mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 04:32:19 +00:00
split add/sub out to its own file. Eliminate use of
dyn_castNotVal in the X+~X transform. dyn_castNotVal is dramatic overkill for what the xform needed. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92704 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
248a84beb3
commit
53a19b73b5
@ -1,5 +1,6 @@
|
||||
add_llvm_library(LLVMInstCombine
|
||||
InstructionCombining.cpp
|
||||
InstCombineAddSub.cpp
|
||||
InstCombineCasts.cpp
|
||||
InstCombineCompares.cpp
|
||||
InstCombineLoadStoreAlloca.cpp
|
||||
|
748
lib/Transforms/InstCombine/InstCombineAddSub.cpp
Normal file
748
lib/Transforms/InstCombine/InstCombineAddSub.cpp
Normal file
@ -0,0 +1,748 @@
|
||||
//===- InstCombineAddSub.cpp ----------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the visit functions for add, fadd, sub, and fsub.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "InstCombine.h"
|
||||
#include "llvm/Analysis/InstructionSimplify.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||
#include "llvm/Support/PatternMatch.h"
|
||||
using namespace llvm;
|
||||
using namespace PatternMatch;
|
||||
|
||||
/// AddOne - Add one to a ConstantInt.
|
||||
static Constant *AddOne(Constant *C) {
|
||||
return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
|
||||
}
|
||||
/// SubOne - Subtract one from a ConstantInt.
|
||||
static Constant *SubOne(ConstantInt *C) {
|
||||
return ConstantInt::get(C->getContext(), C->getValue()-1);
|
||||
}
|
||||
|
||||
|
||||
// dyn_castFoldableMul - If this value is a multiply that can be folded into
|
||||
// other computations (because it has a constant operand), return the
|
||||
// non-constant operand of the multiply, and set CST to point to the multiplier.
|
||||
// Otherwise, return null.
|
||||
//
|
||||
static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
|
||||
if (V->hasOneUse() && V->getType()->isInteger())
|
||||
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
||||
if (I->getOpcode() == Instruction::Mul)
|
||||
if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
|
||||
return I->getOperand(0);
|
||||
if (I->getOpcode() == Instruction::Shl)
|
||||
if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
|
||||
// The multiplier is really 1 << CST.
|
||||
uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
|
||||
uint32_t CSTVal = CST->getLimitedValue(BitWidth);
|
||||
CST = ConstantInt::get(V->getType()->getContext(),
|
||||
APInt(BitWidth, 1).shl(CSTVal));
|
||||
return I->getOperand(0);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/// WillNotOverflowSignedAdd - Return true if we can prove that:
|
||||
/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
|
||||
/// This basically requires proving that the add in the original type would not
|
||||
/// overflow to change the sign bit or have a carry out.
|
||||
bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
|
||||
// There are different heuristics we can use for this. Here are some simple
|
||||
// ones.
|
||||
|
||||
// Add has the property that adding any two 2's complement numbers can only
|
||||
// have one carry bit which can change a sign. As such, if LHS and RHS each
|
||||
// have at least two sign bits, we know that the addition of the two values
|
||||
// will sign extend fine.
|
||||
if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
|
||||
return true;
|
||||
|
||||
|
||||
// If one of the operands only has one non-zero bit, and if the other operand
|
||||
// has a known-zero bit in a more significant place than it (not including the
|
||||
// sign bit) the ripple may go up to and fill the zero, but won't change the
|
||||
// sign. For example, (X & ~4) + 1.
|
||||
|
||||
// TODO: Implement.
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
|
||||
bool Changed = SimplifyCommutative(I);
|
||||
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
||||
|
||||
if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
|
||||
I.hasNoUnsignedWrap(), TD))
|
||||
return ReplaceInstUsesWith(I, V);
|
||||
|
||||
|
||||
if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
|
||||
// X + (signbit) --> X ^ signbit
|
||||
const APInt& Val = CI->getValue();
|
||||
uint32_t BitWidth = Val.getBitWidth();
|
||||
if (Val == APInt::getSignBit(BitWidth))
|
||||
return BinaryOperator::CreateXor(LHS, RHS);
|
||||
|
||||
// See if SimplifyDemandedBits can simplify this. This handles stuff like
|
||||
// (X & 254)+1 -> (X&254)|1
|
||||
if (SimplifyDemandedInstructionBits(I))
|
||||
return &I;
|
||||
|
||||
// zext(bool) + C -> bool ? C + 1 : C
|
||||
if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
|
||||
if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext()))
|
||||
return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
|
||||
}
|
||||
|
||||
if (isa<PHINode>(LHS))
|
||||
if (Instruction *NV = FoldOpIntoPhi(I))
|
||||
return NV;
|
||||
|
||||
ConstantInt *XorRHS = 0;
|
||||
Value *XorLHS = 0;
|
||||
if (isa<ConstantInt>(RHSC) &&
|
||||
match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
|
||||
uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
|
||||
const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
|
||||
|
||||
uint32_t Size = TySizeBits / 2;
|
||||
APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
|
||||
APInt CFF80Val(-C0080Val);
|
||||
do {
|
||||
if (TySizeBits > Size) {
|
||||
// If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
|
||||
// If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
|
||||
if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
|
||||
(RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
|
||||
// This is a sign extend if the top bits are known zero.
|
||||
if (!MaskedValueIsZero(XorLHS,
|
||||
APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
|
||||
Size = 0; // Not a sign ext, but can't be any others either.
|
||||
break;
|
||||
}
|
||||
}
|
||||
Size >>= 1;
|
||||
C0080Val = APIntOps::lshr(C0080Val, Size);
|
||||
CFF80Val = APIntOps::ashr(CFF80Val, Size);
|
||||
} while (Size >= 1);
|
||||
|
||||
// FIXME: This shouldn't be necessary. When the backends can handle types
|
||||
// with funny bit widths then this switch statement should be removed. It
|
||||
// is just here to get the size of the "middle" type back up to something
|
||||
// that the back ends can handle.
