mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-26 23:32:58 +00:00
Re-implement trivial rematerialization. This allows def MIs whose live intervals that are coalesced to be rematerialized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41060 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
12914380ed
commit
549f27d307
@ -83,7 +83,6 @@ namespace llvm {
|
||||
unsigned reg; // the register of this interval
|
||||
unsigned preference; // preferred register to allocate for this interval
|
||||
float weight; // weight of this interval
|
||||
MachineInstr* remat; // definition if the definition rematerializable
|
||||
Ranges ranges; // the ranges in which this register is live
|
||||
|
||||
/// ValueNumberInfo - If the value number definition is undefined (e.g. phi
|
||||
@ -101,7 +100,7 @@ namespace llvm {
|
||||
public:
|
||||
|
||||
LiveInterval(unsigned Reg, float Weight)
|
||||
: reg(Reg), preference(0), weight(Weight), remat(NULL) {
|
||||
: reg(Reg), preference(0), weight(Weight) {
|
||||
}
|
||||
|
||||
typedef Ranges::iterator iterator;
|
||||
@ -128,7 +127,6 @@ namespace llvm {
|
||||
void swap(LiveInterval& other) {
|
||||
std::swap(reg, other.reg);
|
||||
std::swap(weight, other.weight);
|
||||
std::swap(remat, other.remat);
|
||||
std::swap(ranges, other.ranges);
|
||||
std::swap(ValueNumberInfo, other.ValueNumberInfo);
|
||||
}
|
||||
|
@ -25,6 +25,8 @@
|
||||
#include "llvm/ADT/BitVector.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/IndexedMap.h"
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
@ -41,9 +43,9 @@ namespace llvm {
|
||||
const TargetInstrInfo* tii_;
|
||||
LiveVariables* lv_;
|
||||
|
||||
/// MBB2IdxMap - The index of the first instruction in the specified basic
|
||||
/// block.
|
||||
std::vector<unsigned> MBB2IdxMap;
|
||||
/// MBB2IdxMap - The indexes of the first and last instructions in the
|
||||
/// specified basic block.
|
||||
std::vector<std::pair<unsigned, unsigned> > MBB2IdxMap;
|
||||
|
||||
typedef std::map<MachineInstr*, unsigned> Mi2IndexMap;
|
||||
Mi2IndexMap mi2iMap_;
|
||||
@ -56,6 +58,8 @@ namespace llvm {
|
||||
|
||||
BitVector allocatableRegs_;
|
||||
|
||||
std::vector<MachineInstr*> ClonedMIs;
|
||||
|
||||
public:
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
LiveIntervals() : MachineFunctionPass((intptr_t)&ID) {}
|
||||
@ -118,10 +122,19 @@ namespace llvm {
|
||||
unsigned getMBBStartIdx(MachineBasicBlock *MBB) const {
|
||||
return getMBBStartIdx(MBB->getNumber());
|
||||
}
|
||||
|
||||
unsigned getMBBStartIdx(unsigned MBBNo) const {
|
||||
assert(MBBNo < MBB2IdxMap.size() && "Invalid MBB number!");
|
||||
return MBB2IdxMap[MBBNo];
|
||||
return MBB2IdxMap[MBBNo].first;
|
||||
}
|
||||
|
||||
/// getMBBEndIdx - Return the store index of the last instruction in the
|
||||
/// specified MachineBasicBlock.
|
||||
unsigned getMBBEndIdx(MachineBasicBlock *MBB) const {
|
||||
return getMBBEndIdx(MBB->getNumber());
|
||||
}
|
||||
unsigned getMBBEndIdx(unsigned MBBNo) const {
|
||||
assert(MBBNo < MBB2IdxMap.size() && "Invalid MBB number!");
|
||||
return MBB2IdxMap[MBBNo].second;
|
||||
}
|
||||
|
||||
/// getInstructionIndex - returns the base index of instr
|
||||
@ -155,8 +168,7 @@ namespace llvm {
|
||||
const std::vector<LiveRange> &LRs);
|
||||
|
||||
std::vector<LiveInterval*> addIntervalsForSpills(const LiveInterval& i,
|
||||
VirtRegMap& vrm,
|
||||
int slot);
|
||||
VirtRegMap& vrm, unsigned reg);
|
||||
|
||||
// Interval removal
|
||||
|
||||
@ -225,6 +237,17 @@ namespace llvm {
|
||||
unsigned MIIdx,
|
||||
LiveInterval &interval, bool isAlias = false);
|
||||
|
||||
/// isReMaterializable - Returns true if the definition MI of the specified
|
||||
/// val# of the specified interval is re-materializable.
|
||||
bool isReMaterializable(const LiveInterval &li, unsigned ValNum,
|
||||
MachineInstr *MI);
|
||||
|
||||
/// tryFoldMemoryOperand - Attempts to fold a spill / restore from slot
|
||||
/// to reg into ith operand of specified MI. If it is successul, MI is
|
||||
/// updated with the newly created MI and returns true.
|
||||
bool tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm, unsigned index,
|
||||
unsigned i, int slot, unsigned reg);
|
||||
|
||||
static LiveInterval createInterval(unsigned Reg);
|
||||
|
||||
void printRegName(unsigned reg) const;
|
||||
|
@ -30,7 +30,6 @@
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/ADT/SmallSet.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
#include <algorithm>
|
||||
@ -60,6 +59,8 @@ void LiveIntervals::releaseMemory() {
|
||||
mi2iMap_.clear();
|
||||
i2miMap_.clear();
|
||||
r2iMap_.clear();
|
||||
for (unsigned i = 0, e = ClonedMIs.size(); i != e; ++i)
|
||||
delete ClonedMIs[i];
|
||||
}
|
||||
|
||||
/// runOnMachineFunction - Register allocate the whole function
|
||||
@ -74,13 +75,12 @@ bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
|
||||
|
||||
// Number MachineInstrs and MachineBasicBlocks.
|
||||
// Initialize MBB indexes to a sentinal.
|
||||
MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U);
|
||||
MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
|
||||
|
||||
unsigned MIIndex = 0;
|
||||
for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
|
||||
MBB != E; ++MBB) {
|
||||
// Set the MBB2IdxMap entry for this MBB.
|
||||
MBB2IdxMap[MBB->getNumber()] = MIIndex;
|
||||
unsigned StartIdx = MIIndex;
|
||||
|
||||
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
|
||||
I != E; ++I) {
|
||||
@ -89,6 +89,9 @@ bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
|
||||
i2miMap_.push_back(I);
|
||||
MIIndex += InstrSlots::NUM;
|
||||
}
|
||||
|
||||
// Set the MBB2IdxMap entry for this MBB.
|
||||
MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
|
||||
}
|
||||
|
||||
computeIntervals();
|
||||
@ -175,135 +178,6 @@ LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
|
||||
return NewLI;
|
||||
}
|
||||
|
||||
std::vector<LiveInterval*> LiveIntervals::
|
||||
addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
|
||||
// since this is called after the analysis is done we don't know if
|
||||
// LiveVariables is available
|
||||
lv_ = getAnalysisToUpdate<LiveVariables>();
|
||||
|
||||
std::vector<LiveInterval*> added;
|
||||
|
||||
assert(li.weight != HUGE_VALF &&
|
||||
"attempt to spill already spilled interval!");
|
||||
|
||||
DOUT << "\t\t\t\tadding intervals for spills for interval: ";
|
||||
li.print(DOUT, mri_);
|
||||
DOUT << '\n';
|
||||
|
||||
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
|
||||
|
||||
for (LiveInterval::Ranges::const_iterator
|
||||
i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
|
||||
unsigned index = getBaseIndex(i->start);
|
||||
unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
|
||||
for (; index != end; index += InstrSlots::NUM) {
|
||||
// skip deleted instructions
|
||||
while (index != end && !getInstructionFromIndex(index))
|
||||
index += InstrSlots::NUM;
|
||||
if (index == end) break;
|
||||
|
||||
MachineInstr *MI = getInstructionFromIndex(index);
|
||||
|
||||
RestartInstruction:
|
||||
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
|
||||
MachineOperand& mop = MI->getOperand(i);
|
||||
if (mop.isRegister() && mop.getReg() == li.reg) {
|
||||
MachineInstr *fmi = li.remat ? NULL
|
||||
: mri_->foldMemoryOperand(MI, i, slot);
|
||||
if (fmi) {
|
||||
// Attempt to fold the memory reference into the instruction. If we
|
||||
// can do this, we don't need to insert spill code.
