Divergence analysis for GPU programs

Summary:
Some optimizations such as jump threading and loop unswitching can negatively
affect performance when applied to divergent branches. The divergence analysis
added in this patch conservatively estimates which branches in a GPU program
can diverge. This information can then help LLVM to run certain optimizations
selectively.

Test Plan: test/Analysis/DivergenceAnalysis/NVPTX/diverge.ll

Reviewers: resistor, hfinkel, eliben, meheff, jholewinski

Subscribers: broune, bjarke.roune, madhur13490, tstellarAMD, dberlin, echristo, jholewinski, llvm-commits

Differential Revision: http://reviews.llvm.org/D8576

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234567 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jingyue Wu 2015-04-10 05:03:50 +00:00
parent d480d308b0
commit 5733100450
14 changed files with 642 additions and 1 deletions

View File

@ -136,6 +136,13 @@ namespace llvm {
//
FunctionPass *createDelinearizationPass();
//===--------------------------------------------------------------------===//
//
// createDivergenceAnalysisPass - This pass determines which branches in a GPU
// program are divergent.
//
FunctionPass *createDivergenceAnalysisPass();
//===--------------------------------------------------------------------===//
//
// Minor pass prototypes, allowing us to expose them through bugpoint and

View File

@ -190,12 +190,21 @@ public:
/// comments for a detailed explanation of the cost values.
unsigned getUserCost(const User *U) const;
/// \brief hasBranchDivergence - Return true if branch divergence exists.
/// \brief Return true if branch divergence exists.
///
/// Branch divergence has a significantly negative impact on GPU performance
/// when threads in the same wavefront take different paths due to conditional
/// branches.
bool hasBranchDivergence() const;
/// \brief Returns whether V is a source of divergence.
///
/// This function provides the target-dependent information for
/// the target-independent DivergenceAnalysis. DivergenceAnalysis first
/// builds the dependency graph, and then runs the reachability algorithm
/// starting with the sources of divergence.
bool isSourceOfDivergence(const Value *V) const;
/// \brief Test whether calls to a function lower to actual program function
/// calls.
///
@ -520,6 +529,7 @@ public:
ArrayRef<const Value *> Arguments) = 0;
virtual unsigned getUserCost(const User *U) = 0;
virtual bool hasBranchDivergence() = 0;
virtual bool isSourceOfDivergence(const Value *V) = 0;
virtual bool isLoweredToCall(const Function *F) = 0;
virtual void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) = 0;
virtual bool isLegalAddImmediate(int64_t Imm) = 0;
@ -619,6 +629,9 @@ public:
}
unsigned getUserCost(const User *U) override { return Impl.getUserCost(U); }
bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
bool isSourceOfDivergence(const Value *V) override {
return Impl.isSourceOfDivergence(V);
}
bool isLoweredToCall(const Function *F) override {
return Impl.isLoweredToCall(F);
}

View File

@ -164,6 +164,8 @@ public:
bool hasBranchDivergence() { return false; }
bool isSourceOfDivergence(const Value *V) { return false; }
bool isLoweredToCall(const Function *F) {
// FIXME: These should almost certainly not be handled here, and instead
// handled with the help of TLI or the target itself. This was largely

View File

@ -114,6 +114,8 @@ public:
bool hasBranchDivergence() { return false; }
bool isSourceOfDivergence(const Value *V) { return false; }
bool isLegalAddImmediate(int64_t imm) {
return getTLI()->isLegalAddImmediate(imm);
}

View File

@ -110,6 +110,7 @@ void initializeDeadInstEliminationPass(PassRegistry&);
void initializeDeadMachineInstructionElimPass(PassRegistry&);
void initializeDelinearizationPass(PassRegistry &);
void initializeDependenceAnalysisPass(PassRegistry&);
void initializeDivergenceAnalysisPass(PassRegistry&);
void initializeDomOnlyPrinterPass(PassRegistry&);
void initializeDomOnlyViewerPass(PassRegistry&);
void initializeDomPrinterPass(PassRegistry&);

View File

@ -74,6 +74,7 @@ namespace {
(void) llvm::createDeadInstEliminationPass();
(void) llvm::createDeadStoreEliminationPass();
(void) llvm::createDependenceAnalysisPass();
(void) llvm::createDivergenceAnalysisPass();
(void) llvm::createDomOnlyPrinterPass();
(void) llvm::createDomPrinterPass();
(void) llvm::createDomOnlyViewerPass();

