Change the canonical induction variable that we insert.

Instead of producing code like this:

Loop:
  X = phi 0, X2
  ...

  X2 = X + 1
  if (X != N-1) goto Loop

We now generate code that looks like this:

Loop:
  X = phi 0, X2
  ...

  X2 = X + 1
  if (X2 != N) goto Loop

This has two big advantages:
  1. The trip count of the loop is now explicit in the code, allowing
     the direct implementation of Loop::getTripCount()
  2. This reduces register pressure in the loop, and allows X and X2 to be
     put into the same register.

As a consequence of the second point, the code we generate for loops went
from:

.LBB2:  # no_exit.1
	...
        mov %EDI, %ESI
        inc %EDI
        cmp %ESI, 2
        mov %ESI, %EDI
        jne .LBB2 # PC rel: no_exit.1

To:

.LBB2:  # no_exit.1
	...
        inc %ESI
        cmp %ESI, 3
        jne .LBB2 # PC rel: no_exit.1

... which has two fewer moves, and uses one less register.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12961 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2004-04-15 15:21:43 +00:00
parent 92020faa2c
commit 59fdaeeae8

View File

@ -39,10 +39,10 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constant.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/Local.h"
@ -85,7 +85,7 @@ namespace {
void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
std::set<Instruction*> &DeadInsts);
void LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
Value *IndVar, ScalarEvolutionRewriter &RW);
ScalarEvolutionRewriter &RW);
void RewriteLoopExitValues(Loop *L);
void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
@ -177,12 +177,11 @@ void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
}
/// LinearFunctionTestReplace - This method rewrites the exit condition of the
/// loop to be a canonical != comparison against the loop induction variable.
/// This pass is able to rewrite the exit tests of any loop where the SCEV
/// analysis can determine the trip count of the loop, which is actually a much
/// broader range than just linear tests.
/// loop to be a canonical != comparison against the incremented loop induction
/// variable. This pass is able to rewrite the exit tests of any loop where the
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
/// is actually a much broader range than just linear tests.
void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
Value *IndVar,
ScalarEvolutionRewriter &RW) {
// Find the exit block for the loop. We can currently only handle loops with
// a single exit.
@ -210,9 +209,17 @@ void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()))
InstructionsToDelete.insert(Cond);
// The IterationCount expression contains the number of times that the
// backedge actually branches to the loop header. This is one less than the
// number of times the loop executes, so add one to it.
Constant *OneC = ConstantInt::get(IterationCount->getType(), 1);
SCEVHandle TripCount=SCEVAddExpr::get(IterationCount, SCEVUnknown::get(OneC));
Value *IndVar = L->getCanonicalInductionVariableIncrement();
// Expand the code for the iteration count into the preheader of the loop.
BasicBlock *Preheader = L->getLoopPreheader();
Value *ExitCnt = RW.ExpandCodeFor(IterationCount, Preheader->getTerminator(),
Value *ExitCnt = RW.ExpandCodeFor(TripCount, Preheader->getTerminator(),
IndVar->getType());
// Insert a new setne or seteq instruction before the branch.
@ -368,7 +375,7 @@ void IndVarSimplify::runOnLoop(Loop *L) {
Changed = true;
if (!isa<SCEVCouldNotCompute>(IterationCount))
LinearFunctionTestReplace(L, IterationCount, IndVar, Rewriter);
LinearFunctionTestReplace(L, IterationCount, Rewriter);
#if 0
// If there were induction variables of other sizes, cast the primary