|
||||
if (lv_)
|
||||
lv_->instructionChanged(MI, fmi);
|
||||
MachineBasicBlock &MBB = *MI->getParent();
|
||||
vrm.virtFolded(li.reg, MI, i, fmi);
|
||||
mi2iMap_.erase(MI);
|
||||
i2miMap_[index/InstrSlots::NUM] = fmi;
|
||||
mi2iMap_[fmi] = index;
|
||||
MI = MBB.insert(MBB.erase(MI), fmi);
|
||||
++numFolded;
|
||||
// Folding the load/store can completely change the instruction in
|
||||
// unpredictable ways, rescan it from the beginning.
|
||||
goto RestartInstruction;
|
||||
} else {
|
||||
// Create a new virtual register for the spill interval.
|
||||
unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
|
||||
|
||||
// Scan all of the operands of this instruction rewriting operands
|
||||
// to use NewVReg instead of li.reg as appropriate. We do this for
|
||||
// two reasons:
|
||||
//
|
||||
// 1. If the instr reads the same spilled vreg multiple times, we
|
||||
// want to reuse the NewVReg.
|
||||
// 2. If the instr is a two-addr instruction, we are required to
|
||||
// keep the src/dst regs pinned.
|
||||
//
|
||||
// Keep track of whether we replace a use and/or def so that we can
|
||||
// create the spill interval with the appropriate range.
|
||||
mop.setReg(NewVReg);
|
||||
|
||||
bool HasUse = mop.isUse();
|
||||
bool HasDef = mop.isDef();
|
||||
for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
|
||||
if (MI->getOperand(j).isReg() &&
|
||||
MI->getOperand(j).getReg() == li.reg) {
|
||||
MI->getOperand(j).setReg(NewVReg);
|
||||
HasUse |= MI->getOperand(j).isUse();
|
||||
HasDef |= MI->getOperand(j).isDef();
|
||||
}
|
||||
}
|
||||
|
||||
// create a new register for this spill
|
||||
vrm.grow();
|
||||
if (li.remat)
|
||||
vrm.setVirtIsReMaterialized(NewVReg, li.remat);
|
||||
vrm.assignVirt2StackSlot(NewVReg, slot);
|
||||
LiveInterval &nI = getOrCreateInterval(NewVReg);
|
||||
nI.remat = li.remat;
|
||||
assert(nI.empty());
|
||||
|
||||
// the spill weight is now infinity as it
|
||||
// cannot be spilled again
|
||||
nI.weight = HUGE_VALF;
|
||||
|
||||
if (HasUse) {
|
||||
LiveRange LR(getLoadIndex(index), getUseIndex(index),
|
||||
nI.getNextValue(~0U, 0));
|
||||
DOUT << " +" << LR;
|
||||
nI.addRange(LR);
|
||||
}
|
||||
if (HasDef) {
|
||||
LiveRange LR(getDefIndex(index), getStoreIndex(index),
|
||||
nI.getNextValue(~0U, 0));
|
||||
DOUT << " +" << LR;
|
||||
nI.addRange(LR);
|
||||
}
|
||||
|
||||
added.push_back(&nI);
|
||||
|
||||
// update live variables if it is available
|
||||
if (lv_)
|
||||
lv_->addVirtualRegisterKilled(NewVReg, MI);
|
||||
|
||||
DOUT << "\t\t\t\tadded new interval: ";
|
||||
nI.print(DOUT, mri_);
|
||||
DOUT << '\n';
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return added;
|
||||
}
|
||||
|
||||
void LiveIntervals::printRegName(unsigned reg) const {
|
||||
if (MRegisterInfo::isPhysicalRegister(reg))
|
||||
cerr << mri_->getName(reg);
|
||||
else
|
||||
cerr << "%reg" << reg;
|
||||
}
|
||||
|
||||
/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
|
||||
/// two addr elimination.
|
||||
static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
|
||||
@ -323,6 +197,268 @@ static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
|
||||
return false;
|
||||
}
|
||||
|
||||
/// isReMaterializable - Returns true if the definition MI of the specified
|
||||
/// val# of the specified interval is re-materializable.
|
||||
bool LiveIntervals::isReMaterializable(const LiveInterval &li, unsigned ValNum,
|
||||
MachineInstr *MI) {
|
||||
if (tii_->isTriviallyReMaterializable(MI))
|
||||
return true;
|
||||
|
||||
int FrameIdx = 0;
|
||||
if (!tii_->isLoadFromStackSlot(MI, FrameIdx) ||
|
||||
!mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))
|
||||
return false;
|
||||
|
||||
// This is a load from fixed stack slot. It can be rematerialized unless it's
|
||||
// re-defined by a two-address instruction.
|
||||
for (unsigned i = 0, e = li.getNumValNums(); i != e; ++i) {
|
||||
if (i == ValNum)
|
||||
continue;
|
||||
unsigned DefIdx = li.getDefForValNum(i);
|
||||
if (DefIdx == ~1U)
|
||||
continue; // Dead val#.
|
||||
MachineInstr *DefMI = (DefIdx == ~0u)
|
||||
? NULL : getInstructionFromIndex(DefIdx);
|
||||
if (DefMI && isReDefinedByTwoAddr(DefMI, li.reg, tii_))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm,
|
||||
unsigned index, unsigned i,
|
||||
int slot, unsigned reg) {
|
||||
MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot);
|
||||
if (fmi) {
|
||||
// Attempt to fold the memory reference into the instruction. If
|
||||
// we can do this, we don't need to insert spill code.
|
||||
if (lv_)
|
||||
lv_->instructionChanged(MI, fmi);
|
||||
MachineBasicBlock &MBB = *MI->getParent();
|
||||
vrm.virtFolded(reg, MI, i, fmi);
|
||||
mi2iMap_.erase(MI);
|
||||
i2miMap_[index/InstrSlots::NUM] = fmi;
|
||||
mi2iMap_[fmi] = index;
|
||||
MI = MBB.insert(MBB.erase(MI), fmi);
|
||||
++numFolded;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
std::vector<LiveInterval*> LiveIntervals::
|
||||
addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, unsigned reg) {
|
||||
// since this is called after the analysis is done we don't know if
|
||||
// LiveVariables is available
|
||||
lv_ = getAnalysisToUpdate<LiveVariables>();
|
||||
|
||||
std::vector<LiveInterval*> added;
|
||||
|
||||
assert(li.weight != HUGE_VALF &&
|
||||
"attempt to spill already spilled interval!");
|
||||
|
||||
DOUT << "\t\t\t\tadding intervals for spills for interval: ";
|
||||
li.print(DOUT, mri_);
|
||||
DOUT << '\n';
|
||||
|
||||
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
|
||||
|
||||
unsigned NumValNums = li.getNumValNums();
|
||||
SmallVector<MachineInstr*, 4> ReMatDefs;
|
||||
ReMatDefs.resize(NumValNums, NULL);
|
||||
SmallVector<MachineInstr*, 4> ReMatOrigDefs;
|
||||
ReMatOrigDefs.resize(NumValNums, NULL);
|
||||
SmallVector<int, 4> ReMatIds;
|
||||
ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
|
||||
BitVector ReMatDelete(NumValNums);
|
||||
unsigned slot = VirtRegMap::MAX_STACK_SLOT;
|
||||
|
||||
bool NeedStackSlot = false;
|
||||
for (unsigned i = 0; i != NumValNums; ++i) {
|
||||
unsigned DefIdx = li.getDefForValNum(i);
|
||||
if (DefIdx == ~1U)
|
||||
continue; // Dead val#.
