mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-03-15 22:32:35 +00:00
DOC: Add a webpage that describes the loop and bb vectorizers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170503 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
034b94b170
commit
59f2af9246
219
docs/Vectorizers.rst
Normal file
219
docs/Vectorizers.rst
Normal file
@ -0,0 +1,219 @@
|
||||
==========================
|
||||
Auto-Vectorization in LLVM
|
||||
==========================
|
||||
|
||||
LLVM has two vectorizers: The *Loop Vectorizer*, which operates on Loops,
|
||||
and the *Basic Block Vectorizer*, which optimizes straight-line code. These
|
||||
vectorizers focus on different optimization opportunities and use different
|
||||
techniques. The BB vectorizer merges multiple scalars that are found in the
|
||||
code into vectors while the Loop Vectorizer widens instructions in the
|
||||
original loop to operate on multiple consecutive loop iterations.
|
||||
|
||||
The Loop Vectorizer
|
||||
===================
|
||||
|
||||
LLVM’s Loop Vectorizer is now available and will be useful for many people.
|
||||
It is not enabled by default, but can be enabled through clang using the
|
||||
command line flag:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ clang -fvectorize file.c
|
||||
|
||||
We plan to enable the Loop Vectorizer by default as part of the LLVM 3.3 release.
|
||||
|
||||
Features
|
||||
^^^^^^^^^
|
||||
|
||||
The LLVM Loop Vectorizer has a number of features that allow it to vectorize
|
||||
complex loops.
|
||||
|
||||
Loops with unknown trip count
|
||||
------------------------------
|
||||
|
||||
The Loop Vectorizer supports loops with an unknown trip count.
|
||||
In the loop below, the iteration ``start`` and ``finish`` points are unknown,
|
||||
and the Loop Vectorizer has a mechanism to vectorize loops that do not start
|
||||
at zero. In this example, ‘n’ may not be a multiple of the vector width, and
|
||||
the vectorizer has to execute the last few iterations as scalar code. Keeping
|
||||
a scalar copy of the loop increases the code size.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
void bar(float *A, float* B, float K, int start, int end) {
|
||||
for (int i = start; i < end; ++i)
|
||||
A[i] *= B[i] + K;
|
||||
}
|
||||
|
||||
Runtime Checks of Pointers
|
||||
--------------------------
|
||||
|
||||
In the example below, if the pointers A and B point to consecutive addresses,
|
||||
then it is illegal to vectorize the code because some elements of A will be
|
||||
written before they are read from array B.
|
||||
|
||||
Some programmers use the 'restrict' keyword to notify the compiler that the
|
||||
pointers are disjointed, but in our example, the Loop Vectorizer has no way of
|
||||
knowing that the pointers A and B are unique. The Loop Vectorizer handles this
|
||||
loop by placing code that checks, at runtime, if the arrays A and B point to
|
||||
disjointed memory locations. If arrays A and B overlap, then the scalar version
|
||||
of the loop is executed.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
void bar(float *A, float* B, float K, int n) {
|
||||
for (int i = 0; i < n; ++i)
|
||||
A[i] *= B[i] + K;
|
||||
}
|
||||
|
||||
|
||||
Reductions
|
||||
--------------------------
|
||||
|
||||
In this example the ``sum`` variable is used by consecutive iterations of
|
||||
the loop. Normally, this would prevent vectorization, but the vectorizer can
|
||||
detect that ‘sum’ is a reduction variable. The variable ‘sum’ becomes a vector
|
||||
of integers, and at the end of the loop the elements of the array are added
|
||||
together to create the correct result. We support a number of different
|
||||
reduction operations, such as addition, multiplication, XOR, AND and OR.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
int foo(int *A, int *B, int n) {
|
||||
unsigned sum = 0;
|
||||
for (int i = 0; i < n; ++i)
|
||||
sum += A[i] + 5;
|
||||
return sum;
|
||||
}
|
||||
|
||||
Inductions
|
||||
--------------------------
|
||||
|
||||
In this example the value of the induction variable ``i`` is saved into an
|
||||
array. The Loop Vectorizer knows to vectorize induction variables.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
void bar(float *A, float* B, float K, int n) {
|
||||
for (int i = 0; i < n; ++i)
|
||||
A[i] = i;
|
||||
}
|
||||
|
||||
If Conversion
|
||||
--------------------------
|
||||
|
||||
The Loop Vectorizer is able to "flatten" the IF statement in the code and
|
||||
generate a single stream of instructions. The Loop Vectorizer supports any
|
||||
control flow in the innermost loop. The innermost loop may contain complex
|
||||
nesting of IFs, ELSEs and even GOTOs.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
int foo(int *A, int *B, int n) {
|
||||
unsigned sum = 0;
|
||||
for (int i = 0; i < n; ++i)
|
||||
if (A[i] > B[i])
|
||||
sum += A[i] + 5;
|
||||
return sum;
|
||||
}
|
||||
|
||||
Pointer Induction Variables
|
||||
--------------------------
|
||||
|
||||
This example uses the "accumulate" function of the standard c++ library. This
|
||||
loop uses C++ iterators, which are pointers, and not integer indices.