|
||||
const Type *MiddleType = 0;
|
||||
switch (Size) {
|
||||
default: break;
|
||||
case 32:
|
||||
case 16:
|
||||
case 8: MiddleType = IntegerType::get(I.getContext(), Size); break;
|
||||
}
|
||||
if (MiddleType) {
|
||||
Value *NewTrunc = Builder->CreateTrunc(XorLHS, MiddleType, "sext");
|
||||
return new SExtInst(NewTrunc, I.getType(), I.getName());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (I.getType() == Type::getInt1Ty(I.getContext()))
|
||||
return BinaryOperator::CreateXor(LHS, RHS);
|
||||
|
||||
if (I.getType()->isInteger()) {
|
||||
// X + X --> X << 1
|
||||
if (LHS == RHS)
|
||||
return BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
|
||||
|
||||
if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
|
||||
if (RHSI->getOpcode() == Instruction::Sub)
|
||||
if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
|
||||
return ReplaceInstUsesWith(I, RHSI->getOperand(0));
|
||||
}
|
||||
if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
|
||||
if (LHSI->getOpcode() == Instruction::Sub)
|
||||
if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
|
||||
return ReplaceInstUsesWith(I, LHSI->getOperand(0));
|
||||
}
|
||||
}
|
||||
|
||||
// -A + B --> B - A
|
||||
// -A + -B --> -(A + B)
|
||||
if (Value *LHSV = dyn_castNegVal(LHS)) {
|
||||
if (LHS->getType()->isIntOrIntVector()) {
|
||||
if (Value *RHSV = dyn_castNegVal(RHS)) {
|
||||
Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
|
||||
return BinaryOperator::CreateNeg(NewAdd);
|
||||
}
|
||||
}
|
||||
|
||||
return BinaryOperator::CreateSub(RHS, LHSV);
|
||||
}
|
||||
|
||||
// A + -B --> A - B
|
||||
if (!isa<Constant>(RHS))
|
||||
if (Value *V = dyn_castNegVal(RHS))
|
||||
return BinaryOperator::CreateSub(LHS, V);
|
||||
|
||||
|
||||
ConstantInt *C2;
|
||||
if (Value *X = dyn_castFoldableMul(LHS, C2)) {
|
||||
if (X == RHS) // X*C + X --> X * (C+1)
|
||||
return BinaryOperator::CreateMul(RHS, AddOne(C2));
|
||||
|
||||
// X*C1 + X*C2 --> X * (C1+C2)
|
||||
ConstantInt *C1;
|
||||
if (X == dyn_castFoldableMul(RHS, C1))
|
||||
return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
|
||||
}
|
||||
|
||||
// X + X*C --> X * (C+1)
|
||||
if (dyn_castFoldableMul(RHS, C2) == LHS)
|
||||
return BinaryOperator::CreateMul(LHS, AddOne(C2));
|
||||
|
||||
// X + ~X --> -1 since ~X = -X-1
|
||||
if (match(LHS, m_Not(m_Specific(RHS))) ||
|
||||
match(RHS, m_Not(m_Specific(LHS))))
|
||||
return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
|
||||
|
||||
// A+B --> A|B iff A and B have no bits set in common.
|
||||
if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
|
||||
APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
|
||||
APInt LHSKnownOne(IT->getBitWidth(), 0);
|
||||
APInt LHSKnownZero(IT->getBitWidth(), 0);
|
||||
ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
|
||||
if (LHSKnownZero != 0) {
|
||||
APInt RHSKnownOne(IT->getBitWidth(), 0);
|
||||
APInt RHSKnownZero(IT->getBitWidth(), 0);
|
||||
ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
|
||||
|
||||
// No bits in common -> bitwise or.
|
||||
if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
|
||||
return BinaryOperator::CreateOr(LHS, RHS);
|
||||
}
|
||||
}
|
||||
|
||||
// W*X + Y*Z --> W * (X+Z) iff W == Y
|
||||
if (I.getType()->isIntOrIntVector()) {
|
||||
Value *W, *X, *Y, *Z;
|
||||
if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
|
||||
match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
|
||||
if (W != Y) {
|
||||
if (W == Z) {
|
||||
std::swap(Y, Z);
|
||||
} else if (Y == X) {
|
||||
std::swap(W, X);
|
||||
} else if (X == Z) {
|
||||
std::swap(Y, Z);
|
||||
std::swap(W, X);
|
||||
}
|
||||
}
|
||||
|
||||
if (W == Y) {
|
||||
Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
|
||||
return BinaryOperator::CreateMul(W, NewAdd);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
|
||||
Value *X = 0;
|
||||
if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
|
||||
return BinaryOperator::CreateSub(SubOne(CRHS), X);
|
||||
|
||||
// (X & FF00) + xx00 -> (X+xx00) & FF00
|
||||
if (LHS->hasOneUse() &&
|
||||
match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
|
||||
Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
|
||||
if (Anded == CRHS) {
|
||||
// See if all bits from the first bit set in the Add RHS up are included
|
||||
// in the mask. First, get the rightmost bit.
|
||||
const APInt &AddRHSV = CRHS->getValue();
|
||||
|
||||
// Form a mask of all bits from the lowest bit added through the top.
|
||||
APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
|
||||
|
||||
// See if the and mask includes all of these bits.
|
||||
APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
|
||||
|
||||
if (AddRHSHighBits == AddRHSHighBitsAnd) {
|
||||
// Okay, the xform is safe. Insert the new add pronto.
|
||||
Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
|
||||
return BinaryOperator::CreateAnd(NewAdd, C2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Try to fold constant add into select arguments.
|
||||
if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
|
||||
if (Instruction *R = FoldOpIntoSelect(I, SI))
|
||||
return R;
|
||||
}
|
||||
|
||||
// add (select X 0 (sub n A)) A --> select X A n
|
||||
{
|
||||
SelectInst *SI = dyn_cast<SelectInst>(LHS);
|
||||
Value *A = RHS;
|
||||
if (!SI) {
|
||||
SI = dyn_cast<SelectInst>(RHS);
|
||||
A = LHS;
|
||||
}
|
||||
if (SI && SI->hasOneUse()) {
|
||||
Value *TV = SI->getTrueValue();
|
||||
Value *FV = SI->getFalseValue();
|
||||
Value *N;
|
||||
|
||||
// Can we fold the add into the argument of the select?
|
||||
// We check both true and false select arguments for a matching subtract.
|
||||
if (match(FV, m_Zero()) &&
|
||||
match(TV, m_Sub(m_Value(N), m_Specific(A))))
|
||||
// Fold the add into the true select value.
|
||||
return SelectInst::Create(SI->getCondition(), N, A);
|
||||
if (match(TV, m_Zero()) &&
|
||||
match(FV, m_Sub(m_Value(N), m_Specific(A))))
|
||||
// Fold the add into the false select value.
|
||||
return SelectInst::Create(SI->getCondition(), A, N);
|
||||
}
|
||||
}
|
||||
|
||||
// Check for (add (sext x), y), see if we can merge this into an
|
||||
// integer add followed by a sext.
|
||||
if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
|
||||
// (add (sext x), cst) --> (sext (add x, cst'))
|
||||
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
|
||||
Constant *CI =
|
||||
ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
|
||||
if (LHSConv->hasOneUse() &&
|
||||
ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
|
||||
WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
|
||||
// Insert the new, smaller add.
|
||||
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
|
||||
CI, "addconv");
|
||||
return new SExtInst(NewAdd, I.getType());
|
||||
}
|
||||
}
|
||||
|
||||
// (add (sext x), (sext y)) --> (sext (add int x, y))
|
||||
if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
|
||||
// Only do this if x/y have the same type, if at last one of them has a
|
||||
// single use (so we don't increase the number of sexts), and if the
|
||||
// integer add will not overflow.