|
||||
// Is the def for the val# rematerializable?
|
||||
MachineInstr *DefMI = (DefIdx == ~0u)
|
||||
? NULL : getInstructionFromIndex(DefIdx);
|
||||
if (DefMI && isReMaterializable(li, i, DefMI)) {
|
||||
// Remember how to remat the def of this val#.
|
||||
ReMatOrigDefs[i] = DefMI;
|
||||
// Original def may be modified so we have to make a copy here. vrm must
|
||||
// delete these!
|
||||
ReMatDefs[i] = DefMI = DefMI->clone();
|
||||
vrm.setVirtIsReMaterialized(reg, DefMI);
|
||||
|
||||
bool CanDelete = true;
|
||||
const SmallVector<unsigned, 4> &kills = li.getKillsForValNum(i);
|
||||
for (unsigned j = 0, ee = kills.size(); j != ee; ++j) {
|
||||
unsigned KillIdx = kills[j];
|
||||
MachineInstr *KillMI = (KillIdx & 1)
|
||||
? NULL : getInstructionFromIndex(KillIdx);
|
||||
// Kill is a phi node, not all of its uses can be rematerialized.
|
||||
// It must not be deleted.
|
||||
if (!KillMI) {
|
||||
CanDelete = false;
|
||||
// Need a stack slot if there is any live range where uses cannot be
|
||||
// rematerialized.
|
||||
NeedStackSlot = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (CanDelete)
|
||||
ReMatDelete.set(i);
|
||||
} else {
|
||||
// Need a stack slot if there is any live range where uses cannot be
|
||||
// rematerialized.
|
||||
NeedStackSlot = true;
|
||||
}
|
||||
}
|
||||
|
||||
// One stack slot per live interval.
|
||||
if (NeedStackSlot)
|
||||
slot = vrm.assignVirt2StackSlot(reg);
|
||||
|
||||
for (LiveInterval::Ranges::const_iterator
|
||||
I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
|
||||
MachineInstr *DefMI = ReMatDefs[I->ValId];
|
||||
MachineInstr *OrigDefMI = ReMatOrigDefs[I->ValId];
|
||||
bool DefIsReMat = DefMI != NULL;
|
||||
bool CanDelete = ReMatDelete[I->ValId];
|
||||
int LdSlot = 0;
|
||||
bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(DefMI, LdSlot);
|
||||
unsigned index = getBaseIndex(I->start);
|
||||
unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
|
||||
for (; index != end; index += InstrSlots::NUM) {
|
||||
// skip deleted instructions
|
||||
while (index != end && !getInstructionFromIndex(index))
|
||||
index += InstrSlots::NUM;
|
||||
if (index == end) break;
|
||||
|
||||
MachineInstr *MI = getInstructionFromIndex(index);
|
||||
|
||||
RestartInstruction:
|
||||
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
|
||||
MachineOperand& mop = MI->getOperand(i);
|
||||
if (mop.isRegister() && mop.getReg() == li.reg) {
|
||||
if (DefIsReMat) {
|
||||
// If this is the rematerializable definition MI itself and
|
||||
// all of its uses are rematerialized, simply delete it.
|
||||
if (MI == OrigDefMI) {
|
||||
if (CanDelete) {
|
||||
RemoveMachineInstrFromMaps(MI);
|
||||
MI->eraseFromParent();
|
||||
break;
|
||||
} else if (tryFoldMemoryOperand(MI, vrm, index, i, slot, li.reg))
|
||||
// Folding the load/store can completely change the instruction
|
||||
// in unpredictable ways, rescan it from the beginning.
|
||||
goto RestartInstruction;
|
||||
} else if (isLoadSS &&
|
||||
tryFoldMemoryOperand(MI, vrm, index, i, LdSlot, li.reg)){
|
||||
// FIXME: Other rematerializable loads can be folded as well.
|
||||
// Folding the load/store can completely change the
|
||||
// instruction in unpredictable ways, rescan it from
|
||||
// the beginning.
|
||||
goto RestartInstruction;
|
||||
}
|
||||
} else {
|
||||
if (tryFoldMemoryOperand(MI, vrm, index, i, slot, li.reg))
|
||||
// Folding the load/store can completely change the instruction in
|
||||
// unpredictable ways, rescan it from the beginning.
|
||||
goto RestartInstruction;
|
||||
}
|
||||
|
||||
// Create a new virtual register for the spill interval.
|
||||
unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
|
||||
|
||||
// Scan all of the operands of this instruction rewriting operands
|
||||
// to use NewVReg instead of li.reg as appropriate. We do this for
|
||||
// two reasons:
|
||||
//
|
||||
// 1. If the instr reads the same spilled vreg multiple times, we
|
||||
// want to reuse the NewVReg.
|
||||
// 2. If the instr is a two-addr instruction, we are required to
|
||||
// keep the src/dst regs pinned.
|
||||
//
|
||||
// Keep track of whether we replace a use and/or def so that we can
|
||||
// create the spill interval with the appropriate range.
|
||||
mop.setReg(NewVReg);
|
||||
|
||||
bool HasUse = mop.isUse();
|
||||
bool HasDef = mop.isDef();
|
||||
for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
|
||||
if (MI->getOperand(j).isReg() &&
|
||||
MI->getOperand(j).getReg() == li.reg) {
|
||||
MI->getOperand(j).setReg(NewVReg);
|
||||
HasUse |= MI->getOperand(j).isUse();
|
||||
HasDef |= MI->getOperand(j).isDef();
|
||||
}
|
||||
}
|
||||
|
||||
vrm.grow();
|
||||
if (DefIsReMat) {
|
||||
vrm.setVirtIsReMaterialized(NewVReg, DefMI/*, CanDelete*/);
|
||||
if (ReMatIds[I->ValId] == VirtRegMap::MAX_STACK_SLOT) {
|
||||
// Each valnum may have its own remat id.
|
||||
ReMatIds[I->ValId] = vrm.assignVirtReMatId(NewVReg);
|
||||
} else {
|
||||
vrm.assignVirtReMatId(NewVReg, ReMatIds[I->ValId]);
|
||||
}
|
||||
if (!CanDelete || (HasUse && HasDef)) {
|
||||
// If this is a two-addr instruction then its use operands are
|
||||
// rematerializable but its def is not. It should be assigned a
|
||||
// stack slot.
|
||||
vrm.assignVirt2StackSlot(NewVReg, slot);
|
||||
}
|
||||
} else {
|
||||
vrm.assignVirt2StackSlot(NewVReg, slot);
|
||||
}
|
||||
|
||||
// create a new register interval for this spill / remat.
|
||||
LiveInterval &nI = getOrCreateInterval(NewVReg);
|
||||
assert(nI.empty());
|
||||
|
||||
// the spill weight is now infinity as it
|
||||
// cannot be spilled again
|
||||
nI.weight = HUGE_VALF;
|
||||
|
||||
if (HasUse) {
|
||||
LiveRange LR(getLoadIndex(index), getUseIndex(index),
|
||||
nI.getNextValue(~0U, 0));
|
||||
DOUT << " +" << LR;
|
||||
nI.addRange(LR);
|
||||
}
|
||||
if (HasDef) {
|
||||
LiveRange LR(getDefIndex(index), getStoreIndex(index),
|
||||
nI.getNextValue(~0U, 0));
|
||||
DOUT << " +" << LR;
|
||||
nI.addRange(LR);
|
||||
}
|
||||
|
||||
added.push_back(&nI);
|
||||
|
||||
// update live variables if it is available
|
||||
if (lv_)
|
||||
lv_->addVirtualRegisterKilled(NewVReg, MI);
|
||||
|
||||
DOUT << "\t\t\t\tadded new interval: ";
|
||||
nI.print(DOUT, mri_);
|
||||
DOUT << '\n';
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return added;
|
||||
}
|
||||
|
||||
void LiveIntervals::printRegName(unsigned reg) const {
|
||||
if (MRegisterInfo::isPhysicalRegister(reg))
|
||||
cerr << mri_->getName(reg);
|
||||
else
|
||||
cerr << "%reg" << reg;
|
||||
}
|
||||
|
||||
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
|
||||
MachineBasicBlock::iterator mi,
|
||||
unsigned MIIdx,
|
||||
@ -335,16 +471,6 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
|
||||
// done once for the vreg. We use an empty interval to detect the first
|
||||
// time we see a vreg.
