diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp index 8a3c0d47e97..a095f0886c8 100644 --- a/lib/Transforms/Scalar/InstructionCombining.cpp +++ b/lib/Transforms/Scalar/InstructionCombining.cpp @@ -267,18 +267,140 @@ static unsigned Log2(uint64_t Val) { return Count; } + +/// AssociativeOpt - Perform an optimization on an associative operator. This +/// function is designed to check a chain of associative operators for a +/// potential to apply a certain optimization. Since the optimization may be +/// applicable if the expression was reassociated, this checks the chain, then +/// reassociates the expression as necessary to expose the optimization +/// opportunity. This makes use of a special Functor, which must define +/// 'shouldApply' and 'apply' methods. +/// +template +Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) { + unsigned Opcode = Root.getOpcode(); + Value *LHS = Root.getOperand(0); + + // Quick check, see if the immediate LHS matches... + if (F.shouldApply(LHS)) + return F.apply(Root); + + // Otherwise, if the LHS is not of the same opcode as the root, return. + Instruction *LHSI = dyn_cast(LHS); + while (LHSI && LHSI->getOpcode() == Opcode && LHSI->use_size() == 1) { + // Should we apply this transform to the RHS? + bool ShouldApply = F.shouldApply(LHSI->getOperand(1)); + + // If not to the RHS, check to see if we should apply to the LHS... + if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) { + cast(LHSI)->swapOperands(); // Make the LHS the RHS + ShouldApply = true; + } + + // If the functor wants to apply the optimization to the RHS of LHSI, + // reassociate the expression from ((? op A) op B) to (? op (A op B)) + if (ShouldApply) { + BasicBlock *BB = Root.getParent(); + // All of the instructions have a single use and have no side-effects, + // because of this, we can pull them all into the current basic block. + if (LHSI->getParent() != BB) { + // Move all of the instructions from root to LHSI into the current + // block. + Instruction *TmpLHSI = cast(Root.getOperand(0)); + Instruction *LastUse = &Root; + while (TmpLHSI->getParent() == BB) { + LastUse = TmpLHSI; + TmpLHSI = cast(TmpLHSI->getOperand(0)); + } + + // Loop over all of the instructions in other blocks, moving them into + // the current one. + Value *TmpLHS = TmpLHSI; + do { + TmpLHSI = cast(TmpLHS); + // Remove from current block... + TmpLHSI->getParent()->getInstList().remove(TmpLHSI); + // Insert before the last instruction... + BB->getInstList().insert(LastUse, TmpLHSI); + TmpLHS = TmpLHSI->getOperand(0); + } while (TmpLHSI != LHSI); + } + + // Now all of the instructions are in the current basic block, go ahead + // and perform the reassociation. + Instruction *TmpLHSI = cast(Root.getOperand(0)); + + // First move the selected RHS to the LHS of the root... + Root.setOperand(0, LHSI->getOperand(1)); + + // Make what used to be the LHS of the root be the user of the root... + Value *ExtraOperand = TmpLHSI->getOperand(1); + Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI + TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root + BB->getInstList().remove(&Root); // Remove root from the BB + BB->getInstList().insert(TmpLHSI, &Root); // Insert root before TmpLHSI + + // Now propagate the ExtraOperand down the chain of instructions until we + // get to LHSI. + while (TmpLHSI != LHSI) { + Instruction *NextLHSI = cast(TmpLHSI->getOperand(0)); + Value *NextOp = NextLHSI->getOperand(1); + NextLHSI->setOperand(1, ExtraOperand); + TmpLHSI = NextLHSI; + ExtraOperand = NextOp; + } + + // Now that the instructions are reassociated, have the functor perform + // the transformation... + return F.apply(Root); + } + + LHSI = dyn_cast(LHSI->getOperand(0)); + } + return 0; +} + + +// AddRHS - Implements: X + X --> X << 1 +struct AddRHS { + Value *RHS; + AddRHS(Value *rhs) : RHS(rhs) {} + bool shouldApply(Value *LHS) const { return LHS == RHS; } + Instruction *apply(BinaryOperator &Add) const { + return new ShiftInst(Instruction::Shl, Add.getOperand(0), + ConstantInt::get(Type::UByteTy, 1)); + } +}; + +// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2) +// iff C1&C2 == 0 +struct AddMaskingAnd { + Constant *C2; + AddMaskingAnd(Constant *c) : C2(c) {} + bool shouldApply(Value *LHS) const { + if (Constant *C1 = dyn_castMaskingAnd(LHS)) + return ConstantExpr::get(Instruction::And, C1, C2)->isNullValue(); + return false; + } + Instruction *apply(BinaryOperator &Add) const { + return BinaryOperator::create(Instruction::Or, Add.getOperand(0), + Add.getOperand(1)); + } +}; + + + Instruction *InstCombiner::visitAdd(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); - // Eliminate 'add int %X, 0' + // X + 0 --> X if (RHS == Constant::getNullValue(I.getType())) return ReplaceInstUsesWith(I, LHS); - // Convert 'add X, X' to 'shl X, 1' - if (LHS == RHS && I.getType()->isInteger()) - return new ShiftInst(Instruction::Shl, LHS, - ConstantInt::get(Type::UByteTy, 1)); + // X + X --> X << 1 + if (I.getType()->isInteger()) + if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result; // -A + B --> B - A if (Value *V = dyn_castNegVal(LHS)) @@ -307,11 +429,9 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) { return BinaryOperator::create(Instruction::Mul, LHS, CP1); } - // (A & C1)+(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 - if (Constant *C1 = dyn_castMaskingAnd(LHS)) - if (Constant *C2 = dyn_castMaskingAnd(RHS)) - if (ConstantExpr::get(Instruction::And, C1, C2)->isNullValue()) - return BinaryOperator::create(Instruction::Or, LHS, RHS); + // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0 + if (Constant *C2 = dyn_castMaskingAnd(RHS)) + if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R; return Changed ? &I : 0; }