCallDetails - Given a call to a function with the specified
/// LibCallFunctionInfo, see if we can improve the mod/ref footprint of the call
/// vs the specified pointer/size.
AliasAnalysis::ModRefResult
ModRefInfo
LibCallAliasAnalysis::AnalyzeLibCallDetails(const LibCallFunctionInfo *FI,
ImmutableCallSite CS,
const MemoryLocation &Loc) {
// If we have a function, check to see what kind of mod/ref effects it
// has. Start by including any info globally known about the function.
AliasAnalysis::ModRefResult MRInfo = FI->UniversalBehavior;
if (MRInfo == NoModRef) return MRInfo;
ModRefInfo MRInfo = FI->UniversalBehavior;
if (MRInfo == MRI_NoModRef)
return MRInfo;
// If that didn't tell us that the function is 'readnone', check to see
// if we have detailed info and if 'P' is any of the locations we know
// about.
@ -75,7 +76,7 @@ LibCallAliasAnalysis::AnalyzeLibCallDetails(const LibCallFunctionInfo *FI,
// If we find a match against a location that we 'do not' interact with,
// learn this info into MRInfo.
return ModRefResult(MRInfo & ~Details[i].MRInfo);
return ModRefInfo(MRInfo & ~Details[i].MRInfo);
}
return MRInfo;
}
@ -83,7 +84,7 @@ LibCallAliasAnalysis::AnalyzeLibCallDetails(const LibCallFunctionInfo *FI,
// If the details are of the 'DoesOnly' sort, we know something if the pointer
// is a match for one of the locations in 'Details'. Also, if we can prove
// that the pointers is *not* one of the locations in 'Details', we know that
// the call is NoModRef.
// the call is MRI_NoModRef.
assert(FI->DetailsType == LibCallFunctionInfo::DoesOnly);
// Find out if the pointer refers to a known location.
@ -103,16 +104,16 @@ LibCallAliasAnalysis::AnalyzeLibCallDetails(const LibCallFunctionInfo *FI,
// If we know that this pointer definitely is pointing into the location,
// merge in this information.
return ModRefResult(MRInfo & Details[i].MRInfo);
return ModRefInfo(MRInfo & Details[i].MRInfo);
}
// If we found that the pointer is guaranteed to not match any of the
// locations in our 'DoesOnly' rule, then we know that the pointer must point
// to some other location. Since the libcall doesn't mod/ref any other
// locations, return NoModRef.
// locations, return MRI_NoModRef.
if (NoneMatch)
return NoModRef;
return MRI_NoModRef;
// Otherwise, return any other info gained so far.
return MRInfo;
}
@ -120,22 +121,22 @@ LibCallAliasAnalysis::AnalyzeLibCallDetails(const LibCallFunctionInfo *FI,
// getModRefInfo - Check to see if the specified callsite can clobber the
// specified memory object.
//
AliasAnalysis::ModRefResult
LibCallAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
ModRefResult MRInfo = ModRef;
ModRefInfo LibCallAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
ModRefInfo MRInfo = MRI_ModRef;
// If this is a direct call to a function that LCI knows about, get the
// information about the runtime function.
if (LCI) {
if (const Function *F = CS.getCalledFunction()) {
if (const LibCallFunctionInfo *FI = LCI->getFunctionInfo(F)) {
MRInfo = ModRefResult(MRInfo & AnalyzeLibCallDetails(FI, CS, Loc));
if (MRInfo == NoModRef) return NoModRef;
MRInfo = ModRefInfo(MRInfo & AnalyzeLibCallDetails(FI, CS, Loc));
if (MRInfo == MRI_NoModRef)
return MRI_NoModRef;
}
}
}
// The AliasAnalysis base class has some smarts, lets use them.
return (ModRefResult)(MRInfo | AliasAnalysis::getModRefInfo(CS, Loc));
return (ModRefInfo)(MRInfo | AliasAnalysis::getModRefInfo(CS, Loc));
}

