mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 20:32:21 +00:00
My auto-simplifier noticed that ((X/Y)*Y)/Y occurs several times in SPEC
benchmarks, and that it can be simplified to X/Y. (In general you can only simplify (Z*Y)/Y to Z if the multiplication did not overflow; if Z has the form "X/Y" then this is the case). This patch implements that transform and moves some Div logic out of instcombine and into InstructionSimplify. Unfortunately instcombine gets in the way somewhat, since it likes to change (X/Y)*Y into X-(X rem Y), so I had to teach instcombine about this too. Finally, thanks to the NSW/NUW flags, sometimes we know directly that "Z*Y" does not overflow, because the flag says so, so I added that logic too. This eliminates a bunch of divisions and subtractions in 447.dealII, and has good effects on some other benchmarks too. It seems to have quite an effect on tramp3d-v4 but it's hard to say if it's good or bad because inlining decisions changed, resulting in massive changes all over. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124487 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
abcae24d99
commit
593faa53fa
@ -40,6 +40,16 @@ namespace llvm {
|
||||
Value *SimplifyMulInst(Value *LHS, Value *RHS, const TargetData *TD = 0,
|
||||
const DominatorTree *DT = 0);
|
||||
|
||||
/// SimplifySDivInst - Given operands for an SDiv, see if we can
|
||||
/// fold the result. If not, this returns null.
|
||||
Value *SimplifySDivInst(Value *LHS, Value *RHS, const TargetData *TD = 0,
|
||||
const DominatorTree *DT = 0);
|
||||
|
||||
/// SimplifyUDivInst - Given operands for a UDiv, see if we can
|
||||
/// fold the result. If not, this returns null.
|
||||
Value *SimplifyUDivInst(Value *LHS, Value *RHS, const TargetData *TD = 0,
|
||||
const DominatorTree *DT = 0);
|
||||
|
||||
/// SimplifyShlInst - Given operands for a Shl, see if we can
|
||||
/// fold the result. If not, this returns null.
|
||||
Value *SimplifyShlInst(Value *Op0, Value *Op1, const TargetData *TD = 0,
|
||||
|
@ -747,6 +747,105 @@ Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
|
||||
return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
|
||||
}
|
||||
|
||||
/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
|
||||
/// fold the result. If not, this returns null.
|
||||
static Value *SimplifyDiv(unsigned Opcode, Value *Op0, Value *Op1,
|
||||
const TargetData *TD, const DominatorTree *DT,
|
||||
unsigned MaxRecurse) {
|
||||
if (Constant *C0 = dyn_cast<Constant>(Op0)) {
|
||||
if (Constant *C1 = dyn_cast<Constant>(Op1)) {
|
||||
Constant *Ops[] = { C0, C1 };
|
||||
return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
|
||||
}
|
||||
}
|
||||
|
||||
// X / undef -> undef
|
||||
if (isa<UndefValue>(Op1))
|
||||
return Op1;
|
||||
|
||||
// undef / X -> 0
|
||||
if (isa<UndefValue>(Op0))
|
||||
return Constant::getNullValue(Op0->getType());
|
||||
|
||||
// 0 / X -> 0, we don't need to preserve faults!
|
||||
if (match(Op0, m_Zero()))
|
||||
return Op0;
|
||||
|
||||
// X / 1 -> X
|
||||
if (match(Op1, m_One()))
|
||||
return Op0;
|
||||
// Vector case. TODO: Have m_One match vectors.
|
||||
if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
|
||||
if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
|
||||
if (X->isOne())
|
||||
return Op0;
|
||||
}
|
||||
|
||||
if (Op0->getType()->isIntegerTy(1))
|
||||
// It can't be division by zero, hence it must be division by one.
|
||||
return Op0;
|
||||
|
||||
// X / X -> 1
|
||||
if (Op0 == Op1)
|
||||
return ConstantInt::get(Op0->getType(), 1);
|
||||
|
||||
// (X * Y) / Y -> X if the multiplication does not overflow.
|
||||
Value *X = 0, *Y = 0;
|
||||
if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
|
||||
if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
|
||||
BinaryOperator *Mul = dyn_cast<BinaryOperator>(Op0);
|
||||
// If the Mul knows it does not overflow, then we are good to go.