|
||||
if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
|
||||
(LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
|
||||
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
|
||||
RHSConv->getOperand(0))) {
|
||||
// Insert the new integer add.
|
||||
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
|
||||
RHSConv->getOperand(0), "addconv");
|
||||
return new SExtInst(NewAdd, I.getType());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return Changed ? &I : 0;
|
||||
}
|
||||
|
||||
Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
|
||||
bool Changed = SimplifyCommutative(I);
|
||||
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
||||
|
||||
if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
|
||||
// X + 0 --> X
|
||||
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
|
||||
if (CFP->isExactlyValue(ConstantFP::getNegativeZero
|
||||
(I.getType())->getValueAPF()))
|
||||
return ReplaceInstUsesWith(I, LHS);
|
||||
}
|
||||
|
||||
if (isa<PHINode>(LHS))
|
||||
if (Instruction *NV = FoldOpIntoPhi(I))
|
||||
return NV;
|
||||
}
|
||||
|
||||
// -A + B --> B - A
|
||||
// -A + -B --> -(A + B)
|
||||
if (Value *LHSV = dyn_castFNegVal(LHS))
|
||||
return BinaryOperator::CreateFSub(RHS, LHSV);
|
||||
|
||||
// A + -B --> A - B
|
||||
if (!isa<Constant>(RHS))
|
||||
if (Value *V = dyn_castFNegVal(RHS))
|
||||
return BinaryOperator::CreateFSub(LHS, V);
|
||||
|
||||
// Check for X+0.0. Simplify it to X if we know X is not -0.0.
|
||||
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
|
||||
if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
|
||||
return ReplaceInstUsesWith(I, LHS);
|
||||
|
||||
// Check for (add double (sitofp x), y), see if we can merge this into an
|
||||
// integer add followed by a promotion.
|
||||
if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
|
||||
// (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
|
||||
// ... if the constant fits in the integer value. This is useful for things
|
||||
// like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
|
||||
// requires a constant pool load, and generally allows the add to be better
|
||||
// instcombined.
|
||||
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
|
||||
Constant *CI =
|
||||
ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
|
||||
if (LHSConv->hasOneUse() &&
|
||||
ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
|
||||
WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
|
||||
// Insert the new integer add.
|
||||
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
|
||||
CI, "addconv");
|
||||
return new SIToFPInst(NewAdd, I.getType());
|
||||
}
|
||||
}
|
||||
|
||||
// (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
|
||||
if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
|
||||
// Only do this if x/y have the same type, if at last one of them has a
|
||||
// single use (so we don't increase the number of int->fp conversions),
|
||||
// and if the integer add will not overflow.
|
||||
if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
|
||||
(LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
|
||||
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
|
||||
RHSConv->getOperand(0))) {
|
||||
// Insert the new integer add.
|
||||
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
|
||||
RHSConv->getOperand(0),"addconv");
|
||||
return new SIToFPInst(NewAdd, I.getType());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return Changed ? &I : 0;
|
||||
}
|
||||
|
||||
|
||||
/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
|
||||
/// code necessary to compute the offset from the base pointer (without adding
|
||||
/// in the base pointer). Return the result as a signed integer of intptr size.
|
||||
Value *InstCombiner::EmitGEPOffset(User *GEP) {
|
||||
TargetData &TD = *getTargetData();
|
||||
gep_type_iterator GTI = gep_type_begin(GEP);
|
||||
const Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
|
||||
Value *Result = Constant::getNullValue(IntPtrTy);
|
||||
|
||||
// Build a mask for high order bits.
|
||||
unsigned IntPtrWidth = TD.getPointerSizeInBits();
|
||||
uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
|
||||
|
||||
for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
|
||||
++i, ++GTI) {
|
||||
Value *Op = *i;
|
||||
uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
|
||||
if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
|
||||
if (OpC->isZero()) continue;
|
||||
|
||||
// Handle a struct index, which adds its field offset to the pointer.
|
||||
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
|
||||
Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
|
||||
|
||||
Result = Builder->CreateAdd(Result,
|
||||
ConstantInt::get(IntPtrTy, Size),
|
||||
GEP->getName()+".offs");
|
||||
continue;
|
||||
}
|
||||
|
||||
Constant *Scale = ConstantInt::get(IntPtrTy, Size);
|
||||
Constant *OC =
|
||||
ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
|
||||
Scale = ConstantExpr::getMul(OC, Scale);
|
||||
// Emit an add instruction.
|
||||
Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
|
||||
continue;
|
||||
}
|
||||
// Convert to correct type.
|
||||
if (Op->getType() != IntPtrTy)
|
||||
Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
|
||||
if (Size != 1) {
|
||||
Constant *Scale = ConstantInt::get(IntPtrTy, Size);
|
||||
// We'll let instcombine(mul) convert this to a shl if possible.
|
||||
Op = Builder->CreateMul(Op, Scale, GEP->getName()+".idx");
|
||||
}
|
||||
|
||||
// Emit an add instruction.
|
||||
Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
|
||||
}
|
||||
return Result;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Optimize pointer differences into the same array into a size. Consider:
|
||||
/// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
|
||||
/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
|
||||
///
|
||||
Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
|
||||
const Type *Ty) {
|
||||
assert(TD && "Must have target data info for this");
|
||||
|
||||
// If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
|
||||
// this.
|
||||
bool Swapped = false;
|
||||
GetElementPtrInst *GEP = 0;
|
||||
ConstantExpr *CstGEP = 0;
|
||||
|
||||
// TODO: Could also optimize &A[i] - &A[j] -> "i-j", and "&A.foo[i] - &A.foo".
|
||||
// For now we require one side to be the base pointer "A" or a constant
|
||||
// expression derived from it.
|
||||
if (GetElementPtrInst *LHSGEP = dyn_cast<GetElementPtrInst>(LHS)) {
|
||||
// (gep X, ...) - X
|
||||
if (LHSGEP->getOperand(0) == RHS) {
|
||||
GEP = LHSGEP;
|
||||
Swapped = false;
|
||||
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(RHS)) {
|
||||
// (gep X, ...) - (ce_gep X, ...)
|
||||
if (CE->getOpcode() == Instruction::GetElementPtr &&
|
||||
LHSGEP->getOperand(0) == CE->getOperand(0)) {
|
||||
CstGEP = CE;
|
||||
GEP = LHSGEP;
|
||||
Swapped = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (GetElementPtrInst *RHSGEP = dyn_cast<GetElementPtrInst>(RHS)) {
|
||||
// X - (gep X, ...)
|
||||
if (RHSGEP->getOperand(0) == LHS) {
|
||||
GEP = RHSGEP;
|
||||
Swapped = true;
|
||||
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(LHS)) {
|
||||
// (ce_gep X, ...) - (gep X, ...)
|
||||
if (CE->getOpcode() == Instruction::GetElementPtr &&
|
||||
RHSGEP->getOperand(0) == CE->getOperand(0)) {
|
||||
CstGEP = CE;
|
||||
GEP = RHSGEP;
|
||||
Swapped = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (GEP == 0)
|
||||
return 0;
|
||||
|
||||
// Emit the offset of the GEP and an intptr_t.