|
||||
if (interval.empty()) {
|
||||
// Remember if the definition can be rematerialized. All load's from fixed
|
||||
// stack slots are re-materializable. The target may permit other
|
||||
// instructions to be re-materialized as well.
|
||||
int FrameIdx = 0;
|
||||
if (vi.DefInst &&
|
||||
(tii_->isTriviallyReMaterializable(vi.DefInst) ||
|
||||
(tii_->isLoadFromStackSlot(vi.DefInst, FrameIdx) &&
|
||||
mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))))
|
||||
interval.remat = vi.DefInst;
|
||||
|
||||
// Get the Idx of the defining instructions.
|
||||
unsigned defIndex = getDefIndex(MIIdx);
|
||||
unsigned ValNum;
|
||||
@ -421,9 +547,6 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
|
||||
}
|
||||
|
||||
} else {
|
||||
// Can no longer safely assume definition is rematerializable.
|
||||
interval.remat = NULL;
|
||||
|
||||
// If this is the second time we see a virtual register definition, it
|
||||
// must be due to phi elimination or two addr elimination. If this is
|
||||
// the result of two address elimination, then the vreg is one of the
|
||||
@ -487,7 +610,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
|
||||
DOUT << " Removing [" << Start << "," << End << "] from: ";
|
||||
interval.print(DOUT, mri_); DOUT << "\n";
|
||||
interval.removeRange(Start, End);
|
||||
interval.addKillForValNum(0, Start);
|
||||
interval.addKillForValNum(0, Start-1); // odd # means phi node
|
||||
DOUT << " RESULT: "; interval.print(DOUT, mri_);
|
||||
|
||||
// Replace the interval with one of a NEW value number. Note that this
|
||||
@ -514,7 +637,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
|
||||
unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
|
||||
LiveRange LR(defIndex, killIndex, ValNum);
|
||||
interval.addRange(LR);
|
||||
interval.addKillForValNum(ValNum, killIndex);
|
||||
interval.addKillForValNum(ValNum, killIndex-1); // odd # means phi node
|
||||
DOUT << " +" << LR;
|
||||
}
|
||||
}
|
||||
|
@ -305,7 +305,7 @@ void RALinScan::linearScan()
|
||||
for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
|
||||
LiveInterval *HI = handled_[i];
|
||||
unsigned Reg = HI->reg;
|
||||
if (!vrm_->hasStackSlot(Reg) && HI->liveAt(StartIdx)) {
|
||||
if (vrm_->isAssignedReg(Reg) && HI->liveAt(StartIdx)) {
|
||||
assert(MRegisterInfo::isVirtualRegister(Reg));
|
||||
Reg = vrm_->getPhys(Reg);
|
||||
MBB->addLiveIn(Reg);
|
||||
@ -605,14 +605,8 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
|
||||
// linearscan.
|
||||
if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
|
||||
DOUT << "\t\t\tspilling(c): " << *cur << '\n';
|
||||
// if the current interval is re-materializable, remember so and don't
|
||||
// assign it a spill slot.
|
||||
if (cur->remat)
|
||||
vrm_->setVirtIsReMaterialized(cur->reg, cur->remat);
|
||||
int slot = cur->remat ? vrm_->assignVirtReMatId(cur->reg)
|
||||
: vrm_->assignVirt2StackSlot(cur->reg);
|
||||
std::vector<LiveInterval*> added =
|
||||
li_->addIntervalsForSpills(*cur, *vrm_, slot);
|
||||
li_->addIntervalsForSpills(*cur, *vrm_, cur->reg);
|
||||
if (added.empty())
|
||||
return; // Early exit if all spills were folded.
|
||||
|
||||
@ -663,12 +657,8 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
|
||||
cur->overlapsFrom(*i->first, i->second)) {
|
||||
DOUT << "\t\t\tspilling(a): " << *i->first << '\n';
|
||||
earliestStart = std::min(earliestStart, i->first->beginNumber());
|
||||
if (i->first->remat)
|
||||
vrm_->setVirtIsReMaterialized(reg, i->first->remat);
|
||||
int slot = i->first->remat ? vrm_->assignVirtReMatId(reg)
|
||||
: vrm_->assignVirt2StackSlot(reg);
|
||||
std::vector<LiveInterval*> newIs =
|
||||
li_->addIntervalsForSpills(*i->first, *vrm_, slot);
|
||||
li_->addIntervalsForSpills(*i->first, *vrm_, reg);
|
||||
std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
|
||||
spilled.insert(reg);
|
||||
}
|
||||
@ -680,12 +670,8 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
|
||||
cur->overlapsFrom(*i->first, i->second-1)) {
|
||||
DOUT << "\t\t\tspilling(i): " << *i->first << '\n';
|
||||
earliestStart = std::min(earliestStart, i->first->beginNumber());
|
||||
if (i->first->remat)
|
||||
vrm_->setVirtIsReMaterialized(reg, i->first->remat);
|
||||
int slot = i->first->remat ? vrm_->assignVirtReMatId(reg)
|
||||
: vrm_->assignVirt2StackSlot(reg);
|
||||
std::vector<LiveInterval*> newIs =
|
||||
li_->addIntervalsForSpills(*i->first, *vrm_, slot);
|
||||
li_->addIntervalsForSpills(*i->first, *vrm_, reg);
|
||||
std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
|
||||
spilled.insert(reg);
|
||||
}
|
||||
|
@ -1123,12 +1123,6 @@ bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
|
||||
continue;
|
||||
LiveInterval &RegInt = li_->getInterval(reg);
|
||||
float w = (mop.isUse()+mop.isDef()) * powf(10.0F, (float)loopDepth);
|
||||
// If the definition instruction is re-materializable, its spill
|
||||
// weight is half of what it would have been normally unless it's
|
||||
// a load from fixed stack slot.
|
||||
int Dummy;
|
||||
if (RegInt.remat && !tii_->isLoadFromStackSlot(RegInt.remat, Dummy))
|
||||
w /= 2;
|
||||
RegInt.weight += w;
|
||||
UniqueUses.insert(reg);
|
||||
}
|
||||
|
@ -62,13 +62,17 @@ namespace {
|
||||
VirtRegMap::VirtRegMap(MachineFunction &mf)
|
||||
: TII(*mf.getTarget().getInstrInfo()), MF(mf),
|
||||
Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
|
||||
Virt2ReMatIdMap(NO_STACK_SLOT), ReMatMap(NULL),
|
||||
ReMatId(MAX_STACK_SLOT+1) {
|
||||
grow();
|
||||
}
|
||||
|
||||
void VirtRegMap::grow() {
|
||||
Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
|
||||
Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
|
||||
unsigned LastVirtReg = MF.getSSARegMap()->getLastVirtReg();
|
||||
Virt2PhysMap.grow(LastVirtReg);
|
||||
Virt2StackSlotMap.grow(LastVirtReg);
|
||||
Virt2ReMatIdMap.grow(LastVirtReg);
|
||||
ReMatMap.grow(LastVirtReg);
|
||||
}
|
||||
|
||||
int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
|
||||
@ -95,19 +99,19 @@ void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
|
||||
|
||||
int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
|
||||
assert(MRegisterInfo::isVirtualRegister(virtReg));
|
||||
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
|
||||
assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
|
||||
"attempt to assign re-mat id to already spilled register");
|
||||
const MachineInstr *DefMI = getReMaterializedMI(virtReg);
|
||||
int FrameIdx;
|
||||
if (TII.isLoadFromStackSlot((MachineInstr*)DefMI, FrameIdx)) {
|
||||
// Load from stack slot is re-materialize as reload from the stack slot!