View File

@ -246,9 +246,7 @@ Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
// If we have alias analysis and it says the store won't modify the loaded
// value, ignore the store.
if (AA &&
(AA->getModRefInfo(SI, StrippedPtr, AccessSize) &
AliasAnalysis::Mod) == 0)
if (AA && (AA->getModRefInfo(SI, StrippedPtr, AccessSize) & MRI_Mod) == 0)
continue;
// Otherwise the store that may or may not alias the pointer, bail out.
@ -261,8 +259,7 @@ Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
// If alias analysis claims that it really won't modify the load,
// ignore it.
if (AA &&
(AA->getModRefInfo(Inst, StrippedPtr, AccessSize) &
AliasAnalysis::Mod) == 0)
(AA->getModRefInfo(Inst, StrippedPtr, AccessSize) & MRI_Mod) == 0)
continue;
// May modify the pointer, bail out.

View File

@ -122,43 +122,43 @@ static void RemoveFromReverseMap(DenseMap<Instruction*,
/// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
/// Return a ModRefInfo value describing the general behavior of the
/// instruction.
static AliasAnalysis::ModRefResult
GetLocation(const Instruction *Inst, MemoryLocation &Loc, AliasAnalysis *AA) {
static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
AliasAnalysis *AA) {
if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
if (LI->isUnordered()) {
Loc = MemoryLocation::get(LI);
return AliasAnalysis::Ref;
return MRI_Ref;
}
if (LI->getOrdering() == Monotonic) {
Loc = MemoryLocation::get(LI);
return AliasAnalysis::ModRef;
return MRI_ModRef;
}
Loc = MemoryLocation();
return AliasAnalysis::ModRef;
return MRI_ModRef;
}
if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
if (SI->isUnordered()) {
Loc = MemoryLocation::get(SI);
return AliasAnalysis::Mod;
return MRI_Mod;
}
if (SI->getOrdering() == Monotonic) {
Loc = MemoryLocation::get(SI);
return AliasAnalysis::ModRef;
return MRI_ModRef;
}
Loc = MemoryLocation();
return AliasAnalysis::ModRef;
return MRI_ModRef;
}
if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
Loc = MemoryLocation::get(V);
return AliasAnalysis::ModRef;
return MRI_ModRef;
}
if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
// calls to free() deallocate the entire structure
Loc = MemoryLocation(CI->getArgOperand(0));
return AliasAnalysis::Mod;
return MRI_Mod;
}
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
@ -174,7 +174,7 @@ GetLocation(const Instruction *Inst, MemoryLocation &Loc, AliasAnalysis *AA) {
cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(), AAInfo);
// These intrinsics don't really modify the memory, but returning Mod
// will allow them to be handled conservatively.
return AliasAnalysis::Mod;
return MRI_Mod;
case Intrinsic::invariant_end:
II->getAAMetadata(AAInfo);
Loc = MemoryLocation(
@ -182,7 +182,7 @@ GetLocation(const Instruction *Inst, MemoryLocation &Loc, AliasAnalysis *AA) {
cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(), AAInfo);
// These intrinsics don't really modify the memory, but returning Mod
// will allow them to be handled conservatively.
return AliasAnalysis::Mod;
return MRI_Mod;
default:
break;
}
@ -190,10 +190,10 @@ GetLocation(const Instruction *Inst, MemoryLocation &Loc, AliasAnalysis *AA) {
// Otherwise, just do the coarse-grained thing that always works.
if (Inst->mayWriteToMemory())