|
||||
Value *Result = EmitGEPOffset(GEP);
|
||||
|
||||
// If we had a constant expression GEP on the other side offsetting the
|
||||
// pointer, subtract it from the offset we have.
|
||||
if (CstGEP) {
|
||||
Value *CstOffset = EmitGEPOffset(CstGEP);
|
||||
Result = Builder->CreateSub(Result, CstOffset);
|
||||
}
|
||||
|
||||
|
||||
// If we have p - gep(p, ...) then we have to negate the result.
|
||||
if (Swapped)
|
||||
Result = Builder->CreateNeg(Result, "diff.neg");
|
||||
|
||||
return Builder->CreateIntCast(Result, Ty, true);
|
||||
}
|
||||
|
||||
|
||||
Instruction *InstCombiner::visitSub(BinaryOperator &I) {
|
||||
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
||||
|
||||
if (Op0 == Op1) // sub X, X -> 0
|
||||
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
|
||||
|
||||
// If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW.
|
||||
if (Value *V = dyn_castNegVal(Op1)) {
|
||||
BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
|
||||
Res->setHasNoSignedWrap(I.hasNoSignedWrap());
|
||||
Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
|
||||
return Res;
|
||||
}
|
||||
|
||||
if (isa<UndefValue>(Op0))
|
||||
return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
|
||||
if (isa<UndefValue>(Op1))
|
||||
return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
|
||||
if (I.getType() == Type::getInt1Ty(I.getContext()))
|
||||
return BinaryOperator::CreateXor(Op0, Op1);
|
||||
|
||||
if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
|
||||
// Replace (-1 - A) with (~A).
|
||||
if (C->isAllOnesValue())
|
||||
return BinaryOperator::CreateNot(Op1);
|
||||
|
||||
// C - ~X == X + (1+C)
|
||||
Value *X = 0;
|
||||
if (match(Op1, m_Not(m_Value(X))))
|
||||
return BinaryOperator::CreateAdd(X, AddOne(C));
|
||||
|
||||
// -(X >>u 31) -> (X >>s 31)
|
||||
// -(X >>s 31) -> (X >>u 31)
|
||||
if (C->isZero()) {
|
||||
if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
|
||||
if (SI->getOpcode() == Instruction::LShr) {
|
||||
if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
|
||||
// Check to see if we are shifting out everything but the sign bit.
|
||||
if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
|
||||
SI->getType()->getPrimitiveSizeInBits()-1) {
|
||||
// Ok, the transformation is safe. Insert AShr.
|
||||
return BinaryOperator::Create(Instruction::AShr,
|
||||
SI->getOperand(0), CU, SI->getName());
|
||||
}
|
||||
}
|
||||
} else if (SI->getOpcode() == Instruction::AShr) {
|
||||
if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
|
||||
// Check to see if we are shifting out everything but the sign bit.
|
||||
if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
|
||||
SI->getType()->getPrimitiveSizeInBits()-1) {
|
||||
// Ok, the transformation is safe. Insert LShr.
|
||||
return BinaryOperator::CreateLShr(
|
||||
SI->getOperand(0), CU, SI->getName());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Try to fold constant sub into select arguments.
|
||||
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
|
||||
if (Instruction *R = FoldOpIntoSelect(I, SI))
|
||||
return R;
|
||||
|
||||
// C - zext(bool) -> bool ? C - 1 : C
|
||||
if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
|
||||
if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext()))
|
||||
return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
|
||||
}
|
||||
|
||||
if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
|
||||
if (Op1I->getOpcode() == Instruction::Add) {
|
||||
if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
|
||||
return BinaryOperator::CreateNeg(Op1I->getOperand(1),
|
||||
I.getName());
|
||||
else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
|
||||
return BinaryOperator::CreateNeg(Op1I->getOperand(0),
|
||||
I.getName());
|
||||
else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
|
||||
if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
|
||||
// C1-(X+C2) --> (C1-C2)-X
|
||||
return BinaryOperator::CreateSub(
|
||||
ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0));
|
||||
}
|
||||
}
|
||||
|
||||
if (Op1I->hasOneUse()) {
|
||||
// Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
|
||||
// is not used by anyone else...
|
||||
//
|
||||
if (Op1I->getOpcode() == Instruction::Sub) {
|
||||
// Swap the two operands of the subexpr...
|
||||
Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
|
||||
Op1I->setOperand(0, IIOp1);
|
||||
Op1I->setOperand(1, IIOp0);
|
||||
|
||||
// Create the new top level add instruction...
|
||||
return BinaryOperator::CreateAdd(Op0, Op1);
|
||||
}
|
||||
|
||||
// Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
|
||||
//
|
||||
if (Op1I->getOpcode() == Instruction::And &&
|
||||
(Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
|
||||
Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
|
||||
|
||||
Value *NewNot = Builder->CreateNot(OtherOp, "B.not");
|
||||
return BinaryOperator::CreateAnd(Op0, NewNot);
|
||||
}
|
||||
|
||||
// 0 - (X sdiv C) -> (X sdiv -C)
|
||||
if (Op1I->getOpcode() == Instruction::SDiv)
|
||||
if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
|
||||
if (CSI->isZero())
|
||||
if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
|
||||
return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
|
||||
ConstantExpr::getNeg(DivRHS));
|
||||
|
||||
// X - X*C --> X * (1-C)
|
||||
ConstantInt *C2 = 0;
|
||||
if (dyn_castFoldableMul(Op1I, C2) == Op0) {
|
||||
Constant *CP1 =
|
||||
ConstantExpr::getSub(ConstantInt::get(I.getType(), 1),
|
||||
C2);
|
||||
return BinaryOperator::CreateMul(Op0, CP1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
|
||||
if (Op0I->getOpcode() == Instruction::Add) {
|
||||
if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
|
||||
return ReplaceInstUsesWith(I, Op0I->getOperand(1));
|
||||
else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
|
||||
return ReplaceInstUsesWith(I, Op0I->getOperand(0));
|
||||
} else if (Op0I->getOpcode() == Instruction::Sub) {
|
||||
if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
|
||||
return BinaryOperator::CreateNeg(Op0I->getOperand(1),
|
||||
I.getName());
|
||||
}
|
||||
}
|
||||
|
||||
ConstantInt *C1;
|
||||
if (Value *X = dyn_castFoldableMul(Op0, C1)) {
|
||||
if (X == Op1) // X*C - X --> X * (C-1)
|
||||
return BinaryOperator::CreateMul(Op1, SubOne(C1));
|
||||
|
||||
ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
|
||||
if (X == dyn_castFoldableMul(Op1, C2))
|
||||
return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
|
||||
}
|
||||
|
||||
// Optimize pointer differences into the same array into a size. Consider:
|
||||
// &A[10] - &A[0]: we should compile this to "10".