View File

@ -37,6 +37,7 @@ void llvm::initializeAnalysis(PassRegistry &Registry) {
initializeCFLAliasAnalysisPass(Registry);
initializeDependenceAnalysisPass(Registry);
initializeDelinearizationPass(Registry);
initializeDivergenceAnalysisPass(Registry);
initializeDominanceFrontierPass(Registry);
initializeDomViewerPass(Registry);
initializeDomPrinterPass(Registry);

View File

@ -20,6 +20,7 @@ add_llvm_library(LLVMAnalysis
ConstantFolding.cpp
Delinearization.cpp
DependenceAnalysis.cpp
DivergenceAnalysis.cpp
DomPrinter.cpp
DominanceFrontier.cpp
IVUsers.cpp

View File

@ -0,0 +1,337 @@
//===- DivergenceAnalysis.cpp ------ Divergence Analysis ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines divergence analysis which determines whether a branch in a
// GPU program is divergent. It can help branch optimizations such as jump
// threading and loop unswitching to make better decisions.
//
// GPU programs typically use the SIMD execution model, where multiple threads
// in the same execution group have to execute in lock-step. Therefore, if the
// code contains divergent branches (i.e., threads in a group do not agree on
// which path of the branch to take), the group of threads has to execute all
// the paths from that branch with different subsets of threads enabled until
// they converge at the immediately post-dominating BB of the paths.
//
// Due to this execution model, some optimizations such as jump
// threading and loop unswitching can be unfortunately harmful when performed on
// divergent branches. Therefore, an analysis that computes which branches in a
// GPU program are divergent can help the compiler to selectively run these
// optimizations.
//
// This file defines divergence analysis which computes a conservative but
// non-trivial approximation of all divergent branches in a GPU program. It
// partially implements the approach described in
//
// Divergence Analysis
// Sampaio, Souza, Collange, Pereira
// TOPLAS '13
//
// The divergence analysis identifies the sources of divergence (e.g., special
// variables that hold the thread ID), and recursively marks variables that are
// data or sync dependent on a source of divergence as divergent.
//
// While data dependency is a well-known concept, the notion of sync dependency
// is worth more explanation. Sync dependence characterizes the control flow
// aspect of the propagation of branch divergence. For example,
//
// %cond = icmp slt i32 %tid, 10
// br i1 %cond, label %then, label %else
// then:
// br label %merge
// else:
// br label %merge
// merge:
// %a = phi i32 [ 0, %then ], [ 1, %else ]
//
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
// because %tid is not on its use-def chains, %a is sync dependent on %tid
// because the branch "br i1 %cond" depends on %tid and affects which value %a
// is assigned to.
//
// The current implementation has the following limitations:
// 1. intra-procedural. It conservatively considers the arguments of a
// non-kernel-entry function and the return value of a function call as
// divergent.
// 2. memory as black box. It conservatively considers values loaded from
// generic or local address as divergent. This can be improved by leveraging
// pointer analysis.
//===----------------------------------------------------------------------===//
#include <vector>
#include "llvm/IR/Dominators.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;
#define DEBUG_TYPE "divergence"
namespace {
class DivergenceAnalysis : public FunctionPass {
public:
static char ID;
DivergenceAnalysis() : FunctionPass(ID) {
initializeDivergenceAnalysisPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<PostDominatorTree>();
AU.setPreservesAll();
}
bool runOnFunction(Function &F) override;
// Print all divergent branches in the function.
void print(raw_ostream &OS, const Module *) const override;
// Returns true if V is divergent.
bool isDivergent(const Value *V) const { return DivergentValues.count(V); }
// Returns true if V is uniform/non-divergent.
bool isUniform(const Value *V) const { return !isDivergent(V); }
private:
// Stores all divergent values.
DenseSet<const Value *> DivergentValues;
};
} // End of anonymous namespace
// Register this pass.
char DivergenceAnalysis::ID = 0;
INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis",
false, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis",
false, true)
namespace {
class DivergencePropagator {
public:
DivergencePropagator(Function &F, TargetTransformInfo &TTI,
DominatorTree &DT, PostDominatorTree &PDT,
DenseSet<const Value *> &DV)
: F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
void populateWithSourcesOfDivergence();
void propagate();
private:
// A helper function that explores data dependents of V.
void exploreDataDependency(Value *V);
// A helper function that explores sync dependents of TI.
void exploreSyncDependency(TerminatorInst *TI);
// Computes the influence region from Start to End. This region includes all
// basic blocks on any path from Start to End.
void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
DenseSet<BasicBlock *> &InfluenceRegion);
// Finds all users of I that are outside the influence region, and add these
// users to Worklist.
void findUsersOutsideInfluenceRegion(
Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
Function &F;
TargetTransformInfo &TTI;
DominatorTree &DT;
PostDominatorTree &PDT;
std::vector<Value *> Worklist; // Stack for DFS.
DenseSet<const Value *> &DV; // Stores all divergent values.