return AliasAnalysis::ModRef;
return MRI_ModRef;
if (Inst->mayReadFromMemory())
return AliasAnalysis::Ref;
return AliasAnalysis::NoModRef;
return MRI_Ref;
return MRI_NoModRef;
}
/// getCallSiteDependencyFrom - Private helper for finding the local
@ -215,10 +215,10 @@ getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
// If this inst is a memory op, get the pointer it accessed
MemoryLocation Loc;
AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
ModRefInfo MR = GetLocation(Inst, Loc, AA);
if (Loc.Ptr) {
// A simple instruction.
if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
if (AA->getModRefInfo(CS, Loc) != MRI_NoModRef)
return MemDepResult::getClobber(Inst);
continue;
}
@ -228,10 +228,10 @@ getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
if (isa<DbgInfoIntrinsic>(Inst)) continue;
// If these two calls do not interfere, look past it.
switch (AA->getModRefInfo(CS, InstCS)) {
case AliasAnalysis::NoModRef:
case MRI_NoModRef:
// If the two calls are the same, return InstCS as a Def, so that
// CS can be found redundant and eliminated.
if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
if (isReadOnlyCall && !(MR & MRI_Mod) &&
CS.getInstruction()->isIdenticalToWhenDefined(Inst))
return MemDepResult::getDef(Inst);
@ -245,7 +245,7 @@ getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
// If we could not obtain a pointer for the instruction and the instruction
// touches memory then assume that this is a dependency.
if (MR != AliasAnalysis::NoModRef)
if (MR != MRI_NoModRef)
return MemDepResult::getClobber(Inst);
}
@ -571,7 +571,7 @@ MemDepResult MemoryDependenceAnalysis::getPointerDependencyFrom(
// If alias analysis can tell that this store is guaranteed to not modify
// the query pointer, ignore it. Use getModRefInfo to handle cases where
// the query pointer points to constant memory etc.
if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
if (AA->getModRefInfo(SI, MemLoc) == MRI_NoModRef)
continue;
// Ok, this store might clobber the query pointer. Check to see if it is
@ -620,17 +620,17 @@ MemDepResult MemoryDependenceAnalysis::getPointerDependencyFrom(
continue;
// See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
ModRefInfo MR = AA->getModRefInfo(Inst, MemLoc);
// If necessary, perform additional analysis.
if (MR == AliasAnalysis::ModRef)
if (MR == MRI_ModRef)
MR = AA->callCapturesBefore(Inst, MemLoc, DT);
switch (MR) {
case AliasAnalysis::NoModRef:
case MRI_NoModRef:
// If the call has no effect on the queried pointer, just ignore it.
continue;
case AliasAnalysis::Mod:
case MRI_Mod:
return MemDepResult::getClobber(Inst);
case AliasAnalysis::Ref:
case MRI_Ref:
// If the call is known to never store to the pointer, and if this is a
// load query, we can safely ignore it (scan past it).
if (isLoad)
@ -681,10 +681,10 @@ MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
LocalCache = MemDepResult::getNonFuncLocal();
} else {
MemoryLocation MemLoc;
AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
ModRefInfo MR = GetLocation(QueryInst, MemLoc, AA);
if (MemLoc.Ptr) {
// If we can do a pointer scan, make it happen.
bool isLoad = !(MR & AliasAnalysis::Mod);
bool isLoad = !(MR & MRI_Mod);
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;