|
||||
Virt2StackSlotMap[virtReg] = FrameIdx;
|
||||
return FrameIdx;
|
||||
}
|
||||
Virt2StackSlotMap[virtReg] = ReMatId;
|
||||
Virt2ReMatIdMap[virtReg] = ReMatId;
|
||||
return ReMatId++;
|
||||
}
|
||||
|
||||
void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
|
||||
assert(MRegisterInfo::isVirtualRegister(virtReg));
|
||||
assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
|
||||
"attempt to assign re-mat id to already spilled register");
|
||||
Virt2ReMatIdMap[virtReg] = id;
|
||||
}
|
||||
|
||||
void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
|
||||
unsigned OpNo, MachineInstr *NewMI) {
|
||||
// Move previous memory references folded to new instruction.
|
||||
@ -194,7 +198,7 @@ bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
|
||||
if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
|
||||
unsigned VirtReg = MO.getReg();
|
||||
unsigned PhysReg = VRM.getPhys(VirtReg);
|
||||
if (VRM.hasStackSlot(VirtReg)) {
|
||||
if (!VRM.isAssignedReg(VirtReg)) {
|
||||
int StackSlot = VRM.getStackSlot(VirtReg);
|
||||
const TargetRegisterClass* RC =
|
||||
MF.getSSARegMap()->getRegClass(VirtReg);
|
||||
@ -246,43 +250,41 @@ namespace {
|
||||
DOUT << "\n**** Local spiller rewriting function '"
|
||||
<< MF.getFunction()->getName() << "':\n";
|
||||
|
||||
std::vector<MachineInstr *> ReMatedMIs;
|
||||
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
|
||||
MBB != E; ++MBB)
|
||||
RewriteMBB(*MBB, VRM, ReMatedMIs);
|
||||
for (unsigned i = 0, e = ReMatedMIs.size(); i != e; ++i)
|
||||
delete ReMatedMIs[i];
|
||||
RewriteMBB(*MBB, VRM);
|
||||
return true;
|
||||
}
|
||||
private:
|
||||
void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
|
||||
std::vector<MachineInstr*> &ReMatedMIs);
|
||||
void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
|
||||
};
|
||||
}
|
||||
|
||||
/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
|
||||
/// top down, keep track of which spills slots are available in each register.
|
||||
/// top down, keep track of which spills slots or remat are available in each
|
||||
/// register.
|
||||
///
|
||||
/// Note that not all physregs are created equal here. In particular, some
|
||||
/// physregs are reloads that we are allowed to clobber or ignore at any time.
|
||||
/// Other physregs are values that the register allocated program is using that
|
||||
/// we cannot CHANGE, but we can read if we like. We keep track of this on a
|
||||
/// per-stack-slot basis as the low bit in the value of the SpillSlotsAvailable
|
||||
/// entries. The predicate 'canClobberPhysReg()' checks this bit and
|
||||
/// addAvailable sets it if.
|
||||
/// per-stack-slot / remat id basis as the low bit in the value of the
|
||||
/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
|
||||
/// this bit and addAvailable sets it if.
|
||||
namespace {
|
||||
class VISIBILITY_HIDDEN AvailableSpills {
|
||||
const MRegisterInfo *MRI;
|
||||
const TargetInstrInfo *TII;
|
||||
|
||||
// SpillSlotsAvailable - This map keeps track of all of the spilled virtual
|
||||
// register values that are still available, due to being loaded or stored to,
|
||||
// but not invalidated yet.
|
||||
std::map<int, unsigned> SpillSlotsAvailable;
|
||||
// SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
|
||||
// or remat'ed virtual register values that are still available, due to being
|
||||
// loaded or stored to, but not invalidated yet.
|
||||
std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
|
||||
|
||||
// PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
|
||||
// which stack slot values are currently held by a physreg. This is used to
|
||||
// invalidate entries in SpillSlotsAvailable when a physreg is modified.
|
||||
// PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
|
||||
// indicating which stack slot values are currently held by a physreg. This
|
||||
// is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
|
||||
// physreg is modified.
|
||||
std::multimap<unsigned, int> PhysRegsAvailable;
|
||||
|
||||
void disallowClobberPhysRegOnly(unsigned PhysReg);
|
||||
@ -295,41 +297,43 @@ public:
|
||||
|
||||
const MRegisterInfo *getRegInfo() const { return MRI; }
|
||||
|
||||
/// getSpillSlotPhysReg - If the specified stack slot is available in a
|
||||
/// physical register, return that PhysReg, otherwise return 0.
|
||||
unsigned getSpillSlotPhysReg(int Slot) const {
|
||||
std::map<int, unsigned>::const_iterator I = SpillSlotsAvailable.find(Slot);
|
||||
if (I != SpillSlotsAvailable.end()) {
|
||||
/// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
|
||||
/// available in a physical register, return that PhysReg, otherwise
|
||||
/// return 0.
|
||||
unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
|
||||
std::map<int, unsigned>::const_iterator I =
|
||||
SpillSlotsOrReMatsAvailable.find(Slot);
|
||||
if (I != SpillSlotsOrReMatsAvailable.end()) {
|
||||
return I->second >> 1; // Remove the CanClobber bit.
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// addAvailable - Mark that the specified stack slot is available in the
|
||||
/// specified physreg. If CanClobber is true, the physreg can be modified at
|
||||
/// any time without changing the semantics of the program.
|
||||
void addAvailable(int Slot, MachineInstr *MI, unsigned Reg,
|
||||
/// addAvailable - Mark that the specified stack slot / remat is available in
|
||||
/// the specified physreg. If CanClobber is true, the physreg can be modified
|
||||
/// at any time without changing the semantics of the program.
|
||||
void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
|
||||
bool CanClobber = true) {
|
||||
// If this stack slot is thought to be available in some other physreg,
|
||||
// remove its record.
|
||||
ModifyStackSlot(Slot);
|
||||
ModifyStackSlotOrReMat(SlotOrReMat);
|
||||
|
||||
PhysRegsAvailable.insert(std::make_pair(Reg, Slot));
|
||||
SpillSlotsAvailable[Slot] = (Reg << 1) | (unsigned)CanClobber;
|
||||
PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
|
||||
SpillSlotsOrReMatsAvailable[SlotOrReMat] = (Reg << 1) | (unsigned)CanClobber;
|
||||
|
||||
if (Slot > VirtRegMap::MAX_STACK_SLOT)
|
||||
DOUT << "Remembering RM#" << Slot-VirtRegMap::MAX_STACK_SLOT-1;
|
||||
if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
|
||||
DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
|
||||
else
|
||||
DOUT << "Remembering SS#" << Slot;
|
||||
DOUT << "Remembering SS#" << SlotOrReMat;
|
||||
DOUT << " in physreg " << MRI->getName(Reg) << "\n";
|
||||
}
|
||||
|
||||
/// canClobberPhysReg - Return true if the spiller is allowed to change the
|
||||
/// value of the specified stackslot register if it desires. The specified
|
||||
/// stack slot must be available in a physreg for this query to make sense.