|
||||
if (TD) {
|
||||
Value *LHSOp, *RHSOp;
|
||||
if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
|
||||
match(Op1, m_PtrToInt(m_Value(RHSOp))))
|
||||
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
|
||||
return ReplaceInstUsesWith(I, Res);
|
||||
|
||||
// trunc(p)-trunc(q) -> trunc(p-q)
|
||||
if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
|
||||
match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
|
||||
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
|
||||
return ReplaceInstUsesWith(I, Res);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
|
||||
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
||||
|
||||
// If this is a 'B = x-(-A)', change to B = x+A...
|
||||
if (Value *V = dyn_castFNegVal(Op1))
|
||||
return BinaryOperator::CreateFAdd(Op0, V);
|
||||
|
||||
if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
|
||||
if (Op1I->getOpcode() == Instruction::FAdd) {
|
||||
if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
|
||||
return BinaryOperator::CreateFNeg(Op1I->getOperand(1),
|
||||
I.getName());
|
||||
else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
|
||||
return BinaryOperator::CreateFNeg(Op1I->getOperand(0),
|
||||
I.getName());
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
@ -464,701 +464,6 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
|
||||
}
|
||||
|
||||
|
||||
/// WillNotOverflowSignedAdd - Return true if we can prove that:
|
||||
/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
|
||||
/// This basically requires proving that the add in the original type would not
|
||||
/// overflow to change the sign bit or have a carry out.
|
||||
bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
|
||||
// There are different heuristics we can use for this. Here are some simple
|
||||
// ones.
|
||||
|
||||
// Add has the property that adding any two 2's complement numbers can only
|
||||
// have one carry bit which can change a sign. As such, if LHS and RHS each
|
||||
// have at least two sign bits, we know that the addition of the two values
|
||||
// will sign extend fine.
|
||||
if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
|
||||
return true;
|
||||
|
||||
|
||||
// If one of the operands only has one non-zero bit, and if the other operand
|
||||
// has a known-zero bit in a more significant place than it (not including the
|
||||
// sign bit) the ripple may go up to and fill the zero, but won't change the
|
||||
// sign. For example, (X & ~4) + 1.
|
||||
|
||||
// TODO: Implement.
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
|
||||
bool Changed = SimplifyCommutative(I);
|
||||
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
||||
|
||||
if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
|
||||
I.hasNoUnsignedWrap(), TD))
|
||||
return ReplaceInstUsesWith(I, V);
|
||||
|
||||
|
||||
if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
|
||||
// X + (signbit) --> X ^ signbit
|
||||
const APInt& Val = CI->getValue();
|
||||
uint32_t BitWidth = Val.getBitWidth();
|
||||
if (Val == APInt::getSignBit(BitWidth))
|
||||
return BinaryOperator::CreateXor(LHS, RHS);
|
||||
|
||||
// See if SimplifyDemandedBits can simplify this. This handles stuff like
|
||||
// (X & 254)+1 -> (X&254)|1
|
||||
if (SimplifyDemandedInstructionBits(I))
|
||||
return &I;
|
||||
|
||||
// zext(bool) + C -> bool ? C + 1 : C
|
||||
if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
|
||||
if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext()))
|
||||
return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
|
||||
}
|
||||
|
||||
if (isa<PHINode>(LHS))
|
||||
if (Instruction *NV = FoldOpIntoPhi(I))
|
||||
return NV;
|
||||
|
||||
ConstantInt *XorRHS = 0;
|
||||
Value *XorLHS = 0;
|
||||
if (isa<ConstantInt>(RHSC) &&
|
||||
match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
|
||||
uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
|
||||
const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
|
||||
|
||||
uint32_t Size = TySizeBits / 2;
|
||||
APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
|
||||
APInt CFF80Val(-C0080Val);
|
||||
do {
|
||||
if (TySizeBits > Size) {
|
||||
// If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
|
||||
// If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
|
||||
if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
|
||||
(RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
|
||||
// This is a sign extend if the top bits are known zero.
|
||||
if (!MaskedValueIsZero(XorLHS,
|
||||
APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
|
||||
Size = 0; // Not a sign ext, but can't be any others either.
|
||||
break;
|
||||
}
|
||||
}
|
||||
Size >>= 1;
|
||||
C0080Val = APIntOps::lshr(C0080Val, Size);
|
||||
CFF80Val = APIntOps::ashr(CFF80Val, Size);
|
||||
} while (Size >= 1);
|
||||
|
||||
// FIXME: This shouldn't be necessary. When the backends can handle types
|
||||
// with funny bit widths then this switch statement should be removed. It
|
||||
// is just here to get the size of the "middle" type back up to something
|
||||
// that the back ends can handle.
|
||||
const Type *MiddleType = 0;
|
||||
switch (Size) {
|
||||
default: break;
|
||||
case 32:
|
||||
case 16:
|
||||
case 8: MiddleType = IntegerType::get(I.getContext(), Size); break;
|
||||
}
|
||||
if (MiddleType) {
|
||||
Value *NewTrunc = Builder->CreateTrunc(XorLHS, MiddleType, "sext");
|
||||
return new SExtInst(NewTrunc, I.getType(), I.getName());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (I.getType() == Type::getInt1Ty(I.getContext()))
|
||||
return BinaryOperator::CreateXor(LHS, RHS);
|
||||
|
||||
if (I.getType()->isInteger()) {
|
||||
// X + X --> X << 1
|
||||
if (LHS == RHS)
|
||||
return BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
|
||||
|
||||
if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
|
||||
if (RHSI->getOpcode() == Instruction::Sub)
|
||||
if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
|
||||
return ReplaceInstUsesWith(I, RHSI->getOperand(0));
|
||||
}
|
||||
if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
|
||||
if (LHSI->getOpcode() == Instruction::Sub)
|
||||
if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
|
||||
return ReplaceInstUsesWith(I, LHSI->getOperand(0));
|
||||
}
|
||||
}
|
||||
|
||||
// -A + B --> B - A
|
||||
// -A + -B --> -(A + B)
|
||||
if (Value *LHSV = dyn_castNegVal(LHS)) {
|
||||
if (LHS->getType()->isIntOrIntVector()) {
|
||||
if (Value *RHSV = dyn_castNegVal(RHS)) {
|
||||
Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
|
||||
return BinaryOperator::CreateNeg(NewAdd);
|
||||
}
|
||||
}
|
||||
|
||||
return BinaryOperator::CreateSub(RHS, LHSV);
|
||||
}
|
||||
|
||||
// A + -B --> A - B
|
||||
if (!isa<Constant>(RHS))
|
||||
if (Value *V = dyn_castNegVal(RHS))
|
||||
return BinaryOperator::CreateSub(LHS, V);
|
||||
|
||||
|
||||
ConstantInt *C2;
|
||||
if (Value *X = dyn_castFoldableMul(LHS, C2)) {
|
||||
if (X == RHS) // X*C + X --> X * (C+1)
|
||||
return BinaryOperator::CreateMul(RHS, AddOne(C2));
|
||||
|
||||
// X*C1 + X*C2 --> X * (C1+C2)
|
||||
ConstantInt *C1;
|
||||
if (X == dyn_castFoldableMul(RHS, C1))
|
||||
return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
|
||||
}
|
||||
|
||||
// X + X*C --> X * (C+1)
|
||||
if (dyn_castFoldableMul(RHS, C2) == LHS)
|
||||
return BinaryOperator::CreateMul(LHS, AddOne(C2));
|
||||
|
||||
// X + ~X --> -1 since ~X = -X-1
|
||||
if (dyn_castNotVal(LHS) == RHS ||
|
||||
dyn_castNotVal(RHS) == LHS)
|
||||
return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
|
||||
|
||||
|
||||
// A+B --> A|B iff A and B have no bits set in common.