};
void DivergencePropagator::populateWithSourcesOfDivergence() {
Worklist.clear();
DV.clear();
for (auto &I : inst_range(F)) {
if (TTI.isSourceOfDivergence(&I)) {
Worklist.push_back(&I);
DV.insert(&I);
}
}
for (auto &Arg : F.args()) {
if (TTI.isSourceOfDivergence(&Arg)) {
Worklist.push_back(&Arg);
DV.insert(&Arg);
}
}
}
void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) {
// Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
// immediate post dominator are divergent. This rule handles if-then-else
// patterns. For example,
//
// if (tid < 5)
// a1 = 1;
// else
// a2 = 2;
// a = phi(a1, a2); // sync dependent on (tid < 5)
BasicBlock *ThisBB = TI->getParent();
BasicBlock *IPostDom = PDT.getNode(ThisBB)->getIDom()->getBlock();
if (IPostDom == nullptr)
return;
for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
// A PHINode is uniform if it returns the same value no matter which path is
// taken.
if (!cast<PHINode>(I)->hasConstantValue() && DV.insert(I).second)
Worklist.push_back(I);
}
// Propagation rule 2: if a value defined in a loop is used outside, the user
// is sync dependent on the condition of the loop exits that dominate the
// user. For example,
//
// int i = 0;
// do {
// i++;
// if (foo(i)) ... // uniform
// } while (i < tid);
// if (bar(i)) ... // divergent
//
// A program may contain unstructured loops. Therefore, we cannot leverage
// LoopInfo, which only recognizes natural loops.
//
// The algorithm used here handles both natural and unstructured loops. Given
// a branch TI, we first compute its influence region, the union of all simple
// paths from TI to its immediate post dominator (IPostDom). Then, we search
// for all the values defined in the influence region but used outside. All
// these users are sync dependent on TI.
DenseSet<BasicBlock *> InfluenceRegion;
computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
// An insight that can speed up the search process is that all the in-region
// values that are used outside must dominate TI. Therefore, instead of
// searching every basic blocks in the influence region, we search all the
// dominators of TI until it is outside the influence region.
BasicBlock *InfluencedBB = ThisBB;
while (InfluenceRegion.count(InfluencedBB)) {
for (auto &I : *InfluencedBB)
findUsersOutsideInfluenceRegion(I, InfluenceRegion);
DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
if (IDomNode == nullptr)
break;
InfluencedBB = IDomNode->getBlock();
}
}
void DivergencePropagator::findUsersOutsideInfluenceRegion(
Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
for (User *U : I.users()) {
Instruction *UserInst = cast<Instruction>(U);
if (!InfluenceRegion.count(UserInst->getParent())) {
if (DV.insert(UserInst).second)
Worklist.push_back(UserInst);
}
}
}
void DivergencePropagator::computeInfluenceRegion(
BasicBlock *Start, BasicBlock *End,
DenseSet<BasicBlock *> &InfluenceRegion) {
assert(PDT.properlyDominates(End, Start) &&
"End does not properly dominate Start");
std::vector<BasicBlock *> InfluenceStack;
InfluenceStack.push_back(Start);
InfluenceRegion.insert(Start);
while (!InfluenceStack.empty()) {
BasicBlock *BB = InfluenceStack.back();
InfluenceStack.pop_back();
for (BasicBlock *Succ : successors(BB)) {
if (End != Succ && InfluenceRegion.insert(Succ).second)
InfluenceStack.push_back(Succ);
}
}
}
void DivergencePropagator::exploreDataDependency(Value *V) {
// Follow def-use chains of V.
for (User *U : V->users()) {
Instruction *UserInst = cast<Instruction>(U);
if (DV.insert(UserInst).second)
Worklist.push_back(UserInst);
}
}
void DivergencePropagator::propagate() {
// Traverse the dependency graph using DFS.
while (!Worklist.empty()) {
Value *V = Worklist.back();
Worklist.pop_back();
if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) {
// Terminators with less than two successors won't introduce sync
// dependency. Ignore them.
if (TI->getNumSuccessors() > 1)
exploreSyncDependency(TI);
}
exploreDataDependency(V);
}
}
} /// end namespace anonymous
FunctionPass *llvm::createDivergenceAnalysisPass() {
return new DivergenceAnalysis();
}
bool DivergenceAnalysis::runOnFunction(Function &F) {
auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
if (TTIWP == nullptr)
return false;
TargetTransformInfo &TTI = TTIWP->getTTI(F);
// Fast path: if the target does not have branch divergence, we do not mark
// any branch as divergent.
if (!TTI.hasBranchDivergence())
return false;
DivergentValues.clear();
DivergencePropagator DP(F, TTI,
getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
getAnalysis<PostDominatorTree>(), DivergentValues);
DP.populateWithSourcesOfDivergence();
DP.propagate();
return false;
}
void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
if (DivergentValues.empty())
return;
const Value *FirstDivergentValue = *DivergentValues.begin();
const Function *F;
if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
F = Arg->getParent();
} else if (const Instruction *I =
dyn_cast<Instruction>(FirstDivergentValue)) {
F = I->getParent()->getParent();
} else {
llvm_unreachable("Only arguments and instructions can be divergent");
}
// Dumps all divergent values in F, arguments and then instructions.
for (auto &Arg : F->args()) {
if (DivergentValues.count(&Arg))
OS << "DIVERGENT: " << Arg << "\n";
}
// Iterate instructions using inst_range to ensure a deterministic order.
for (auto &I : inst_range(F)) {
if (DivergentValues.count(&I))
OS << "DIVERGENT:" << I << "\n";
}
}

