Allow a zero cycle stage to reserve/require a FU without advancing the cycle counter.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78736 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
David Goodwin 2009-08-11 22:38:43 +00:00
parent e28a2e8b70
commit 546952fd60
5 changed files with 75 additions and 44 deletions

View File

@ -39,7 +39,7 @@ ExactHazardRecognizer::ExactHazardRecognizer(const InstrItineraryData &LItinData
unsigned ItinDepth = 0;
for (; IS != E; ++IS)
ItinDepth += IS->Cycles;
ItinDepth += std::max(1U, IS->Cycles);
ScoreboardDepth = std::max(ScoreboardDepth, ItinDepth);
}
@ -89,9 +89,13 @@ ExactHazardRecognizer::HazardType ExactHazardRecognizer::getHazardType(SUnit *SU
unsigned idx = SU->getInstr()->getDesc().getSchedClass();
for (const InstrStage *IS = ItinData.begin(idx), *E = ItinData.end(idx);
IS != E; ++IS) {
// If the stages cycles are 0, then we must have the FU free in
// the current cycle, but we don't advance the cycle time .
unsigned StageCycles = std::max(1U, IS->Cycles);
// We must find one of the stage's units free for every cycle the
// stage is occupied.
for (unsigned int i = 0; i < IS->Cycles; ++i) {
for (unsigned int i = 0; i < StageCycles; ++i) {
assert((cycle < ScoreboardDepth) && "Scoreboard depth exceeded!");
unsigned index = getFutureIndex(cycle);
@ -103,7 +107,8 @@ ExactHazardRecognizer::HazardType ExactHazardRecognizer::getHazardType(SUnit *SU
return Hazard;
}
++cycle;
if (IS->Cycles > 0)
++cycle;
}
}
@ -118,9 +123,13 @@ void ExactHazardRecognizer::EmitInstruction(SUnit *SU) {
unsigned idx = SU->getInstr()->getDesc().getSchedClass();
for (const InstrStage *IS = ItinData.begin(idx), *E = ItinData.end(idx);
IS != E; ++IS) {
// If the stages cycles are 0, then we must reserve the FU in the
// current cycle, but we don't advance the cycle time .
unsigned StageCycles = std::max(1U, IS->Cycles);
// We must reserve one of the stage's units for every cycle the
// stage is occupied.
for (unsigned int i = 0; i < IS->Cycles; ++i) {
for (unsigned int i = 0; i < StageCycles; ++i) {
assert((cycle < ScoreboardDepth) && "Scoreboard depth exceeded!");
unsigned index = getFutureIndex(cycle);
@ -135,7 +144,9 @@ void ExactHazardRecognizer::EmitInstruction(SUnit *SU) {
assert(freeUnit && "No function unit available!");
Scoreboard[index] |= freeUnit;
++cycle;
if (IS->Cycles > 0)
++cycle;
}
}

View File

@ -114,7 +114,7 @@ def : Processor<"arm1156t2f-s", V6Itineraries,
// V7 Processors.
def : Processor<"cortex-a8", CortexA8Itineraries,
[ArchV7A, FeatureThumb2, FeatureNEON, FeatureNEONFP]>;
def : Processor<"cortex-a9", V7Itineraries,
def : Processor<"cortex-a9", CortexA9Itineraries,
[ArchV7A, FeatureThumb2, FeatureNEON]>;
//===----------------------------------------------------------------------===//

View File

@ -10,8 +10,9 @@
//===----------------------------------------------------------------------===//
// Functional units across ARM processors
//
def FU_Pipe0 : FuncUnit; // pipeline 0 issue
def FU_Pipe1 : FuncUnit; // pipeline 1 issue
def FU_Issue : FuncUnit; // issue
def FU_Pipe0 : FuncUnit; // pipeline 0
def FU_Pipe1 : FuncUnit; // pipeline 1
def FU_LdSt0 : FuncUnit; // pipeline 0 load/store
def FU_LdSt1 : FuncUnit; // pipeline 1 load/store
@ -19,9 +20,11 @@ def FU_LdSt1 : FuncUnit; // pipeline 1 load/store
// Instruction Itinerary classes used for ARM
//
def IIC_iALU : InstrItinClass;
def IIC_iMPY : InstrItinClass;
def IIC_iLoad : InstrItinClass;
def IIC_iStore : InstrItinClass;
def IIC_fpALU : InstrItinClass;
def IIC_fpMPY : InstrItinClass;
def IIC_fpLoad : InstrItinClass;
def IIC_fpStore : InstrItinClass;
def IIC_Br : InstrItinClass;
@ -31,12 +34,14 @@ def IIC_Br : InstrItinClass;
def GenericItineraries : ProcessorItineraries<[
InstrItinData<IIC_iALU , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_iMPY , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_iLoad , [InstrStage<1, [FU_Pipe0]>, InstrStage<1, [FU_LdSt0]>]>,
InstrItinData<IIC_fpLoad , [InstrStage<1, [FU_Pipe0]>, InstrStage<1, [FU_LdSt0]>]>,
InstrItinData<IIC_iStore , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_fpStore , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_Br , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_fpALU , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_Br , [InstrStage<1, [FU_Pipe0]>]>
InstrItinData<IIC_fpMPY , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_fpLoad , [InstrStage<1, [FU_Pipe0]>, InstrStage<1, [FU_LdSt0]>]>,
InstrItinData<IIC_fpStore , [InstrStage<1, [FU_Pipe0]>]>
]>;