|
||||
if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
|
||||
APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
|
||||
APInt LHSKnownOne(IT->getBitWidth(), 0);
|
||||
APInt LHSKnownZero(IT->getBitWidth(), 0);
|
||||
ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
|
||||
if (LHSKnownZero != 0) {
|
||||
APInt RHSKnownOne(IT->getBitWidth(), 0);
|
||||
APInt RHSKnownZero(IT->getBitWidth(), 0);
|
||||
ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
|
||||
|
||||
// No bits in common -> bitwise or.
|
||||
if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
|
||||
return BinaryOperator::CreateOr(LHS, RHS);
|
||||
}
|
||||
}
|
||||
|
||||
// W*X + Y*Z --> W * (X+Z) iff W == Y
|
||||
if (I.getType()->isIntOrIntVector()) {
|
||||
Value *W, *X, *Y, *Z;
|
||||
if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
|
||||
match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
|
||||
if (W != Y) {
|
||||
if (W == Z) {
|
||||
std::swap(Y, Z);
|
||||
} else if (Y == X) {
|
||||
std::swap(W, X);
|
||||
} else if (X == Z) {
|
||||
std::swap(Y, Z);
|
||||
std::swap(W, X);
|
||||
}
|
||||
}
|
||||
|
||||
if (W == Y) {
|
||||
Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
|
||||
return BinaryOperator::CreateMul(W, NewAdd);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
|
||||
Value *X = 0;
|
||||
if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
|
||||
return BinaryOperator::CreateSub(SubOne(CRHS), X);
|
||||
|
||||
// (X & FF00) + xx00 -> (X+xx00) & FF00
|
||||
if (LHS->hasOneUse() &&
|
||||
match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
|
||||
Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
|
||||
if (Anded == CRHS) {
|
||||
// See if all bits from the first bit set in the Add RHS up are included
|
||||
// in the mask. First, get the rightmost bit.
|
||||
const APInt &AddRHSV = CRHS->getValue();
|
||||
|
||||
// Form a mask of all bits from the lowest bit added through the top.
|
||||
APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
|
||||
|
||||
// See if the and mask includes all of these bits.
|
||||
APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
|
||||
|
||||
if (AddRHSHighBits == AddRHSHighBitsAnd) {
|
||||
// Okay, the xform is safe. Insert the new add pronto.
|
||||
Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
|
||||
return BinaryOperator::CreateAnd(NewAdd, C2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Try to fold constant add into select arguments.
|
||||
if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
|
||||
if (Instruction *R = FoldOpIntoSelect(I, SI))
|
||||
return R;
|
||||
}
|
||||
|
||||
// add (select X 0 (sub n A)) A --> select X A n
|
||||
{
|
||||
SelectInst *SI = dyn_cast<SelectInst>(LHS);
|
||||
Value *A = RHS;
|
||||
if (!SI) {
|
||||
SI = dyn_cast<SelectInst>(RHS);
|
||||
A = LHS;
|
||||
}
|
||||
if (SI && SI->hasOneUse()) {
|
||||
Value *TV = SI->getTrueValue();
|
||||
Value *FV = SI->getFalseValue();
|
||||
Value *N;
|
||||
|
||||
// Can we fold the add into the argument of the select?
|
||||
// We check both true and false select arguments for a matching subtract.
|
||||
if (match(FV, m_Zero()) &&
|
||||
match(TV, m_Sub(m_Value(N), m_Specific(A))))
|
||||
// Fold the add into the true select value.
|
||||
return SelectInst::Create(SI->getCondition(), N, A);
|
||||
if (match(TV, m_Zero()) &&
|
||||
match(FV, m_Sub(m_Value(N), m_Specific(A))))
|
||||
// Fold the add into the false select value.
|
||||
return SelectInst::Create(SI->getCondition(), A, N);
|
||||
}
|
||||
}
|
||||
|
||||
// Check for (add (sext x), y), see if we can merge this into an
|
||||
// integer add followed by a sext.
|
||||
if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
|
||||
// (add (sext x), cst) --> (sext (add x, cst'))
|
||||
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
|
||||
Constant *CI =
|
||||
ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
|
||||
if (LHSConv->hasOneUse() &&
|
||||
ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
|
||||
WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
|
||||
// Insert the new, smaller add.
|
||||
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
|
||||
CI, "addconv");
|
||||
return new SExtInst(NewAdd, I.getType());
|
||||
}
|
||||
}
|
||||
|
||||
// (add (sext x), (sext y)) --> (sext (add int x, y))
|
||||
if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
|
||||
// Only do this if x/y have the same type, if at last one of them has a
|
||||
// single use (so we don't increase the number of sexts), and if the
|
||||
// integer add will not overflow.
|
||||
if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
|
||||
(LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
|
||||
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
|
||||
RHSConv->getOperand(0))) {
|
||||
// Insert the new integer add.
|
||||
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
|
||||
RHSConv->getOperand(0), "addconv");
|
||||
return new SExtInst(NewAdd, I.getType());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return Changed ? &I : 0;
|
||||
}
|
||||
|
||||
Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
|
||||
bool Changed = SimplifyCommutative(I);
|
||||
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
||||
|
||||
if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
|
||||
// X + 0 --> X
|
||||
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
|
||||
if (CFP->isExactlyValue(ConstantFP::getNegativeZero
|
||||
(I.getType())->getValueAPF()))
|
||||
return ReplaceInstUsesWith(I, LHS);
|
||||
}
|
||||
|
||||
if (isa<PHINode>(LHS))
|
||||
if (Instruction *NV = FoldOpIntoPhi(I))
|
||||
return NV;
|
||||
}
|
||||
|
||||
// -A + B --> B - A
|
||||
// -A + -B --> -(A + B)
|
||||
if (Value *LHSV = dyn_castFNegVal(LHS))
|
||||
return BinaryOperator::CreateFSub(RHS, LHSV);
|
||||
|
||||
// A + -B --> A - B
|
||||
if (!isa<Constant>(RHS))
|
||||
if (Value *V = dyn_castFNegVal(RHS))
|
||||
return BinaryOperator::CreateFSub(LHS, V);
|
||||
|
||||
// Check for X+0.0. Simplify it to X if we know X is not -0.0.