View File

@ -76,6 +76,10 @@ bool TargetTransformInfo::hasBranchDivergence() const {
return TTIImpl->hasBranchDivergence();
}
bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
return TTIImpl->isSourceOfDivergence(V);
}
bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
return TTIImpl->isLoweredToCall(F);
}

View File

@ -8,6 +8,7 @@
//===----------------------------------------------------------------------===//
#include "NVPTXTargetTransformInfo.h"
#include "NVPTXUtilities.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
@ -19,6 +20,75 @@ using namespace llvm;
#define DEBUG_TYPE "NVPTXtti"
// Whether the given intrinsic reads threadIdx.x/y/z.
static bool readsThreadIndex(const IntrinsicInst *II) {
switch (II->getIntrinsicID()) {
default: return false;
case Intrinsic::nvvm_read_ptx_sreg_tid_x:
case Intrinsic::nvvm_read_ptx_sreg_tid_y:
case Intrinsic::nvvm_read_ptx_sreg_tid_z:
return true;
}
}
static bool readsLaneId(const IntrinsicInst *II) {
return II->getIntrinsicID() == Intrinsic::ptx_read_laneid;
}
// Whether the given intrinsic is an atomic instruction in PTX.
static bool isNVVMAtomic(const IntrinsicInst *II) {
switch (II->getIntrinsicID()) {
default: return false;
case Intrinsic::nvvm_atomic_load_add_f32:
case Intrinsic::nvvm_atomic_load_inc_32:
case Intrinsic::nvvm_atomic_load_dec_32:
return true;
}
}
bool NVPTXTTIImpl::isSourceOfDivergence(const Value *V) {
// Without inter-procedural analysis, we conservatively assume that arguments
// to __device__ functions are divergent.
if (const Argument *Arg = dyn_cast<Argument>(V))
return !isKernelFunction(*Arg->getParent());
if (const Instruction *I = dyn_cast<Instruction>(V)) {
// Without pointer analysis, we conservatively assume values loaded from
// generic or local address space are divergent.
if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
unsigned AS = LI->getPointerAddressSpace();
return AS == ADDRESS_SPACE_GENERIC || AS == ADDRESS_SPACE_LOCAL;
}
// Atomic instructions may cause divergence. Atomic instructions are
// executed sequentially across all threads in a warp. Therefore, an earlier
// executed thread may see different memory inputs than a later executed
// thread. For example, suppose *a = 0 initially.
//
// atom.global.add.s32 d, [a], 1
//
// returns 0 for the first thread that enters the critical region, and 1 for
// the second thread.
if (I->isAtomic())
return true;
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
// Instructions that read threadIdx are obviously divergent.
if (readsThreadIndex(II) || readsLaneId(II))
return true;
// Handle the NVPTX atomic instrinsics that cannot be represented as an
// atomic IR instruction.
if (isNVVMAtomic(II))
return true;
}
// Conservatively consider the return value of function calls as divergent.
// We could analyze callees with bodies more precisely using
// inter-procedural analysis.
if (isa<CallInst>(I))
return true;
}
return false;
}
unsigned NVPTXTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,