View File

@ -11,18 +11,16 @@
//
//===----------------------------------------------------------------------===//
// TODO: this should model an ARM11
// Single issue pipeline so every itinerary starts with FU_pipe0
def V6Itineraries : ProcessorItineraries<[
// single-cycle integer ALU
InstrItinData<IIC_iALU , [InstrStage<1, [FU_Pipe0]>]>,
// loads have an extra cycle of latency, but are fully pipelined
InstrItinData<IIC_iMPY , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_iLoad , [InstrStage<1, [FU_Pipe0]>, InstrStage<1, [FU_LdSt0]>]>,
InstrItinData<IIC_fpLoad , [InstrStage<1, [FU_Pipe0]>, InstrStage<1, [FU_LdSt0]>]>,
// fully-pipelined stores
InstrItinData<IIC_iStore , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_fpStore , [InstrStage<1, [FU_Pipe0]>]>,
// fp ALU is not pipelined
InstrItinData<IIC_fpALU , [InstrStage<6, [FU_Pipe0]>]>,
// no delay slots, so the latency of a branch is unimportant
InstrItinData<IIC_Br , [InstrStage<1, [FU_Pipe0]>]>
InstrItinData<IIC_Br , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_fpALU , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_fpMPY , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_fpLoad , [InstrStage<1, [FU_Pipe0]>, InstrStage<1, [FU_LdSt0]>]>,
InstrItinData<IIC_fpStore , [InstrStage<1, [FU_Pipe0]>]>
]>;

View File

@ -11,34 +11,51 @@
//
//===----------------------------------------------------------------------===//
// Single issue pipeline so every itinerary starts with FU_Pipe0
def V7Itineraries : ProcessorItineraries<[
// single-cycle integer ALU
InstrItinData<IIC_iALU , [InstrStage<1, [FU_Pipe0]>]>,
// loads have an extra cycle of latency, but are fully pipelined
InstrItinData<IIC_iLoad , [InstrStage<1, [FU_Pipe0]>, InstrStage<1, [FU_LdSt0]>]>,
InstrItinData<IIC_fpLoad , [InstrStage<1, [FU_Pipe0]>, InstrStage<1, [FU_LdSt0]>]>,
// fully-pipelined stores
InstrItinData<IIC_iStore , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_fpStore , [InstrStage<1, [FU_Pipe0]>]>,
// fp ALU is not pipelined
InstrItinData<IIC_fpALU , [InstrStage<6, [FU_Pipe0]>]>,
// no delay slots, so the latency of a branch is unimportant
InstrItinData<IIC_Br , [InstrStage<1, [FU_Pipe0]>]>
]>;
// Dual issue pipeline so every itinerary starts with FU_Pipe0 | FU_Pipe1
def CortexA8Itineraries : ProcessorItineraries<[
// single-cycle integer ALU
// two fully-pipelined integer ALU pipelines
InstrItinData<IIC_iALU , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>]>,
// one fully-pipelined integer Multiply pipeline
// function units are used in alpha order, so use FU_Pipe1
// for the Multiple pipeline
InstrItinData<IIC_iMPY , [InstrStage<1, [FU_Pipe1]>]>,
// loads have an extra cycle of latency, but are fully pipelined
InstrItinData<IIC_iLoad , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>]>,
InstrItinData<IIC_fpLoad , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>]>,
// use a 0 cycle FU_Issue to enforce the 1 load/store per cycle limit
InstrItinData<IIC_iLoad , [InstrStage<0, [FU_Issue]>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_LdSt0]>]>,
// fully-pipelined stores
InstrItinData<IIC_iStore , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>]>,
InstrItinData<IIC_fpStore , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>]>,
// fp ALU is not pipelined
InstrItinData<IIC_fpALU , [InstrStage<6, [FU_Pipe0, FU_Pipe1]>]>,
// use a 0 cycle FU_Issue to enforce the 1 load/store per cycle limit
InstrItinData<IIC_iStore , [InstrStage<0, [FU_Issue]>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>]>,
// no delay slots, so the latency of a branch is unimportant
InstrItinData<IIC_Br , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>]>
InstrItinData<IIC_Br , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>]>,
// VFP ALU is not pipelined so stall all issues
// FIXME assume NFP pipeline and 7 cycle non-pipelined latency
InstrItinData<IIC_fpALU , [InstrStage<7, [FU_Pipe0, FU_Pipe1]>]>,
// VFP MPY is not pipelined so stall all issues
// FIXME assume NFP pipeline and 7 cycle non-pipelined latency
InstrItinData<IIC_fpMPY , [InstrStage<7, [FU_Pipe0, FU_Pipe1]>]>,
// loads have an extra cycle of latency, but are fully pipelined
// use a 0 cycle FU_Issue to enforce the 1 load/store per cycle limit
InstrItinData<IIC_fpLoad , [InstrStage<0, [FU_Issue]>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
InstrStage<1, [FU_LdSt0]>]>,
// use a 0 cycle FU_Issue to enforce the 1 load/store per cycle limit
InstrItinData<IIC_fpStore , [InstrStage<0, [FU_Issue]>,
InstrStage<1, [FU_Pipe0, FU_Pipe1]>]>
]>;
// FIXME
def CortexA9Itineraries : ProcessorItineraries<[
InstrItinData<IIC_iALU , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_iMPY , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_iLoad , [InstrStage<1, [FU_Pipe0]>, InstrStage<1, [FU_LdSt0]>]>,
InstrItinData<IIC_iStore , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_Br , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_fpALU , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_fpMPY , [InstrStage<1, [FU_Pipe0]>]>,
InstrItinData<IIC_fpLoad , [InstrStage<1, [FU_Pipe0]>, InstrStage<1, [FU_LdSt0]>]>,
InstrItinData<IIC_fpStore , [InstrStage<1, [FU_Pipe0]>]>
]>;