View File

@ -46,29 +46,29 @@ namespace {
return MayAlias;
}
ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
return UnknownModRefBehavior;
FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
return FMRB_UnknownModRefBehavior;
}
ModRefBehavior getModRefBehavior(const Function *F) override {
return UnknownModRefBehavior;
FunctionModRefBehavior getModRefBehavior(const Function *F) override {
return FMRB_UnknownModRefBehavior;
}
bool pointsToConstantMemory(const MemoryLocation &Loc,
bool OrLocal) override {
return false;
}
ModRefResult getArgModRefInfo(ImmutableCallSite CS,
unsigned ArgIdx) override {
return ModRef;
ModRefInfo getArgModRefInfo(ImmutableCallSite CS,
unsigned ArgIdx) override {
return MRI_ModRef;
}
ModRefResult getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override {
return ModRef;
ModRefInfo getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override {
return MRI_ModRef;
}
ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override {
return ModRef;
ModRefInfo getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override {
return MRI_ModRef;
}
/// getAdjustedAnalysisPointer - This method is used when a pass implements

View File

@ -102,12 +102,12 @@ private:
AliasResult alias(const MemoryLocation &LocA,
const MemoryLocation &LocB) override;
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) override;
ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
ModRefBehavior getModRefBehavior(const Function *F) override;
ModRefResult getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override;
ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override;
FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
FunctionModRefBehavior getModRefBehavior(const Function *F) override;
ModRefInfo getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override;
ModRefInfo getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override;
};
} // End of anonymous namespace
@ -204,48 +204,46 @@ bool ScopedNoAliasAA::pointsToConstantMemory(const MemoryLocation &Loc,
return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
}
AliasAnalysis::ModRefBehavior
FunctionModRefBehavior
ScopedNoAliasAA::getModRefBehavior(ImmutableCallSite CS) {
return AliasAnalysis::getModRefBehavior(CS);
}
AliasAnalysis::ModRefBehavior
ScopedNoAliasAA::getModRefBehavior(const Function *F) {
FunctionModRefBehavior ScopedNoAliasAA::getModRefBehavior(const Function *F) {
return AliasAnalysis::getModRefBehavior(F);
}
AliasAnalysis::ModRefResult
ScopedNoAliasAA::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
ModRefInfo ScopedNoAliasAA::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
if (!EnableScopedNoAlias)
return AliasAnalysis::getModRefInfo(CS, Loc);
if (!mayAliasInScopes(Loc.AATags.Scope, CS.getInstruction()->getMetadata(
LLVMContext::MD_noalias)))
return NoModRef;
return MRI_NoModRef;
if (!mayAliasInScopes(
CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope),
Loc.AATags.NoAlias))
return NoModRef;
return MRI_NoModRef;
return AliasAnalysis::getModRefInfo(CS, Loc);
}
AliasAnalysis::ModRefResult
ScopedNoAliasAA::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
ModRefInfo ScopedNoAliasAA::getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
if (!EnableScopedNoAlias)
return AliasAnalysis::getModRefInfo(CS1, CS2);
if (!mayAliasInScopes(
CS1.getInstruction()->getMetadata(LLVMContext::MD_alias_scope),
CS2.getInstruction()->getMetadata(LLVMContext::MD_noalias)))
return NoModRef;
return MRI_NoModRef;
if (!mayAliasInScopes(
CS2.getInstruction()->getMetadata(LLVMContext::MD_alias_scope),
CS1.getInstruction()->getMetadata(LLVMContext::MD_noalias)))
return NoModRef;
return MRI_NoModRef;
return AliasAnalysis::getModRefInfo(CS1, CS2);
}

View File

@ -304,12 +304,12 @@ namespace {
const MemoryLocation &LocB) override;
bool pointsToConstantMemory(const MemoryLocation &Loc,
bool OrLocal) override;
ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
ModRefBehavior getModRefBehavior(const Function *F) override;
ModRefResult getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override;
ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override;
FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
FunctionModRefBehavior getModRefBehavior(const Function *F) override;
ModRefInfo getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override;
ModRefInfo getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override;
};
} // End of anonymous namespace
@ -491,32 +491,31 @@ bool TypeBasedAliasAnalysis::pointsToConstantMemory(const MemoryLocation &Loc,
return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
}
AliasAnalysis::ModRefBehavior
FunctionModRefBehavior
TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
if (!EnableTBAA)
return AliasAnalysis::getModRefBehavior(CS);
ModRefBehavior Min = UnknownModRefBehavior;
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
// If this is an "immutable" type, we can assume the call doesn't write
// to memory.
if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
(isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
Min = OnlyReadsMemory;
Min = FMRB_OnlyReadsMemory;
return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
return FunctionModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
}
AliasAnalysis::ModRefBehavior
FunctionModRefBehavior
TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) {
// Functions don't have metadata. Just chain to the next implementation.
return AliasAnalysis::getModRefBehavior(F);
}
AliasAnalysis::ModRefResult
TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
ModRefInfo TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
if (!EnableTBAA)
return AliasAnalysis::getModRefInfo(CS, Loc);
@ -524,14 +523,13 @@ TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
if (const MDNode *M =
CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if (!Aliases(L, M))
return NoModRef;
return MRI_NoModRef;
return AliasAnalysis::getModRefInfo(CS, Loc);
}
AliasAnalysis::ModRefResult
TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
ModRefInfo TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
if (!EnableTBAA)
return AliasAnalysis::getModRefInfo(CS1, CS2);
@ -540,7 +538,7 @@ TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
if (const MDNode *M2 =
CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
if (!Aliases(M1, M2))
return NoModRef;
return MRI_NoModRef;
return AliasAnalysis::getModRefInfo(CS1, CS2);
}