View File

@ -61,6 +61,8 @@ public:
bool hasBranchDivergence() { return true; }
bool isSourceOfDivergence(const Value *V);
unsigned getArithmeticInstrCost(
unsigned Opcode, Type *Ty,
TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,

View File

@ -0,0 +1,198 @@
; RUN: opt %s -analyze -divergence | FileCheck %s
target datalayout = "e-i64:64-v16:16-v32:32-n16:32:64"
target triple = "nvptx64-nvidia-cuda"
; return (n < 0 ? a + threadIdx.x : b + threadIdx.x)
define i32 @no_diverge(i32 %n, i32 %a, i32 %b) {
; CHECK-LABEL: Printing analysis 'Divergence Analysis' for function 'no_diverge'
entry:
%tid = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
%cond = icmp slt i32 %n, 0
br i1 %cond, label %then, label %else ; uniform
; CHECK-NOT: DIVERGENT: br i1 %cond,
then:
%a1 = add i32 %a, %tid
br label %merge
else:
%b2 = add i32 %b, %tid
br label %merge
merge:
%c = phi i32 [ %a1, %then ], [ %b2, %else ]
ret i32 %c
}
; c = a;
; if (threadIdx.x < 5) // divergent: data dependent
; c = b;
; return c; // c is divergent: sync dependent
define i32 @sync(i32 %a, i32 %b) {
; CHECK-LABEL: Printing analysis 'Divergence Analysis' for function 'sync'
bb1:
%tid = call i32 @llvm.nvvm.read.ptx.sreg.tid.y()
%cond = icmp slt i32 %tid, 5
br i1 %cond, label %bb2, label %bb3
; CHECK: DIVERGENT: br i1 %cond,
bb2:
br label %bb3
bb3:
%c = phi i32 [ %a, %bb1 ], [ %b, %bb2 ] ; sync dependent on tid
; CHECK: DIVERGENT: %c =
ret i32 %c
}
; c = 0;
; if (threadIdx.x >= 5) { // divergent
; c = (n < 0 ? a : b); // c here is uniform because n is uniform
; }
; // c here is divergent because it is sync dependent on threadIdx.x >= 5
; return c;
define i32 @mixed(i32 %n, i32 %a, i32 %b) {
; CHECK-LABEL: Printing analysis 'Divergence Analysis' for function 'mixed'
bb1:
%tid = call i32 @llvm.nvvm.read.ptx.sreg.tid.z()
%cond = icmp slt i32 %tid, 5
br i1 %cond, label %bb6, label %bb2
; CHECK: DIVERGENT: br i1 %cond,
bb2:
%cond2 = icmp slt i32 %n, 0
br i1 %cond2, label %bb4, label %bb3
bb3:
br label %bb5
bb4:
br label %bb5
bb5:
%c = phi i32 [ %a, %bb3 ], [ %b, %bb4 ]
; CHECK-NOT: DIVERGENT: %c =
br label %bb6
bb6:
%c2 = phi i32 [ 0, %bb1], [ %c, %bb5 ]
; CHECK: DIVERGENT: %c2 =
ret i32 %c2
}
; We conservatively treats all parameters of a __device__ function as divergent.
define i32 @device(i32 %n, i32 %a, i32 %b) {
; CHECK-LABEL: Printing analysis 'Divergence Analysis' for function 'device'
; CHECK: DIVERGENT: i32 %n
; CHECK: DIVERGENT: i32 %a
; CHECK: DIVERGENT: i32 %b
entry:
%cond = icmp slt i32 %n, 0
br i1 %cond, label %then, label %else
; CHECK: DIVERGENT: br i1 %cond,
then:
br label %merge
else:
br label %merge
merge:
%c = phi i32 [ %a, %then ], [ %b, %else ]
ret i32 %c
}
; int i = 0;
; do {
; i++; // i here is uniform
; } while (i < laneid);
; return i == 10 ? 0 : 1; // i here is divergent
;
; The i defined in the loop is used outside.