|
||||
bool isSigned = Opcode == Instruction::SDiv;
|
||||
if ((isSigned && Mul->hasNoSignedWrap()) ||
|
||||
(!isSigned && Mul->hasNoUnsignedWrap()))
|
||||
return X;
|
||||
// If X has the form X = A / Y then X * Y cannot overflow.
|
||||
if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
|
||||
if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
|
||||
return X;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// SimplifySDivInst - Given operands for an SDiv, see if we can
|
||||
/// fold the result. If not, this returns null.
|
||||
static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
|
||||
const DominatorTree *DT, unsigned MaxRecurse) {
|
||||
if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse))
|
||||
return V;
|
||||
|
||||
// (X rem Y) / Y -> 0
|
||||
if (match(Op0, m_SRem(m_Value(), m_Specific(Op1))))
|
||||
return Constant::getNullValue(Op0->getType());
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
|
||||
const DominatorTree *DT) {
|
||||
return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit);
|
||||
}
|
||||
|
||||
/// SimplifyUDivInst - Given operands for a UDiv, see if we can
|
||||
/// fold the result. If not, this returns null.
|
||||
static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
|
||||
const DominatorTree *DT, unsigned MaxRecurse) {
|
||||
if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse))
|
||||
return V;
|
||||
|
||||
// (X rem Y) / Y -> 0
|
||||
if (match(Op0, m_URem(m_Value(), m_Specific(Op1))))
|
||||
return Constant::getNullValue(Op0->getType());
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
|
||||
const DominatorTree *DT) {
|
||||
return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit);
|
||||
}
|
||||
|
||||
/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
|
||||
/// fold the result. If not, this returns null.
|
||||
static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
|
||||
@ -1649,6 +1748,8 @@ static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
|
||||
/* isNUW */ false, TD, DT,
|
||||
MaxRecurse);
|
||||
case Instruction::Mul: return SimplifyMulInst(LHS, RHS, TD, DT, MaxRecurse);
|
||||
case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse);
|
||||
case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse);
|
||||
case Instruction::Shl: return SimplifyShlInst(LHS, RHS, TD, DT, MaxRecurse);
|
||||
case Instruction::LShr: return SimplifyLShrInst(LHS, RHS, TD, DT, MaxRecurse);
|
||||
case Instruction::AShr: return SimplifyAShrInst(LHS, RHS, TD, DT, MaxRecurse);
|
||||
@ -1730,6 +1831,12 @@ Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
|
||||
case Instruction::Mul:
|
||||
Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
|
||||
break;
|
||||
case Instruction::SDiv:
|
||||
Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
|
||||
break;
|
||||
case Instruction::UDiv:
|
||||
Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
|
||||
break;
|
||||
case Instruction::Shl:
|
||||
Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), TD, DT);
|
||||
break;
|
||||
|
@ -304,28 +304,6 @@ bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
|
||||
}
|
||||
|
||||
|
||||
/// This function implements the transforms on div instructions that work
|
||||
/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
|
||||
/// used by the visitors to those instructions.
|
||||
/// @brief Transforms common to all three div instructions
|
||||
Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
|
||||
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
||||
|
||||
// undef / X -> 0 for integer.
|
||||
// undef / X -> undef for FP (the undef could be a snan).
|
||||
if (isa<UndefValue>(Op0)) {
|
||||
if (Op0->getType()->isFPOrFPVectorTy())
|
||||
return ReplaceInstUsesWith(I, Op0);
|
||||
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
|
||||
}
|
||||
|
||||
// X / undef -> undef
|
||||
if (isa<UndefValue>(Op1))
|
||||
return ReplaceInstUsesWith(I, Op1);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// This function implements the transforms common to both integer division
|
||||
/// instructions (udiv and sdiv). It is called by the visitors to those integer
|
||||
/// division instructions.
|
||||
@ -333,31 +311,12 @@ Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
|
||||
Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
|
||||
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
||||
|
||||
// (sdiv X, X) --> 1 (udiv X, X) --> 1
|
||||
if (Op0 == Op1) {
|
||||
if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
|
||||
Constant *CI = ConstantInt::get(Ty->getElementType(), 1);
|
||||
std::vector<Constant*> Elts(Ty->getNumElements(), CI);
|
||||
return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
|
||||
}
|
||||
|
||||
Constant *CI = ConstantInt::get(I.getType(), 1);
|
||||
return ReplaceInstUsesWith(I, CI);
|
||||
}
|
||||
|
||||
if (Instruction *Common = commonDivTransforms(I))
|
||||
return Common;
|
||||
|
||||
// Handle cases involving: [su]div X, (select Cond, Y, Z)
|
||||
// This does not apply for fdiv.