View File

@ -571,8 +571,7 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
BasicBlock *BB = Load->getParent();
MemoryLocation Loc = MemoryLocation::get(Load);
if (AA.canInstructionRangeModRef(BB->front(), *Load, Loc,
AliasAnalysis::Mod))
if (AA.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod))
return false; // Pointer is invalidated!
// Now check every path from the entry block to the load for transparency.

View File

@ -166,8 +166,8 @@ bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
// memory and give up.
return false;
AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(F);
if (MRB == AliasAnalysis::DoesNotAccessMemory)
FunctionModRefBehavior MRB = AA->getModRefBehavior(F);
if (MRB == FMRB_DoesNotAccessMemory)
// Already perfect!
continue;
@ -193,7 +193,7 @@ bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
// Ignore calls to functions in the same SCC.
if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
continue;
AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(CS);
FunctionModRefBehavior MRB = AA->getModRefBehavior(CS);
// If the call doesn't access arbitrary memory, we may be able to
// figure out something.
if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
@ -210,10 +210,10 @@ bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo);
if (!AA->pointsToConstantMemory(Loc, /*OrLocal=*/true)) {
if (MRB & AliasAnalysis::Mod)
if (MRB & MRI_Mod)
// Writes non-local memory. Give up.
return false;
if (MRB & AliasAnalysis::Ref)
if (MRB & MRI_Ref)
// Ok, it reads non-local memory.
ReadsMemory = true;
}
@ -222,10 +222,10 @@ bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
continue;
}
// The call could access any memory. If that includes writes, give up.
if (MRB & AliasAnalysis::Mod)
if (MRB & MRI_Mod)
return false;
// If it reads, note it.
if (MRB & AliasAnalysis::Ref)
if (MRB & MRI_Ref)
ReadsMemory = true;
continue;
} else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {

View File

@ -1867,15 +1867,15 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
};
static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
const int OnlyReadsMemory = IK_OnlyReadsMemory;
const int OnlyAccessesArgumentPointees = IK_WritesMemory;
const int UnknownModRefBehavior = IK_WritesMemory;
const int FMRB_DoesNotAccessMemory = IK_DoesNotAccessMemory;
const int FMRB_OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
const int FMRB_OnlyReadsMemory = IK_OnlyReadsMemory;
const int FMRB_OnlyAccessesArgumentPointees = IK_WritesMemory;
const int FMRB_UnknownModRefBehavior = IK_WritesMemory;
#define GET_INTRINSIC_MODREF_BEHAVIOR
#define ModRefBehavior IntrinsicKind
#define FunctionModRefBehavior IntrinsicKind
#include "llvm/IR/Intrinsics.gen"
#undef ModRefBehavior
#undef FunctionModRefBehavior
#undef GET_INTRINSIC_MODREF_BEHAVIOR
}

View File

@ -49,7 +49,7 @@ bool llvm::objcarc::CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
assert(CS && "Only calls can alter reference counts!");
// See if AliasAnalysis can help us with the call.
AliasAnalysis::ModRefBehavior MRB = PA.getAA()->getModRefBehavior(CS);
FunctionModRefBehavior MRB = PA.getAA()->getModRefBehavior(CS);
if (AliasAnalysis::onlyReadsMemory(MRB))
return false;
if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {

View File

@ -112,20 +112,20 @@ bool ObjCARCAliasAnalysis::pointsToConstantMemory(const MemoryLocation &Loc,
return false;
}
AliasAnalysis::ModRefBehavior
FunctionModRefBehavior
ObjCARCAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
// We have nothing to do. Just chain to the next AliasAnalysis.
return AliasAnalysis::getModRefBehavior(CS);
}
AliasAnalysis::ModRefBehavior
FunctionModRefBehavior
ObjCARCAliasAnalysis::getModRefBehavior(const Function *F) {
if (!EnableARCOpts)
return AliasAnalysis::getModRefBehavior(F);
switch (GetFunctionClass(F)) {
case ARCInstKind::NoopCast:
return DoesNotAccessMemory;
return FMRB_DoesNotAccessMemory;
default:
break;
}
@ -133,9 +133,8 @@ ObjCARCAliasAnalysis::getModRefBehavior(const Function *F) {
return AliasAnalysis::getModRefBehavior(F);
}
AliasAnalysis::ModRefResult
ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
ModRefInfo ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
if (!EnableARCOpts)
return AliasAnalysis::getModRefInfo(CS, Loc);
@ -151,7 +150,7 @@ ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
// These functions don't access any memory visible to the compiler.
// Note that this doesn't include objc_retainBlock, because it updates
// pointers when it copies block data.
return NoModRef;
return MRI_NoModRef;
default:
break;
}
@ -159,10 +158,9 @@ ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
return AliasAnalysis::getModRefInfo(CS, Loc);
}
AliasAnalysis::ModRefResult
ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
ModRefInfo ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
// TODO: Theoretically we could check for dependencies between objc_* calls
// and OnlyAccessesArgumentPointees calls or other well-behaved calls.
// and FMRB_OnlyAccessesArgumentPointees calls or other well-behaved calls.
return AliasAnalysis::getModRefInfo(CS1, CS2);
}

View File

@ -60,12 +60,12 @@ namespace objcarc {
const MemoryLocation &LocB) override;
bool pointsToConstantMemory(const MemoryLocation &Loc,
bool OrLocal) override;
ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
ModRefBehavior getModRefBehavior(const Function *F) override;
ModRefResult getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override;
ModRefResult getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override;
FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
FunctionModRefBehavior getModRefBehavior(const Function *F) override;
ModRefInfo getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override;
ModRefInfo getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override;
};
} // namespace objcarc

View File

@ -247,7 +247,7 @@ static StoreInst *findSafeStoreForStoreStrongContraction(LoadInst *Load,
// Ok, now we know we have not seen a store yet. See if Inst can write to
// our load location, if it can not, just ignore the instruction.
if (!(AA->getModRefInfo(Inst, Loc) & AliasAnalysis::Mod))
if (!(AA->getModRefInfo(Inst, Loc) & MRI_Mod))
continue;
Store = dyn_cast<StoreInst>(Inst);

View File

@ -609,7 +609,7 @@ bool DSE::runOnBasicBlock(BasicBlock &BB) {
if (DepWrite == &BB.front()) break;
// Can't look past this instruction if it might read 'Loc'.
if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
if (AA->getModRefInfo(DepWrite, Loc) & MRI_Ref)
break;
InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
@ -795,10 +795,10 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
// the call is live.
DeadStackObjects.remove_if([&](Value *I) {
// See if the call site touches the value.
AliasAnalysis::ModRefResult A = AA->getModRefInfo(
ModRefInfo A = AA->getModRefInfo(
CS, I, getPointerSize(I, DL, AA->getTargetLibraryInfo()));
return A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref;
return A == MRI_ModRef || A == MRI_Ref;
});
// If all of the allocas were clobbered by the call then we're not going

View File

@ -457,8 +457,8 @@ bool canSinkOrHoistInst(Instruction &I, AliasAnalysis *AA, DominatorTree *DT,
return false;
// Handle simple cases by querying alias analysis.
AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
if (Behavior == AliasAnalysis::DoesNotAccessMemory)
FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
if (Behavior == FMRB_DoesNotAccessMemory)
return true;
if (AliasAnalysis::onlyReadsMemory(Behavior)) {
// If this call only reads from memory and there are no writes to memory