define i32 @loop() {
; CHECK-LABEL: Printing analysis 'Divergence Analysis' for function 'loop'
entry:
%laneid = call i32 @llvm.ptx.read.laneid()
br label %loop
loop:
%i = phi i32 [ 0, %entry ], [ %i1, %loop ]
; CHECK-NOT: DIVERGENT: %i =
%i1 = add i32 %i, 1
%exit_cond = icmp sge i32 %i1, %laneid
br i1 %exit_cond, label %loop_exit, label %loop
loop_exit:
%cond = icmp eq i32 %i, 10
br i1 %cond, label %then, label %else
; CHECK: DIVERGENT: br i1 %cond,
then:
ret i32 0
else:
ret i32 1
}
; Same as @loop, but the loop is in the LCSSA form.
define i32 @lcssa() {
; CHECK-LABEL: Printing analysis 'Divergence Analysis' for function 'lcssa'
entry:
%tid = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
br label %loop
loop:
%i = phi i32 [ 0, %entry ], [ %i1, %loop ]
; CHECK-NOT: DIVERGENT: %i =
%i1 = add i32 %i, 1
%exit_cond = icmp sge i32 %i1, %tid
br i1 %exit_cond, label %loop_exit, label %loop
loop_exit:
%i.lcssa = phi i32 [ %i, %loop ]
; CHECK: DIVERGENT: %i.lcssa =
%cond = icmp eq i32 %i.lcssa, 10
br i1 %cond, label %then, label %else
; CHECK: DIVERGENT: br i1 %cond,
then:
ret i32 0
else:
ret i32 1
}
; This test contains an unstructured loop.
; +-------------- entry ----------------+
; | |
; V V
; i1 = phi(0, i3) i2 = phi(0, i3)
; j1 = i1 + 1 ---> i3 = phi(j1, j2) <--- j2 = i2 + 2
; ^ | ^
; | V |
; +-------- switch (tid / i3) ----------+
; |
; V
; if (i3 == 5) // divergent
; because sync dependent on (tid / i3).
define i32 @unstructured_loop(i1 %entry_cond) {
; CHECK-LABEL: Printing analysis 'Divergence Analysis' for function 'unstructured_loop'
entry:
%tid = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
br i1 %entry_cond, label %loop_entry_1, label %loop_entry_2
loop_entry_1:
%i1 = phi i32 [ 0, %entry ], [ %i3, %loop_latch ]
%j1 = add i32 %i1, 1
br label %loop_body
loop_entry_2:
%i2 = phi i32 [ 0, %entry ], [ %i3, %loop_latch ]
%j2 = add i32 %i2, 2
br label %loop_body
loop_body:
%i3 = phi i32 [ %j1, %loop_entry_1 ], [ %j2, %loop_entry_2 ]
br label %loop_latch
loop_latch:
%div = sdiv i32 %tid, %i3
switch i32 %div, label %branch [ i32 1, label %loop_entry_1
i32 2, label %loop_entry_2 ]
branch:
%cmp = icmp eq i32 %i3, 5
br i1 %cmp, label %then, label %else
; CHECK: DIVERGENT: br i1 %cmp,
then:
ret i32 0
else:
ret i32 1
}
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.tid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.tid.z()
declare i32 @llvm.ptx.read.laneid()
!nvvm.annotations = !{!0, !1, !2, !3, !4}
!0 = !{i32 (i32, i32, i32)* @no_diverge, !"kernel", i32 1}
!1 = !{i32 (i32, i32)* @sync, !"kernel", i32 1}
!2 = !{i32 (i32, i32, i32)* @mixed, !"kernel", i32 1}
!3 = !{i32 ()* @loop, !"kernel", i32 1}
!4 = !{i32 (i1)* @unstructured_loop, !"kernel", i32 1}

View File

@ -0,0 +1,2 @@
if not 'NVPTX' in config.root.targets:
config.unsupported = True