|
||||
bool canClobberPhysReg(int Slot) const {
|
||||
assert(SpillSlotsAvailable.count(Slot) && "Slot not available!");
|
||||
return SpillSlotsAvailable.find(Slot)->second & 1;
|
||||
bool canClobberPhysReg(int SlotOrReMat) const {
|
||||
assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) && "Value not available!");
|
||||
return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
|
||||
}
|
||||
|
||||
/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
|
||||
@ -342,10 +346,10 @@ public:
|
||||
/// it and any of its aliases.
|
||||
void ClobberPhysReg(unsigned PhysReg);
|
||||
|
||||
/// ModifyStackSlot - This method is called when the value in a stack slot
|
||||
/// ModifyStackSlotOrReMat - This method is called when the value in a stack slot
|
||||
/// changes. This removes information about which register the previous value
|
||||
/// for this slot lives in (as the previous value is dead now).
|
||||
void ModifyStackSlot(int Slot);
|
||||
void ModifyStackSlotOrReMat(int SlotOrReMat);
|
||||
};
|
||||
}
|
||||
|
||||
@ -356,11 +360,11 @@ void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
|
||||
std::multimap<unsigned, int>::iterator I =
|
||||
PhysRegsAvailable.lower_bound(PhysReg);
|
||||
while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
|
||||
int Slot = I->second;
|
||||
int SlotOrReMat = I->second;
|
||||
I++;
|
||||
assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg &&
|
||||
assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
|
||||
"Bidirectional map mismatch!");
|
||||
SpillSlotsAvailable[Slot] &= ~1;
|
||||
SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
|
||||
DOUT << "PhysReg " << MRI->getName(PhysReg)
|
||||
<< " copied, it is available for use but can no longer be modified\n";
|
||||
}
|
||||
@ -381,17 +385,17 @@ void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
|
||||
std::multimap<unsigned, int>::iterator I =
|
||||
PhysRegsAvailable.lower_bound(PhysReg);
|
||||
while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
|
||||
int Slot = I->second;
|
||||
int SlotOrReMat = I->second;
|
||||
PhysRegsAvailable.erase(I++);
|
||||
assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg &&
|
||||
assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
|
||||
"Bidirectional map mismatch!");
|
||||
SpillSlotsAvailable.erase(Slot);
|
||||
SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
|
||||
DOUT << "PhysReg " << MRI->getName(PhysReg)
|
||||
<< " clobbered, invalidating ";
|
||||
if (Slot > VirtRegMap::MAX_STACK_SLOT)
|
||||
DOUT << "RM#" << Slot-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
|
||||
if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
|
||||
DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
|
||||
else
|
||||
DOUT << "SS#" << Slot << "\n";
|
||||
DOUT << "SS#" << SlotOrReMat << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
@ -404,14 +408,14 @@ void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
|
||||
ClobberPhysRegOnly(PhysReg);
|
||||
}
|
||||
|
||||
/// ModifyStackSlot - This method is called when the value in a stack slot
|
||||
/// ModifyStackSlotOrReMat - This method is called when the value in a stack slot
|
||||
/// changes. This removes information about which register the previous value
|
||||
/// for this slot lives in (as the previous value is dead now).
|
||||
void AvailableSpills::ModifyStackSlot(int Slot) {
|
||||
std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(Slot);
|
||||
if (It == SpillSlotsAvailable.end()) return;
|
||||
void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
|
||||
std::map<int, unsigned>::iterator It = SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
|
||||
if (It == SpillSlotsOrReMatsAvailable.end()) return;
|
||||
unsigned Reg = It->second >> 1;
|
||||
SpillSlotsAvailable.erase(It);
|
||||
SpillSlotsOrReMatsAvailable.erase(It);
|
||||
|
||||
// This register may hold the value of multiple stack slots, only remove this
|
||||
// stack slot from the set of values the register contains.
|
||||
@ -419,7 +423,7 @@ void AvailableSpills::ModifyStackSlot(int Slot) {
|
||||
for (; ; ++I) {
|
||||
assert(I != PhysRegsAvailable.end() && I->first == Reg &&
|
||||
"Map inverse broken!");
|
||||
if (I->second == Slot) break;
|
||||
if (I->second == SlotOrReMat) break;
|
||||
}
|
||||
PhysRegsAvailable.erase(I);
|
||||
}
|
||||
@ -490,8 +494,8 @@ namespace {
|
||||
// The MachineInstr operand that reused an available value.
|
||||
unsigned Operand;
|
||||
|
||||
// StackSlot - The spill slot of the value being reused.
|
||||
unsigned StackSlot;
|
||||
// StackSlotOrReMat - The spill slot or remat id of the value being reused.
|
||||
unsigned StackSlotOrReMat;
|
||||
|
||||
// PhysRegReused - The physical register the value was available in.
|
||||
unsigned PhysRegReused;
|
||||
@ -504,7 +508,7 @@ namespace {
|
||||
|
||||
ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
|
||||
unsigned vreg)
|
||||
: Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr),
|
||||
: Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr), AssignedPhysReg(apr),
|
||||
VirtReg(vreg) {}
|
||||
};
|
||||
|
||||
@ -525,7 +529,7 @@ namespace {
|
||||
|
||||
/// addReuse - If we choose to reuse a virtual register that is already
|
||||
/// available instead of reloading it, remember that we did so.
|
||||
void addReuse(unsigned OpNo, unsigned StackSlot,
|
||||
void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
|
||||
unsigned PhysRegReused, unsigned AssignedPhysReg,
|
||||
unsigned VirtReg) {
|
||||
// If the reload is to the assigned register anyway, no undo will be
|
||||
@ -533,7 +537,7 @@ namespace {
|
||||
if (PhysRegReused == AssignedPhysReg) return;
|
||||
|
||||
// Otherwise, remember this.
|
||||
Reuses.push_back(ReusedOp(OpNo, StackSlot, PhysRegReused,
|
||||
Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
|
||||
AssignedPhysReg, VirtReg));
|
||||
}
|
||||
|
||||
@ -553,7 +557,8 @@ namespace {
|
||||
std::map<int, MachineInstr*> &MaybeDeadStores,
|
||||
SmallSet<unsigned, 8> &Rejected,
|
||||
BitVector &RegKills,
|
||||
std::vector<MachineOperand*> &KillOps) {
|
||||
std::vector<MachineOperand*> &KillOps,
|
||||
VirtRegMap &VRM) {
|
||||
if (Reuses.empty()) return PhysReg; // This is most often empty.
|
||||
|
||||
for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
|
||||
@ -569,7 +574,7 @@ namespace {
|
||||
unsigned NewReg = Op.AssignedPhysReg;
|
||||
Rejected.insert(PhysReg);
|
||||
return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
|
||||
RegKills, KillOps);
|
||||
RegKills, KillOps, VRM);
|
||||
} else {
|
||||
// Otherwise, we might also have a problem if a previously reused
|
||||
// value aliases the new register. If so, codegen the previous reload
|
||||
@ -595,20 +600,26 @@ namespace {
|
||||
// would prefer us to use a different register.
|
||||
unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
|
||||
MI, Spills, MaybeDeadStores,
|
||||
Rejected, RegKills, KillOps);
|
||||
Rejected, RegKills, KillOps, VRM);
|
||||
|
||||
MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
|
||||
NewOp.StackSlot, AliasRC);
|
||||
if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
|
||||
MRI->reMaterialize(*MBB, MI, NewPhysReg,
|
||||
VRM.getReMaterializedMI(NewOp.VirtReg));
|
||||
++NumReMats;
|
||||
} else {
|
||||
MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
|
||||
NewOp.StackSlotOrReMat, AliasRC);
|
||||
++NumLoads;
|
||||
}
|
||||
Spills.ClobberPhysReg(NewPhysReg);
|
||||
Spills.ClobberPhysReg(NewOp.PhysRegReused);
|
||||
|
||||
// Any stores to this stack slot are not dead anymore.