|
||||
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
|
||||
if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
|
||||
return ReplaceInstUsesWith(I, LHS);
|
||||
|
||||
// Check for (add double (sitofp x), y), see if we can merge this into an
|
||||
// integer add followed by a promotion.
|
||||
if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
|
||||
// (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
|
||||
// ... if the constant fits in the integer value. This is useful for things
|
||||
// like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
|
||||
// requires a constant pool load, and generally allows the add to be better
|
||||
// instcombined.
|
||||
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
|
||||
Constant *CI =
|
||||
ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
|
||||
if (LHSConv->hasOneUse() &&
|
||||
ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
|
||||
WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
|
||||
// Insert the new integer add.
|
||||
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
|
||||
CI, "addconv");
|
||||
return new SIToFPInst(NewAdd, I.getType());
|
||||
}
|
||||
}
|
||||
|
||||
// (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
|
||||
if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
|
||||
// Only do this if x/y have the same type, if at last one of them has a
|
||||
// single use (so we don't increase the number of int->fp conversions),
|
||||
// and if the integer add will not overflow.
|
||||
if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
|
||||
(LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
|
||||
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
|
||||
RHSConv->getOperand(0))) {
|
||||
// Insert the new integer add.
|
||||
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
|
||||
RHSConv->getOperand(0),"addconv");
|
||||
return new SIToFPInst(NewAdd, I.getType());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return Changed ? &I : 0;
|
||||
}
|
||||
|
||||
|
||||
/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
|
||||
/// code necessary to compute the offset from the base pointer (without adding
|
||||
/// in the base pointer). Return the result as a signed integer of intptr size.
|
||||
Value *InstCombiner::EmitGEPOffset(User *GEP) {
|
||||
TargetData &TD = *getTargetData();
|
||||
gep_type_iterator GTI = gep_type_begin(GEP);
|
||||
const Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
|
||||
Value *Result = Constant::getNullValue(IntPtrTy);
|
||||
|
||||
// Build a mask for high order bits.
|
||||
unsigned IntPtrWidth = TD.getPointerSizeInBits();
|
||||
uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
|
||||
|
||||
for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
|
||||
++i, ++GTI) {
|
||||
Value *Op = *i;
|
||||
uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
|
||||
if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
|
||||
if (OpC->isZero()) continue;
|
||||
|
||||
// Handle a struct index, which adds its field offset to the pointer.
|
||||
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
|
||||
Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
|
||||
|
||||
Result = Builder->CreateAdd(Result,
|
||||
ConstantInt::get(IntPtrTy, Size),
|
||||
GEP->getName()+".offs");
|
||||
continue;
|
||||
}
|
||||
|
||||
Constant *Scale = ConstantInt::get(IntPtrTy, Size);
|
||||
Constant *OC =
|
||||
ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
|
||||
Scale = ConstantExpr::getMul(OC, Scale);
|
||||
// Emit an add instruction.
|
||||
Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
|
||||
continue;
|
||||
}
|
||||
// Convert to correct type.
|
||||
if (Op->getType() != IntPtrTy)
|
||||
Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
|
||||
if (Size != 1) {
|
||||
Constant *Scale = ConstantInt::get(IntPtrTy, Size);
|
||||
// We'll let instcombine(mul) convert this to a shl if possible.
|
||||
Op = Builder->CreateMul(Op, Scale, GEP->getName()+".idx");
|
||||
}
|
||||
|
||||
// Emit an add instruction.
|
||||
Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
|
||||
}
|
||||
return Result;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Optimize pointer differences into the same array into a size. Consider:
|
||||
/// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
|
||||
/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
|
||||
///
|
||||
Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
|
||||
const Type *Ty) {
|
||||
assert(TD && "Must have target data info for this");
|
||||
|
||||
// If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
|
||||
// this.
|
||||
bool Swapped = false;
|
||||
GetElementPtrInst *GEP = 0;
|
||||
ConstantExpr *CstGEP = 0;
|
||||
|
||||
// TODO: Could also optimize &A[i] - &A[j] -> "i-j", and "&A.foo[i] - &A.foo".
|
||||
// For now we require one side to be the base pointer "A" or a constant
|
||||
// expression derived from it.
|
||||
if (GetElementPtrInst *LHSGEP = dyn_cast<GetElementPtrInst>(LHS)) {
|
||||
// (gep X, ...) - X
|
||||
if (LHSGEP->getOperand(0) == RHS) {
|
||||
GEP = LHSGEP;
|
||||
Swapped = false;
|
||||
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(RHS)) {
|
||||
// (gep X, ...) - (ce_gep X, ...)
|
||||
if (CE->getOpcode() == Instruction::GetElementPtr &&
|
||||
LHSGEP->getOperand(0) == CE->getOperand(0)) {
|
||||
CstGEP = CE;
|
||||
GEP = LHSGEP;
|
||||
Swapped = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (GetElementPtrInst *RHSGEP = dyn_cast<GetElementPtrInst>(RHS)) {
|
||||
// X - (gep X, ...)
|
||||
if (RHSGEP->getOperand(0) == LHS) {
|
||||
GEP = RHSGEP;
|
||||
Swapped = true;
|
||||
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(LHS)) {
|
||||
// (ce_gep X, ...) - (gep X, ...)
|
||||
if (CE->getOpcode() == Instruction::GetElementPtr &&
|
||||
RHSGEP->getOperand(0) == CE->getOperand(0)) {
|
||||
CstGEP = CE;
|
||||
GEP = RHSGEP;
|
||||
Swapped = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (GEP == 0)
|
||||
return 0;
|
||||
|
||||
// Emit the offset of the GEP and an intptr_t.
|
||||
Value *Result = EmitGEPOffset(GEP);
|
||||
|
||||
// If we had a constant expression GEP on the other side offsetting the
|
||||
// pointer, subtract it from the offset we have.
|
||||
if (CstGEP) {
|
||||
Value *CstOffset = EmitGEPOffset(CstGEP);
|
||||
Result = Builder->CreateSub(Result, CstOffset);
|
||||
}
|
||||
|
||||
|
||||
// If we have p - gep(p, ...) then we have to negate the result.
|
||||
if (Swapped)
|
||||
Result = Builder->CreateNeg(Result, "diff.neg");
|
||||
|
||||
return Builder->CreateIntCast(Result, Ty, true);
|
||||
}
|
||||
|
||||
|
||||
Instruction *InstCombiner::visitSub(BinaryOperator &I) {
|
||||
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
||||
|
||||
if (Op0 == Op1) // sub X, X -> 0
|
||||
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
|
||||
|
||||
// If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW.
