As a pending queue data structure to keep track of instructions whose

operands have all issued, but whose results are not yet available.  This
allows us to compile:

int G;
int test(int A, int B, int* P) {
   return (G+A)*(B+1);
}

to:

_test:
        lis r2, ha16(L_G$non_lazy_ptr)
        addi r4, r4, 1
        lwz r2, lo16(L_G$non_lazy_ptr)(r2)
        lwz r2, 0(r2)
        add r2, r2, r3
        mullw r3, r2, r4
        blr

instead of this, which has a stall between the lis/lwz:

_test:
        lis r2, ha16(L_G$non_lazy_ptr)
        lwz r2, lo16(L_G$non_lazy_ptr)(r2)
        addi r4, r4, 1
        lwz r2, 0(r2)
        add r2, r2, r3
        mullw r3, r2, r4
        blr


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26716 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2006-03-12 00:38:57 +00:00
parent aaf1582549
commit 53fbf2a8e8

View File

@ -53,6 +53,7 @@ namespace {
short NumChainSuccsLeft; // # of chain succs not scheduled. short NumChainSuccsLeft; // # of chain succs not scheduled.
bool isTwoAddress : 1; // Is a two-address instruction. bool isTwoAddress : 1; // Is a two-address instruction.
bool isDefNUseOperand : 1; // Is a def&use operand. bool isDefNUseOperand : 1; // Is a def&use operand.
bool isPending : 1; // True once pending.
bool isAvailable : 1; // True once available. bool isAvailable : 1; // True once available.
bool isScheduled : 1; // True once scheduled. bool isScheduled : 1; // True once scheduled.
unsigned short Latency; // Node latency. unsigned short Latency; // Node latency.
@ -64,7 +65,7 @@ namespace {
: Node(node), NumPredsLeft(0), NumSuccsLeft(0), : Node(node), NumPredsLeft(0), NumSuccsLeft(0),
NumChainPredsLeft(0), NumChainSuccsLeft(0), NumChainPredsLeft(0), NumChainSuccsLeft(0),
isTwoAddress(false), isDefNUseOperand(false), isTwoAddress(false), isDefNUseOperand(false),
isAvailable(false), isScheduled(false), isPending(false), isAvailable(false), isScheduled(false),
Latency(0), CycleBound(0), Cycle(0), NodeNum(nodenum) {} Latency(0), CycleBound(0), Cycle(0), NodeNum(nodenum) {}
void dump(const SelectionDAG *G) const; void dump(const SelectionDAG *G) const;
@ -173,6 +174,13 @@ private:
/// ///
SchedulingPriorityQueue *AvailableQueue; SchedulingPriorityQueue *AvailableQueue;
/// PendingQueue - This contains all of the instructions whose operands have
/// been issued, but their results are not ready yet (due to the latency of
/// the operation). Once the operands becomes available, the instruction is
/// added to the AvailableQueue. This keeps track of each SUnit and the
/// number of cycles left to execute before the operation is available.
std::vector<std::pair<unsigned, SUnit*> > PendingQueue;
/// HazardRec - The hazard recognizer to use. /// HazardRec - The hazard recognizer to use.
HazardRecognizer *HazardRec; HazardRecognizer *HazardRec;
@ -197,7 +205,7 @@ public:
private: private:
SUnit *NewSUnit(SDNode *N); SUnit *NewSUnit(SDNode *N);
void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle); void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
void ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle); void ReleaseSucc(SUnit *SuccSU, bool isChain);
void ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle); void ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle);
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
void ListScheduleTopDown(); void ListScheduleTopDown();
@ -445,7 +453,7 @@ void ScheduleDAGList::ReleasePred(SUnit *PredSU, bool isChain,
/// count of its predecessors. If a predecessor pending count is zero, add it to /// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue. /// the Available queue.
void ScheduleDAGList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) { void ScheduleDAGList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
DEBUG(std::cerr << "*** Scheduling: "); DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(&DAG)); DEBUG(SU->dump(&DAG));
SU->Cycle = CurCycle; SU->Cycle = CurCycle;
@ -527,32 +535,29 @@ void ScheduleDAGList::ListScheduleBottomUp() {
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the Available queue is the count reaches zero. Also update its cycle bound. /// the PendingQueue if the count reaches zero.
void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain, void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
unsigned CurCycle) {
// FIXME: the distance between two nodes is not always == the predecessor's
// latency. For example, the reader can very well read the register written
// by the predecessor later than the issue cycle. It also depends on the
// interrupt model (drain vs. freeze).
SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
if (!isChain) if (!isChain)
SuccSU->NumPredsLeft--; SuccSU->NumPredsLeft--;
else else
SuccSU->NumChainPredsLeft--; SuccSU->NumChainPredsLeft--;
#ifndef NDEBUG assert(SuccSU->NumPredsLeft >= 0 && SuccSU->NumChainPredsLeft >= 0 &&
if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) { "List scheduling internal error");
std::cerr << "*** List scheduling failed! ***\n";
SuccSU->dump(&DAG);
std::cerr << " has been released too many times!\n";
abort();
}
#endif
if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) { if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
SuccSU->isAvailable = true; // Compute how many cycles it will be before this actually becomes
AvailableQueue->push(SuccSU); // available. This is the max of the start time of all predecessors plus
// their latencies.
unsigned AvailableCycle = 0;
for (std::set<std::pair<SUnit*, bool> >::iterator I = SuccSU->Preds.begin(),
E = SuccSU->Preds.end(); I != E; ++I) {
AvailableCycle = std::max(AvailableCycle,