|
||||
MaybeDeadStores.erase(NewOp.StackSlot);
|
||||
MaybeDeadStores.erase(NewOp.StackSlotOrReMat);
|
||||
|
||||
MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
|
||||
|
||||
Spills.addAvailable(NewOp.StackSlot, MI, NewPhysReg);
|
||||
++NumLoads;
|
||||
Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
|
||||
MachineBasicBlock::iterator MII = MI;
|
||||
--MII;
|
||||
UpdateKills(*MII, RegKills, KillOps);
|
||||
@ -640,10 +651,11 @@ namespace {
|
||||
AvailableSpills &Spills,
|
||||
std::map<int, MachineInstr*> &MaybeDeadStores,
|
||||
BitVector &RegKills,
|
||||
std::vector<MachineOperand*> &KillOps) {
|
||||
std::vector<MachineOperand*> &KillOps,
|
||||
VirtRegMap &VRM) {
|
||||
SmallSet<unsigned, 8> Rejected;
|
||||
return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
|
||||
RegKills, KillOps);
|
||||
RegKills, KillOps, VRM);
|
||||
}
|
||||
};
|
||||
}
|
||||
@ -651,8 +663,7 @@ namespace {
|
||||
|
||||
/// rewriteMBB - Keep track of which spills are available even after the
|
||||
/// register allocator is done with them. If possible, avoid reloading vregs.
|
||||
void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
|
||||
std::vector<MachineInstr*> &ReMatedMIs) {
|
||||
void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
|
||||
DOUT << MBB.getBasicBlock()->getName() << ":\n";
|
||||
|
||||
// Spills - Keep track of which spilled values are available in physregs so
|
||||
@ -689,28 +700,6 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
|
||||
// Loop over all of the implicit defs, clearing them from our available
|
||||
// sets.
|
||||
const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
|
||||
|
||||
// If this instruction is being rematerialized, just remove it!
|
||||
int FrameIdx;
|
||||
if (TII->isTriviallyReMaterializable(&MI) ||
|
||||
TII->isLoadFromStackSlot(&MI, FrameIdx)) {
|
||||
Erased = true;
|
||||
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
||||
MachineOperand &MO = MI.getOperand(i);
|
||||
if (!MO.isRegister() || MO.getReg() == 0)
|
||||
continue; // Ignore non-register operands.
|
||||
if (MO.isDef() && !VRM.isReMaterialized(MO.getReg())) {
|
||||
Erased = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (Erased) {
|
||||
VRM.RemoveFromFoldedVirtMap(&MI);
|
||||
ReMatedMIs.push_back(MI.removeFromParent());
|
||||
goto ProcessNextInst;
|
||||
}
|
||||
}
|
||||
|
||||
if (TID->ImplicitDefs) {
|
||||
const unsigned *ImpDef = TID->ImplicitDefs;
|
||||
for ( ; *ImpDef; ++ImpDef) {
|
||||
@ -738,7 +727,7 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
|
||||
"Not a virtual or a physical register?");
|
||||
|
||||
unsigned VirtReg = MO.getReg();
|
||||
if (!VRM.hasStackSlot(VirtReg)) {
|
||||
if (VRM.isAssignedReg(VirtReg)) {
|
||||
// This virtual register was assigned a physreg!
|
||||
unsigned Phys = VRM.getPhys(VirtReg);
|
||||
MF.setPhysRegUsed(Phys);
|
||||
@ -752,12 +741,13 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
|
||||
if (!MO.isUse())
|
||||
continue; // Handle defs in the loop below (handle use&def here though)
|
||||
|
||||
bool doReMat = VRM.isReMaterialized(VirtReg);
|
||||
int StackSlot = VRM.getStackSlot(VirtReg);
|
||||
bool DoReMat = VRM.isReMaterialized(VirtReg);
|
||||
int SSorRMId = DoReMat
|
||||
? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
|
||||
unsigned PhysReg;
|
||||
|
||||
// Check to see if this stack slot is available.
|
||||
if ((PhysReg = Spills.getSpillSlotPhysReg(StackSlot))) {
|
||||
if ((PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId))) {
|
||||
// This spilled operand might be part of a two-address operand. If this
|
||||
// is the case, then changing it will necessarily require changing the
|
||||
// def part of the instruction as well. However, in some cases, we
|
||||
@ -771,16 +761,16 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
|
||||
// Okay, we have a two address operand. We can reuse this physreg as
|
||||
// long as we are allowed to clobber the value and there isn't an
|
||||
// earlier def that has already clobbered the physreg.
|
||||
CanReuse = Spills.canClobberPhysReg(StackSlot) &&
|
||||
CanReuse = Spills.canClobberPhysReg(SSorRMId) &&
|
||||
!ReusedOperands.isClobbered(PhysReg);
|
||||
}
|
||||
|
||||
if (CanReuse) {
|
||||
// If this stack slot value is already available, reuse it!
|
||||
if (StackSlot > VirtRegMap::MAX_STACK_SLOT)
|
||||
DOUT << "Reusing RM#" << StackSlot-VirtRegMap::MAX_STACK_SLOT-1;
|
||||
if (SSorRMId > VirtRegMap::MAX_STACK_SLOT)
|
||||
DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
|
||||
else
|
||||
DOUT << "Reusing SS#" << StackSlot;
|
||||
DOUT << "Reusing SS#" << SSorRMId;
|
||||
DOUT << " from physreg "
|
||||
<< MRI->getName(PhysReg) << " for vreg"
|
||||
<< VirtReg <<" instead of reloading into physreg "
|
||||
@ -801,7 +791,7 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
|
||||
// or R0 and R1 might not be compatible with each other. In this
|
||||
// case, we actually insert a reload for V1 in R1, ensuring that
|
||||
// we can get at R0 or its alias.
|
||||
ReusedOperands.addReuse(i, StackSlot, PhysReg,
|
||||
ReusedOperands.addReuse(i, SSorRMId, PhysReg,
|
||||
VRM.getPhys(VirtReg), VirtReg);
|
||||
if (ti != -1)
|
||||
// Only mark it clobbered if this is a use&def operand.
|
||||
@ -829,16 +819,16 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
|
||||
// reuser.
|
||||
if (ReusedOperands.hasReuses())
|
||||
DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
|
||||
Spills, MaybeDeadStores, RegKills, KillOps);
|
||||
Spills, MaybeDeadStores, RegKills, KillOps, VRM);
|
||||
|
||||
// If the mapped designated register is actually the physreg we have
|
||||
// incoming, we don't need to inserted a dead copy.
|
||||
if (DesignatedReg == PhysReg) {
|
||||
// If this stack slot value is already available, reuse it!
|
||||
if (StackSlot > VirtRegMap::MAX_STACK_SLOT)
|
||||
DOUT << "Reusing RM#" << StackSlot-VirtRegMap::MAX_STACK_SLOT-1;
|
||||
if (SSorRMId > VirtRegMap::MAX_STACK_SLOT)
|
||||
DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
|
||||
else
|
||||
DOUT << "Reusing SS#" << StackSlot;
|
||||
DOUT << "Reusing SS#" << SSorRMId;
|
||||
DOUT << " from physreg " << MRI->getName(PhysReg) << " for vreg"
|
||||
<< VirtReg
|
||||
<< " instead of reloading into same physreg.\n";
|
||||
@ -859,7 +849,7 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
|
||||
// This invalidates DesignatedReg.
|
||||
Spills.ClobberPhysReg(DesignatedReg);
|
||||
|
||||
Spills.addAvailable(StackSlot, &MI, DesignatedReg);
|
||||
Spills.addAvailable(SSorRMId, &MI, DesignatedReg);
|
||||
MI.getOperand(i).setReg(DesignatedReg);
|
||||
DOUT << '\t' << *prior(MII);
|
||||
++NumReused;
|
||||
@ -877,24 +867,24 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
|
||||
// reuser.