|
||||
if (Value *V = dyn_castNegVal(Op1)) {
|
||||
BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
|
||||
Res->setHasNoSignedWrap(I.hasNoSignedWrap());
|
||||
Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
|
||||
return Res;
|
||||
}
|
||||
|
||||
if (isa<UndefValue>(Op0))
|
||||
return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
|
||||
if (isa<UndefValue>(Op1))
|
||||
return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
|
||||
if (I.getType() == Type::getInt1Ty(I.getContext()))
|
||||
return BinaryOperator::CreateXor(Op0, Op1);
|
||||
|
||||
if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
|
||||
// Replace (-1 - A) with (~A).
|
||||
if (C->isAllOnesValue())
|
||||
return BinaryOperator::CreateNot(Op1);
|
||||
|
||||
// C - ~X == X + (1+C)
|
||||
Value *X = 0;
|
||||
if (match(Op1, m_Not(m_Value(X))))
|
||||
return BinaryOperator::CreateAdd(X, AddOne(C));
|
||||
|
||||
// -(X >>u 31) -> (X >>s 31)
|
||||
// -(X >>s 31) -> (X >>u 31)
|
||||
if (C->isZero()) {
|
||||
if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
|
||||
if (SI->getOpcode() == Instruction::LShr) {
|
||||
if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
|
||||
// Check to see if we are shifting out everything but the sign bit.
|
||||
if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
|
||||
SI->getType()->getPrimitiveSizeInBits()-1) {
|
||||
// Ok, the transformation is safe. Insert AShr.
|
||||
return BinaryOperator::Create(Instruction::AShr,
|
||||
SI->getOperand(0), CU, SI->getName());
|
||||
}
|
||||
}
|
||||
} else if (SI->getOpcode() == Instruction::AShr) {
|
||||
if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
|
||||
// Check to see if we are shifting out everything but the sign bit.
|
||||
if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
|
||||
SI->getType()->getPrimitiveSizeInBits()-1) {
|
||||
// Ok, the transformation is safe. Insert LShr.
|
||||
return BinaryOperator::CreateLShr(
|
||||
SI->getOperand(0), CU, SI->getName());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Try to fold constant sub into select arguments.
|
||||
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
|
||||
if (Instruction *R = FoldOpIntoSelect(I, SI))
|
||||
return R;
|
||||
|
||||
// C - zext(bool) -> bool ? C - 1 : C
|
||||
if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
|
||||
if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext()))
|
||||
return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
|
||||
}
|
||||
|
||||
if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
|
||||
if (Op1I->getOpcode() == Instruction::Add) {
|
||||
if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
|
||||
return BinaryOperator::CreateNeg(Op1I->getOperand(1),
|
||||
I.getName());
|
||||
else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
|
||||
return BinaryOperator::CreateNeg(Op1I->getOperand(0),
|
||||
I.getName());
|
||||
else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
|
||||
if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
|
||||
// C1-(X+C2) --> (C1-C2)-X
|
||||
return BinaryOperator::CreateSub(
|
||||
ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0));
|
||||
}
|
||||
}
|
||||
|
||||
if (Op1I->hasOneUse()) {
|
||||
// Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
|
||||
// is not used by anyone else...
|
||||
//
|
||||
if (Op1I->getOpcode() == Instruction::Sub) {
|
||||
// Swap the two operands of the subexpr...
|
||||
Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
|
||||
Op1I->setOperand(0, IIOp1);
|
||||
Op1I->setOperand(1, IIOp0);
|
||||
|
||||
// Create the new top level add instruction...
|
||||
return BinaryOperator::CreateAdd(Op0, Op1);
|
||||
}
|
||||
|
||||
// Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
|
||||
//
|
||||
if (Op1I->getOpcode() == Instruction::And &&
|
||||
(Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
|
||||
Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
|
||||
|
||||
Value *NewNot = Builder->CreateNot(OtherOp, "B.not");
|
||||
return BinaryOperator::CreateAnd(Op0, NewNot);
|
||||
}
|
||||
|
||||
// 0 - (X sdiv C) -> (X sdiv -C)
|
||||
if (Op1I->getOpcode() == Instruction::SDiv)
|
||||
if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
|
||||
if (CSI->isZero())
|
||||
if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
|
||||
return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
|
||||
ConstantExpr::getNeg(DivRHS));
|
||||
|
||||
// X - X*C --> X * (1-C)
|
||||
ConstantInt *C2 = 0;
|
||||
if (dyn_castFoldableMul(Op1I, C2) == Op0) {
|
||||
Constant *CP1 =
|
||||
ConstantExpr::getSub(ConstantInt::get(I.getType(), 1),
|
||||
C2);
|
||||
return BinaryOperator::CreateMul(Op0, CP1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
|
||||
if (Op0I->getOpcode() == Instruction::Add) {
|
||||
if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
|
||||
return ReplaceInstUsesWith(I, Op0I->getOperand(1));
|
||||
else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
|
||||
return ReplaceInstUsesWith(I, Op0I->getOperand(0));
|
||||
} else if (Op0I->getOpcode() == Instruction::Sub) {
|
||||
if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
|
||||
return BinaryOperator::CreateNeg(Op0I->getOperand(1),
|
||||
I.getName());
|
||||
}
|
||||
}
|
||||
|
||||
ConstantInt *C1;
|
||||
if (Value *X = dyn_castFoldableMul(Op0, C1)) {
|
||||
if (X == Op1) // X*C - X --> X * (C-1)
|
||||
return BinaryOperator::CreateMul(Op1, SubOne(C1));
|
||||
|
||||
ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
|
||||
if (X == dyn_castFoldableMul(Op1, C2))
|
||||
return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
|
||||
}
|
||||
|
||||
// Optimize pointer differences into the same array into a size. Consider:
|
||||
// &A[10] - &A[0]: we should compile this to "10".
|
||||
if (TD) {
|
||||
Value *LHSOp, *RHSOp;
|
||||
if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
|
||||
match(Op1, m_PtrToInt(m_Value(RHSOp))))
|
||||
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
|
||||
return ReplaceInstUsesWith(I, Res);
|
||||
|
||||
// trunc(p)-trunc(q) -> trunc(p-q)
|
||||
if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
|
||||
match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
|
||||
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
|
||||
return ReplaceInstUsesWith(I, Res);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
|
||||
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
||||
|
||||
// If this is a 'B = x-(-A)', change to B = x+A...
|
||||
if (Value *V = dyn_castFNegVal(Op1))
|
||||
return BinaryOperator::CreateFAdd(Op0, V);
|
||||
|
||||
if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
|
||||
if (Op1I->getOpcode() == Instruction::FAdd) {
|
||||
if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
|
||||
return BinaryOperator::CreateFNeg(Op1I->getOperand(1),
|
||||
I.getName());
|
||||
else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
|
||||
return BinaryOperator::CreateFNeg(Op1I->getOperand(0),
|
||||
I.getName());
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
|
||||
/// are carefully arranged to allow folding of expressions such as:
|
||||
///
|
||||
|
Loading…
x
Reference in New Issue
Block a user