I->first->Cycle + I->first->Latency);
}
PendingQueue.push_back(std::make_pair(AvailableCycle, SuccSU));
SuccSU->isPending = true;
} }
} }
@ -560,7 +565,7 @@ void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain,
/// count of its successors. If a successor pending count is zero, add it to /// count of its successors. If a successor pending count is zero, add it to
/// the Available queue. /// the Available queue.
void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
DEBUG(std::cerr << "*** Scheduling: "); DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(&DAG)); DEBUG(SU->dump(&DAG));
Sequence.push_back(SU); Sequence.push_back(SU);
@ -569,33 +574,49 @@ void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
// Bottom up: release successors. // Bottom up: release successors.
for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(), for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(),
E = SU->Succs.end(); I != E; ++I) E = SU->Succs.end(); I != E; ++I)
ReleaseSucc(I->first, I->second, CurCycle); ReleaseSucc(I->first, I->second);
} }
/// ListScheduleTopDown - The main loop of list scheduling for top-down /// ListScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers. /// schedulers.
void ScheduleDAGList::ListScheduleTopDown() { void ScheduleDAGList::ListScheduleTopDown() {
unsigned CurrCycle = 0; unsigned CurCycle = 0;
// Emit the entry node first.
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val]; SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
ScheduleNodeTopDown(Entry, CurrCycle);
HazardRec->EmitInstruction(Entry->Node);
// All leaves to Available queue. // All leaves to Available queue.
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
// It is available if it has no predecessors. // It is available if it has no predecessors.
if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
AvailableQueue->push(&SUnits[i]); AvailableQueue->push(&SUnits[i]);
SUnits[i].isAvailable = SUnits[i].isPending = true;
}
} }
// Emit the entry node first.
ScheduleNodeTopDown(Entry, CurCycle);
HazardRec->EmitInstruction(Entry->Node);
// While Available queue is not empty, grab the node with the highest // While Available queue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node. // priority. If it is not ready put it back. Schedule the node.
std::vector<SUnit*> NotReady; std::vector<SUnit*> NotReady;
while (!AvailableQueue->empty()) { while (!AvailableQueue->empty() || !PendingQueue.empty()) {
// Check to see if any of the pending instructions are ready to issue. If
// so, add them to the available queue.
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i)
if (PendingQueue[i].first == CurCycle) {
AvailableQueue->push(PendingQueue[i].second);
PendingQueue[i].second->isAvailable = true;
PendingQueue[i] = PendingQueue.back();
PendingQueue.pop_back();
--i; --e;
} else {
assert(PendingQueue[i].first > CurCycle && "Negative latency?");
}
SUnit *FoundNode = 0; SUnit *FoundNode = 0;
bool HasNoopHazards = false; bool HasNoopHazards = false;
do { while (!AvailableQueue->empty()) {
SUnit *CurNode = AvailableQueue->pop(); SUnit *CurNode = AvailableQueue->pop();
// Get the node represented by this SUnit. // Get the node represented by this SUnit.
@ -616,7 +637,7 @@ void ScheduleDAGList::ListScheduleTopDown() {
HasNoopHazards |= HT == HazardRecognizer::NoopHazard; HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
NotReady.push_back(CurNode); NotReady.push_back(CurNode);
} while (!AvailableQueue->empty()); }
// Add the nodes that aren't ready back onto the available list. // Add the nodes that aren't ready back onto the available list.
AvailableQueue->push_all(NotReady); AvailableQueue->push_all(NotReady);
@ -624,11 +645,15 @@ void ScheduleDAGList::ListScheduleTopDown() {
// If we found a node to schedule, do it now. // If we found a node to schedule, do it now.
if (FoundNode) { if (FoundNode) {
ScheduleNodeTopDown(FoundNode, CurrCycle); ScheduleNodeTopDown(FoundNode, CurCycle);
CurrCycle++; // Fixme don't increment for pseudo-ops!
HazardRec->EmitInstruction(FoundNode->Node); HazardRec->EmitInstruction(FoundNode->Node);
FoundNode->isScheduled = true; FoundNode->isScheduled = true;
AvailableQueue->ScheduledNode(FoundNode); AvailableQueue->ScheduledNode(FoundNode);
// If this is a pseudo-op node, we don't want to increment the current
// cycle.
if (FoundNode->Latency == 0)
continue; // Don't increment for pseudo-ops!
} else if (!HasNoopHazards) { } else if (!HasNoopHazards) {
// Otherwise, we have a pipeline stall, but no other problem, just advance // Otherwise, we have a pipeline stall, but no other problem, just advance
// the current cycle and try again. // the current cycle and try again.
@ -644,6 +669,7 @@ void ScheduleDAGList::ListScheduleTopDown() {
Sequence.push_back(0); // NULL SUnit* -> noop Sequence.push_back(0); // NULL SUnit* -> noop
++NumNoops; ++NumNoops;
} }
++CurCycle;
} }
#ifndef NDEBUG #ifndef NDEBUG
@ -1017,7 +1043,7 @@ void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
/// scheduled will make this node available, so it is better than some other /// scheduled will make this node available, so it is better than some other
/// node of the same priority that will not make a node available. /// node of the same priority that will not make a node available.
void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) { void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
if (SU->isAvailable) return; // All preds scheduled. if (SU->isPending) return; // All preds scheduled.
SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU); SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return; if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;