|
||||
The Loop Vectorizer detects pointer induction variables and can vectorize
|
||||
this loop. This feature is important because many C++ programs use iterators.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
int baz(int *A, int n) {
|
||||
return std::accumulate(A, A + n, 0);
|
||||
}
|
||||
|
||||
Reverse Iterators
|
||||
--------------------------
|
||||
|
||||
The Loop Vectorizer can vectorize loops that count backwards.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
int foo(int *A, int *B, int n) {
|
||||
for (int i = n; i > 0; --i)
|
||||
A[i] +=1;
|
||||
}
|
||||
|
||||
Scatter / Gather
|
||||
--------------------------
|
||||
|
||||
The Loop Vectorizer can generate code diverging memory indices that result in
|
||||
scatter/gather memory accesses.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
int foo(int *A, int *B, int n, int k) {
|
||||
for (int i = 0; i < n; ++i)
|
||||
A[i*7] += B[i*k];
|
||||
}
|
||||
|
||||
Vectorization of programs with Mixed Types
|
||||
--------------------------
|
||||
|
||||
The Loop Vectorizer can vectorize programs with mixed types. The Vectorizer
|
||||
cost model can estimate the cost of the type conversion and decide if
|
||||
vectorization is profitable.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
int foo(int *A, char *B, int n, int k) {
|
||||
for (int i = 0; i < n; ++i)
|
||||
A[i] += 4 * B[i];
|
||||
}
|
||||
|
||||
Vectorization of function calls
|
||||
--------------------------
|
||||
|
||||
The Loop Vectorize can vectorize intrinsic math functions.
|
||||
See the table below for a list of these functions.
|
||||
|
||||
+-----+-----+---------+
|
||||
| pow | exp | exp2 |
|
||||
+-----+-----+---------+
|
||||
| sin | cos | sqrt |
|
||||
+-----+-----+---------+
|
||||
| log |log2 | log10 |
|
||||
+-----+-----+---------+
|
||||
|fabs |floor| ceil |
|
||||
+-----+-----+---------+
|
||||
|fma |trunc|nearbyint|
|
||||
+-----+-----+---------+
|
||||
|
||||
The Basic Block Vectorizer
|
||||
==========================
|
||||
|
||||
The Basic Block Vectorizer is not enabled by default, but it can be enabled
|
||||
through clang using the command line flag:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ clang -fslp-vectorize file.c
|
||||
|
||||
The goal of basic-block vectorization (a.k.a. superword-level parallelism) is
|
||||
to combine similar independent instructions within simple control-flow regions
|
||||
into vector instructions. Memory accesses, arithemetic operations, comparison
|
||||
operations and some math functions can all be vectorized using this technique
|
||||
(subject to the capabilities of the target architecture).
|
||||
|
||||
For example, the following function performs very similar operations on its
|
||||
inputs (a1, b1) and (a2, b2). The basic-block vectorizer may combine these
|
||||
into vector operations.
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
int foo(int a1, int a2, int b1, int b2) {
|
||||
int r1 = a1*(a1 + b1)/b1 + 50*b1/a1;
|
||||
int r2 = a2*(a2 + b2)/b2 + 50*b2/a2;
|
||||
return r1 + r2;
|
||||
}
|
||||
|
||||
|
@ -21,6 +21,7 @@ Subsystem Documentation
|
||||
HowToUseInstrMappings
|
||||
SystemLibrary
|
||||
SourceLevelDebugging
|
||||
Vectorizers
|
||||
WritingAnLLVMBackend
|
||||
GarbageCollection
|
||||
WritingAnLLVMPass
|
||||
@ -61,6 +62,10 @@ Subsystem Documentation
|
||||
|
||||
This document describes the design and philosophy behind the LLVM
|
||||
source-level debugger.
|
||||
|
||||
* :doc:`Vectorization in LLVM <Vectorizers>`
|
||||
|
||||
This document describes the current status of vectorization in LLVM.
|
||||
|
||||
* :ref:`exception_handling`
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user