View File

@ -826,9 +826,9 @@ processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
/// mayLoopAccessLocation - Return true if the specified loop might access the
/// specified pointer location, which is a loop-strided access. The 'Access'
/// argument specifies what the verboten forms of access are (read or write).
static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
Loop *L, const SCEV *BECount,
unsigned StoreSize, AliasAnalysis &AA,
static bool mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
const SCEV *BECount, unsigned StoreSize,
AliasAnalysis &AA,
Instruction *IgnoredStore) {
// Get the location that may be stored across the loop. Since the access is
// strided positively through memory, we say that the modified location starts
@ -949,9 +949,8 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
Expander.expandCodeFor(Ev->getStart(), DestInt8PtrTy,
Preheader->getTerminator());
if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
CurLoop, BECount,
StoreSize, getAnalysis<AliasAnalysis>(), TheStore)) {
if (mayLoopAccessLocation(BasePtr, MRI_ModRef, CurLoop, BECount, StoreSize,
getAnalysis<AliasAnalysis>(), TheStore)) {
Expander.clear();
// If we generated new code for the base pointer, clean up.
RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
@ -1047,9 +1046,8 @@ processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
Preheader->getTerminator());
if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
CurLoop, BECount, StoreSize,
getAnalysis<AliasAnalysis>(), SI)) {
if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
Expander.clear();
// If we generated new code for the base pointer, clean up.
RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
@ -1063,8 +1061,8 @@ processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
Preheader->getTerminator());
if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize,
getAnalysis<AliasAnalysis>(), SI)) {
Expander.clear();
// If we generated new code for the base pointer, clean up.
RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);

View File

@ -506,7 +506,7 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
MemoryLocation StoreLoc = MemoryLocation::get(SI);
for (BasicBlock::iterator I = --BasicBlock::iterator(SI),
E = C; I != E; --I) {
if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) {
if (AA.getModRefInfo(&*I, StoreLoc) != MRI_NoModRef) {
C = nullptr;
break;
}
@ -704,11 +704,11 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
// the use analysis, we also need to know that it does not sneakily
// access dest. We rely on AA to figure this out for us.
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
AliasAnalysis::ModRefResult MR = AA.getModRefInfo(C, cpyDest, srcSize);
ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize);
// If necessary, perform additional analysis.
if (MR != AliasAnalysis::NoModRef)
if (MR != MRI_NoModRef)
MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
if (MR != AliasAnalysis::NoModRef)
if (MR != MRI_NoModRef)
return false;
// All the checks have passed, so do the transformation.

View File

@ -241,7 +241,7 @@ bool MergedLoadStoreMotion::isLoadHoistBarrierInRange(const Instruction& Start,
const Instruction& End,
LoadInst* LI) {
MemoryLocation Loc = MemoryLocation::get(LI);
return AA->canInstructionRangeModRef(Start, End, Loc, AliasAnalysis::Mod);
return AA->canInstructionRangeModRef(Start, End, Loc, MRI_Mod);
}
///
@ -398,7 +398,7 @@ bool MergedLoadStoreMotion::mergeLoads(BasicBlock *BB) {
bool MergedLoadStoreMotion::isStoreSinkBarrierInRange(const Instruction &Start,
const Instruction &End,
MemoryLocation Loc) {
return AA->canInstructionRangeModRef(Start, End, Loc, AliasAnalysis::ModRef);
return AA->canInstructionRangeModRef(Start, End, Loc, MRI_ModRef);
}
///

View File

@ -165,7 +165,7 @@ static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
MemoryLocation Loc = MemoryLocation::get(L);
for (Instruction *S : Stores)
if (AA->getModRefInfo(S, Loc) & AliasAnalysis::Mod)
if (AA->getModRefInfo(S, Loc) & MRI_Mod)
return false;
}

View File

@ -481,9 +481,9 @@ static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
IsFuncCall = true;
if (AA) {
AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(ICS);
if (MRB == AliasAnalysis::OnlyAccessesArgumentPointees ||
MRB == AliasAnalysis::OnlyReadsArgumentPointees)
FunctionModRefBehavior MRB = AA->getModRefBehavior(ICS);
if (MRB == FMRB_OnlyAccessesArgumentPointees ||
MRB == FMRB_OnlyReadsArgumentPointees)
IsArgMemOnlyCall = true;
}