|
||||
if (ReusedOperands.hasReuses())
|
||||
PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
|
||||
Spills, MaybeDeadStores, RegKills, KillOps);
|
||||
Spills, MaybeDeadStores, RegKills, KillOps, VRM);
|
||||
|
||||
MF.setPhysRegUsed(PhysReg);
|
||||
ReusedOperands.markClobbered(PhysReg);
|
||||
if (doReMat) {
|
||||
if (DoReMat) {
|
||||
MRI->reMaterialize(MBB, &MI, PhysReg, VRM.getReMaterializedMI(VirtReg));
|
||||
++NumReMats;
|
||||
} else {
|
||||
MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
|
||||
MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
|
||||
++NumLoads;
|
||||
}
|
||||
// This invalidates PhysReg.
|
||||
Spills.ClobberPhysReg(PhysReg);
|
||||
|
||||
// Any stores to this stack slot are not dead anymore.
|
||||
if (!doReMat)
|
||||
MaybeDeadStores.erase(StackSlot);
|
||||
Spills.addAvailable(StackSlot, &MI, PhysReg);
|
||||
if (!DoReMat)
|
||||
MaybeDeadStores.erase(SSorRMId);
|
||||
Spills.addAvailable(SSorRMId, &MI, PhysReg);
|
||||
// Assumes this is the last use. IsKill will be unset if reg is reused
|
||||
// unless it's a two-address operand.
|
||||
if (TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
|
||||
@ -914,7 +904,7 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
|
||||
<< I->second.second;
|
||||
unsigned VirtReg = I->second.first;
|
||||
VirtRegMap::ModRef MR = I->second.second;
|
||||
if (!VRM.hasStackSlot(VirtReg)) {
|
||||
if (VRM.isAssignedReg(VirtReg)) {
|
||||
DOUT << ": No stack slot!\n";
|
||||
continue;
|
||||
}
|
||||
@ -929,7 +919,7 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
|
||||
if (FrameIdx == SS) {
|
||||
// If this spill slot is available, turn it into a copy (or nothing)
|
||||
// instead of leaving it as a load!
|
||||
if (unsigned InReg = Spills.getSpillSlotPhysReg(SS)) {
|
||||
if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
|
||||
DOUT << "Promoted Load To Copy: " << MI;
|
||||
if (DestReg != InReg) {
|
||||
MRI->copyRegToReg(MBB, &MI, DestReg, InReg,
|
||||
@ -974,7 +964,7 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
|
||||
// the value, the value is not available anymore.
|
||||
if (MR & VirtRegMap::isMod) {
|
||||
// Notice that the value in this stack slot has been modified.
|
||||
Spills.ModifyStackSlot(SS);
|
||||
Spills.ModifyStackSlotOrReMat(SS);
|
||||
|
||||
// If this is *just* a mod of the value, check to see if this is just a
|
||||
// store to the spill slot (i.e. the spill got merged into the copy). If
|
||||
@ -1053,7 +1043,7 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
|
||||
// Another def has taken the assigned physreg. It must have been a
|
||||
// use&def which got it due to reuse. Undo the reuse!
|
||||
PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
|
||||
Spills, MaybeDeadStores, RegKills, KillOps);
|
||||
Spills, MaybeDeadStores, RegKills, KillOps, VRM);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1077,7 +1067,7 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
|
||||
// If the stack slot value was previously available in some other
|
||||
// register, change it now. Otherwise, make the register available,
|
||||
// in PhysReg.
|
||||
Spills.ModifyStackSlot(StackSlot);
|
||||
Spills.ModifyStackSlotOrReMat(StackSlot);
|
||||
Spills.ClobberPhysReg(PhysReg);
|
||||
Spills.addAvailable(StackSlot, LastStore, PhysReg);
|
||||
++NumStores;
|
||||
|
@ -55,6 +55,7 @@ namespace llvm {
|
||||
/// which corresponds to the stack slot this register is spilled
|
||||
/// at.
|
||||
IndexedMap<int, VirtReg2IndexFunctor> Virt2StackSlotMap;
|
||||
IndexedMap<int, VirtReg2IndexFunctor> Virt2ReMatIdMap;
|
||||
/// MI2VirtMap - This is MachineInstr to virtual register
|
||||
/// mapping. In the case of memory spill code being folded into
|
||||
/// instructions, we need to know which virtual register was
|
||||
@ -64,7 +65,7 @@ namespace llvm {
|
||||
/// ReMatMap - This is virtual register to re-materialized instruction
|
||||
/// mapping. Each virtual register whose definition is going to be
|
||||
/// re-materialized has an entry in it.
|
||||
std::map<unsigned, const MachineInstr*> ReMatMap;
|
||||
IndexedMap<MachineInstr*, VirtReg2IndexFunctor> ReMatMap;
|
||||
|
||||
/// ReMatId - Instead of assigning a stack slot to a to be rematerialized
|
||||
/// virtual register, an unique id is being assigned. This keeps track of
|
||||
@ -119,10 +120,11 @@ namespace llvm {
|
||||
grow();
|
||||
}
|
||||
|
||||
/// @brief returns true is the specified virtual register is
|
||||
/// mapped to a stack slot
|
||||
bool hasStackSlot(unsigned virtReg) const {
|
||||
return getStackSlot(virtReg) != NO_STACK_SLOT;
|
||||
/// @brief returns true is the specified virtual register is not
|
||||
/// mapped to a stack slot or rematerialized.
|
||||
bool isAssignedReg(unsigned virtReg) const {
|
||||
return getStackSlot(virtReg) == NO_STACK_SLOT &&
|
||||
getReMatId(virtReg) == NO_STACK_SLOT;
|
||||
}
|
||||
|
||||
/// @brief returns the stack slot mapped to the specified virtual
|
||||
@ -132,6 +134,13 @@ namespace llvm {
|
||||
return Virt2StackSlotMap[virtReg];
|
||||
}
|
||||
|
||||
/// @brief returns the rematerialization id mapped to the specified virtual
|
||||
/// register
|
||||
int getReMatId(unsigned virtReg) const {
|
||||
assert(MRegisterInfo::isVirtualRegister(virtReg));
|
||||
return Virt2ReMatIdMap[virtReg];
|
||||
}
|
||||
|
||||
/// @brief create a mapping for the specifed virtual register to
|
||||
/// the next available stack slot
|
||||
int assignVirt2StackSlot(unsigned virtReg);
|
||||
@ -142,22 +151,26 @@ namespace llvm {
|
||||
/// @brief assign an unique re-materialization id to the specified
|
||||
/// virtual register.
|
||||
int assignVirtReMatId(unsigned virtReg);
|
||||
/// @brief assign an unique re-materialization id to the specified
|
||||
/// virtual register.
|
||||
void assignVirtReMatId(unsigned virtReg, int id);
|
||||
|
||||
/// @brief returns true if the specified virtual register is being
|
||||
/// re-materialized.
|
||||
bool isReMaterialized(unsigned virtReg) const {
|
||||
return ReMatMap.count(virtReg) != 0;
|
||||
return ReMatMap[virtReg] != NULL;
|
||||
}
|
||||
|
||||
/// @brief returns the original machine instruction being re-issued
|
||||
/// to re-materialize the specified virtual register.
|
||||
const MachineInstr *getReMaterializedMI(unsigned virtReg) {
|
||||
MachineInstr *getReMaterializedMI(unsigned virtReg) const {
|
||||
return ReMatMap[virtReg];
|
||||
}
|
||||
|
||||
/// @brief records the specified virtual register will be
|
||||
/// re-materialized and the original instruction which will be re-issed
|
||||
/// for this purpose.
|
||||
/// for this purpose. If parameter all is true, then all uses of the
|
||||
/// registers are rematerialized and it's safe to delete the definition.
|
||||
void setVirtIsReMaterialized(unsigned virtReg, MachineInstr *def) {
|
||||
ReMatMap[virtReg] = def;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user