|
||||
if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
|
||||
return &I;
|
||||
|
||||
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
|
||||
// div X, 1 == X
|
||||
if (RHS->equalsInt(1))
|
||||
return ReplaceInstUsesWith(I, Op0);
|
||||
|
||||
// (X / C1) / C2 -> X / (C1*C2)
|
||||
if (Instruction *LHS = dyn_cast<Instruction>(Op0))
|
||||
if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
|
||||
@ -380,20 +339,13 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
|
||||
}
|
||||
}
|
||||
|
||||
// 0 / X == 0, we don't need to preserve faults!
|
||||
if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
|
||||
if (LHS->equalsInt(0))
|
||||
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
|
||||
|
||||
// It can't be division by zero, hence it must be division by one.
|
||||
if (I.getType()->isIntegerTy(1))
|
||||
return ReplaceInstUsesWith(I, Op0);
|
||||
|
||||
if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
|
||||
if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
|
||||
// div X, 1 == X
|
||||
if (X->isOne())
|
||||
return ReplaceInstUsesWith(I, Op0);
|
||||
// (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
|
||||
Value *X = 0, *Z = 0;
|
||||
if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
|
||||
bool isSigned = I.getOpcode() == Instruction::SDiv;
|
||||
if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
|
||||
(!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
|
||||
return BinaryOperator::Create(I.getOpcode(), X, Op1);
|
||||
}
|
||||
|
||||
return 0;
|
||||
@ -402,6 +354,9 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
|
||||
Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
|
||||
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
||||
|
||||
if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
|
||||
return ReplaceInstUsesWith(I, V);
|
||||
|
||||
// Handle the integer div common cases
|
||||
if (Instruction *Common = commonIDivTransforms(I))
|
||||
return Common;
|
||||
@ -464,6 +419,9 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
|
||||
Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
|
||||
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
||||
|
||||
if (Value *V = SimplifySDivInst(Op0, Op1, TD))
|
||||
return ReplaceInstUsesWith(I, V);
|
||||
|
||||
// Handle the integer div common cases
|
||||
if (Instruction *Common = commonIDivTransforms(I))
|
||||
return Common;
|
||||
@ -516,7 +474,17 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
|
||||
}
|
||||
|
||||
Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
|
||||
return commonDivTransforms(I);
|
||||
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
||||
|
||||
// undef / X -> undef (the undef could be a snan).
|
||||
if (isa<UndefValue>(Op0))
|
||||
return ReplaceInstUsesWith(I, Op0);
|
||||
|
||||
// X / undef -> undef
|
||||
if (isa<UndefValue>(Op1))
|
||||
return ReplaceInstUsesWith(I, Op1);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// This function implements the transforms on rem instructions that work
|
||||
|
@ -1,34 +1,67 @@
|
||||
; RUN: opt < %s -instcombine -S > %t
|
||||
; RUN: grep urem %t | count 3
|
||||
; RUN: grep srem %t | count 1
|
||||
; RUN: grep sub %t | count 2