View File

@ -27,11 +27,11 @@ protected:
// This is going to check that calling getModRefInfo without a location, and
// with a default location, first, doesn't crash, and second, gives the right
// answer.
void CheckModRef(Instruction *I, AliasAnalysis::ModRefResult Result) {
void CheckModRef(Instruction *I, ModRefInfo Result) {
static char ID;
class CheckModRefTestPass : public FunctionPass {
public:
CheckModRefTestPass(Instruction *I, AliasAnalysis::ModRefResult Result)
CheckModRefTestPass(Instruction *I, ModRefInfo Result)
: FunctionPass(ID), ExpectResult(Result), I(I) {}
static int initialize() {
PassInfo *PI = new PassInfo("CheckModRef testing pass", "", &ID,
@ -51,7 +51,7 @@ protected:
EXPECT_EQ(AA.getModRefInfo(I), ExpectResult);
return false;
}
AliasAnalysis::ModRefResult ExpectResult;
ModRefInfo ExpectResult;
Instruction *I;
};
static int initialize = CheckModRefTestPass::initialize();
@ -92,12 +92,12 @@ TEST_F(AliasAnalysisTest, getModRefInfo) {
ReturnInst::Create(C, nullptr, BB);
// Check basic results
CheckModRef(Store1, AliasAnalysis::ModRefResult::Mod);
CheckModRef(Load1, AliasAnalysis::ModRefResult::Ref);
CheckModRef(Add1, AliasAnalysis::ModRefResult::NoModRef);
CheckModRef(VAArg1, AliasAnalysis::ModRefResult::ModRef);
CheckModRef(CmpXChg1, AliasAnalysis::ModRefResult::ModRef);
CheckModRef(AtomicRMW, AliasAnalysis::ModRefResult::ModRef);
CheckModRef(Store1, MRI_Mod);
CheckModRef(Load1, MRI_Ref);
CheckModRef(Add1, MRI_NoModRef);
CheckModRef(VAArg1, MRI_ModRef);
CheckModRef(CmpXChg1, MRI_ModRef);
CheckModRef(AtomicRMW, MRI_ModRef);
}
} // end anonymous namspace

View File

@ -722,29 +722,30 @@ EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS){
<< "\"Unknown intrinsic.\");\n\n";
OS << "static const uint8_t IntrinsicModRefBehavior[] = {\n"
<< " /* invalid */ UnknownModRefBehavior,\n";
<< " /* invalid */ FMRB_UnknownModRefBehavior,\n";
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
OS << " /* " << TargetPrefix << Ints[i].EnumName << " */ ";
switch (Ints[i].ModRef) {
case CodeGenIntrinsic::NoMem:
OS << "DoesNotAccessMemory,\n";
OS << "FMRB_DoesNotAccessMemory,\n";
break;
case CodeGenIntrinsic::ReadArgMem:
OS << "OnlyReadsArgumentPointees,\n";
OS << "FMRB_OnlyReadsArgumentPointees,\n";
break;
case CodeGenIntrinsic::ReadMem:
OS << "OnlyReadsMemory,\n";
OS << "FMRB_OnlyReadsMemory,\n";
break;
case CodeGenIntrinsic::ReadWriteArgMem:
OS << "OnlyAccessesArgumentPointees,\n";
OS << "FMRB_OnlyAccessesArgumentPointees,\n";
break;
case CodeGenIntrinsic::ReadWriteMem:
OS << "UnknownModRefBehavior,\n";
OS << "FMRB_UnknownModRefBehavior,\n";
break;
}
}
OS << "};\n\n"
<< "return static_cast<ModRefBehavior>(IntrinsicModRefBehavior[iid]);\n"
<< "return "
"static_cast<FunctionModRefBehavior>(IntrinsicModRefBehavior[iid]);\n"
<< "#endif // GET_INTRINSIC_MODREF_BEHAVIOR\n\n";
}