|
||||
; RUN: grep add %t | count 1
|
||||
; RUN: opt < %s -instcombine -S | FileCheck %s
|
||||
; PR3103
|
||||
|
||||
define i8 @test1(i8 %x, i8 %y) {
|
||||
; CHECK: @test1
|
||||
%A = udiv i8 %x, %y
|
||||
; CHECK-NEXT: urem
|
||||
%B = mul i8 %A, %y
|
||||
%C = sub i8 %x, %B
|
||||
ret i8 %C
|
||||
; CHECK-NEXT: ret
|
||||
}
|
||||
|
||||
define i8 @test2(i8 %x, i8 %y) {
|
||||
; CHECK: @test2
|
||||
%A = sdiv i8 %x, %y
|
||||
; CHECK-NEXT: srem
|
||||
%B = mul i8 %A, %y
|
||||
%C = sub i8 %x, %B
|
||||
ret i8 %C
|
||||
; CHECK-NEXT: ret
|
||||
}
|
||||
|
||||
define i8 @test3(i8 %x, i8 %y) {
|
||||
; CHECK: @test3
|
||||
%A = udiv i8 %x, %y
|
||||
; CHECK-NEXT: urem
|
||||
%B = mul i8 %A, %y
|
||||
%C = sub i8 %B, %x
|
||||
; CHECK-NEXT: sub
|
||||
ret i8 %C
|
||||
; CHECK-NEXT: ret
|
||||
}
|
||||
|
||||
define i8 @test4(i8 %x) {
|
||||
; CHECK: @test4
|
||||
%A = udiv i8 %x, 3
|
||||
; CHECK-NEXT: urem
|
||||
%B = mul i8 %A, -3
|
||||
; CHECK-NEXT: sub
|
||||
%C = sub i8 %x, %B
|
||||
; CHECK-NEXT: add
|
||||
ret i8 %C
|
||||
; CHECK-NEXT: ret
|
||||
}
|
||||
|
||||
define i32 @test5(i32 %x, i32 %y) {
|
||||
; CHECK: @test5
|
||||
; (((X / Y) * Y) / Y) -> X / Y
|
||||
%div = sdiv i32 %x, %y
|
||||
; CHECK-NEXT: sdiv
|
||||
%mul = mul i32 %div, %y
|
||||
%r = sdiv i32 %mul, %y
|
||||
ret i32 %r
|
||||
; CHECK-NEXT: ret
|
||||
}
|
||||
|
||||
define i32 @test6(i32 %x, i32 %y) {
|
||||
; CHECK: @test6
|
||||
; (((X / Y) * Y) / Y) -> X / Y
|
||||
%div = udiv i32 %x, %y
|
||||
; CHECK-NEXT: udiv
|
||||
%mul = mul i32 %div, %y
|
||||
%r = udiv i32 %mul, %y
|
||||
ret i32 %r
|
||||
; CHECK-NEXT: ret
|
||||
}
|
||||
|
@ -90,3 +90,59 @@ define i32 @sub3(i32 %x, i32 %y) {
|
||||
ret i32 %r
|
||||
; CHECK: ret i32 %x
|
||||
}
|
||||
|
||||
define i32 @sdiv1(i32 %x, i32 %y) {
|
||||
; CHECK: @sdiv1
|
||||
; (no overflow X * Y) / Y -> X
|
||||
%mul = mul nsw i32 %x, %y
|
||||
%r = sdiv i32 %mul, %y
|
||||
ret i32 %r
|
||||
; CHECK: ret i32 %x
|
||||
}
|
||||
|
||||
define i32 @sdiv2(i32 %x, i32 %y) {
|
||||
; CHECK: @sdiv2
|
||||
; (((X / Y) * Y) / Y) -> X / Y
|
||||
%div = sdiv i32 %x, %y
|
||||
%mul = mul i32 %div, %y
|
||||
%r = sdiv i32 %mul, %y
|
||||
ret i32 %r
|
||||
; CHECK: ret i32 %div
|
||||
}
|
||||
|
||||
define i32 @sdiv3(i32 %x, i32 %y) {
|
||||
; CHECK: @sdiv3
|
||||
; (X rem Y) / Y -> 0
|
||||
%rem = srem i32 %x, %y
|
||||
%div = sdiv i32 %rem, %y
|
||||
ret i32 %div
|
||||
; CHECK: ret i32 0
|
||||
}
|
||||
|
||||
define i32 @udiv1(i32 %x, i32 %y) {
|
||||
; CHECK: @udiv1
|
||||
; (no overflow X * Y) / Y -> X
|
||||
%mul = mul nuw i32 %x, %y
|
||||
%r = udiv i32 %mul, %y
|
||||
ret i32 %r
|
||||
; CHECK: ret i32 %x
|
||||
}
|
||||
|
||||
define i32 @udiv2(i32 %x, i32 %y) {
|
||||
; CHECK: @udiv2
|
||||
; (((X / Y) * Y) / Y) -> X / Y
|
||||
%div = udiv i32 %x, %y
|
||||
%mul = mul i32 %div, %y
|
||||
%r = udiv i32 %mul, %y
|
||||
ret i32 %r
|
||||
; CHECK: ret i32 %div
|
||||
}
|
||||
|
||||
define i32 @udiv3(i32 %x, i32 %y) {
|
||||
; CHECK: @udiv3
|
||||
; (X rem Y) / Y -> 0
|
||||
%rem = urem i32 %x, %y
|
||||
%div = udiv i32 %rem, %y
|
||||
ret i32 %div
|
||||
; CHECK: ret i32 0
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user