For PR1209:

Implement Type class's ContainedTys without using a std::vector.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35693 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Spencer 2007-04-06 02:02:20 +00:00
parent 11eec56a04
commit 5a1ebb3c99
3 changed files with 113 additions and 47 deletions

View File

@ -163,6 +163,7 @@ private:
bool IsVarArgs, const ParamAttrsList &Attrs); bool IsVarArgs, const ParamAttrsList &Attrs);
public: public:
virtual ~FunctionType() { delete ParamAttrs; }
/// FunctionType::get - This static method is the primary way of constructing /// FunctionType::get - This static method is the primary way of constructing
/// a FunctionType. /// a FunctionType.
/// ///
@ -179,9 +180,9 @@ public:
inline bool isVarArg() const { return isVarArgs; } inline bool isVarArg() const { return isVarArgs; }
inline const Type *getReturnType() const { return ContainedTys[0]; } inline const Type *getReturnType() const { return ContainedTys[0]; }
typedef std::vector<PATypeHandle>::const_iterator param_iterator; typedef Type::subtype_iterator param_iterator;
param_iterator param_begin() const { return ContainedTys.begin()+1; } param_iterator param_begin() const { return ContainedTys + 1; }
param_iterator param_end() const { return ContainedTys.end(); } param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
// Parameter type accessors... // Parameter type accessors...
const Type *getParamType(unsigned i) const { return ContainedTys[i+1]; } const Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
@ -189,7 +190,7 @@ public:
/// getNumParams - Return the number of fixed parameters this function type /// getNumParams - Return the number of fixed parameters this function type
/// requires. This does not consider varargs. /// requires. This does not consider varargs.
/// ///
unsigned getNumParams() const { return unsigned(ContainedTys.size()-1); } unsigned getNumParams() const { return NumContainedTys - 1; }
bool isStructReturn() const { bool isStructReturn() const {
return (getNumParams() && paramHasAttr(1, StructRetAttribute)); return (getNumParams() && paramHasAttr(1, StructRetAttribute));
@ -265,14 +266,14 @@ public:
bool isPacked=false); bool isPacked=false);
// Iterator access to the elements // Iterator access to the elements
typedef std::vector<PATypeHandle>::const_iterator element_iterator; typedef Type::subtype_iterator element_iterator;
element_iterator element_begin() const { return ContainedTys.begin(); } element_iterator element_begin() const { return ContainedTys; }
element_iterator element_end() const { return ContainedTys.end(); } element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
// Random access to the elements // Random access to the elements
unsigned getNumElements() const { return unsigned(ContainedTys.size()); } unsigned getNumElements() const { return NumContainedTys; }
const Type *getElementType(unsigned N) const { const Type *getElementType(unsigned N) const {
assert(N < ContainedTys.size() && "Element number out of range!"); assert(N < NumContainedTys && "Element number out of range!");
return ContainedTys[N]; return ContainedTys[N];
} }
@ -305,12 +306,14 @@ public:
/// components out in memory identically. /// components out in memory identically.
/// ///
class SequentialType : public CompositeType { class SequentialType : public CompositeType {
PATypeHandle ContainedType; ///< Storage for the single contained type
SequentialType(const SequentialType &); // Do not implement! SequentialType(const SequentialType &); // Do not implement!
const SequentialType &operator=(const SequentialType &); // Do not implement! const SequentialType &operator=(const SequentialType &); // Do not implement!
protected: protected:
SequentialType(TypeID TID, const Type *ElType) : CompositeType(TID) { SequentialType(TypeID TID, const Type *ElType)
ContainedTys.reserve(1); : CompositeType(TID), ContainedType(ElType, this) {
ContainedTys.push_back(PATypeHandle(ElType, this)); ContainedTys = &ContainedType;
NumContainedTys = 1;
} }
public: public:

View File

@ -101,12 +101,18 @@ private:
mutable unsigned RefCount; mutable unsigned RefCount;
const Type *getForwardedTypeInternal() const; const Type *getForwardedTypeInternal() const;
// Some Type instances are allocated as arrays, some aren't. So we provide
// this method to get the right kind of destruction for the type of Type.
void destroy() const; // const is a lie, this does "delete this"!
protected: protected:
Type(const char *Name, TypeID id); Type(const char *Name, TypeID id);
explicit Type(TypeID id) : ID(id), Abstract(false), SubclassData(0), explicit Type(TypeID id) : ID(id), Abstract(false), SubclassData(0),
RefCount(0), ForwardType(0) {} RefCount(0), ForwardType(0), NumContainedTys(0),
ContainedTys(0) {}
virtual ~Type() { virtual ~Type() {
assert(AbstractTypeUsers.empty()); assert(AbstractTypeUsers.empty() && "Abstract types remain");
} }
/// Types can become nonabstract later, if they are refined. /// Types can become nonabstract later, if they are refined.
@ -123,19 +129,31 @@ protected:
/// to the more refined type. Only abstract types can be forwarded. /// to the more refined type. Only abstract types can be forwarded.
mutable const Type *ForwardType; mutable const Type *ForwardType;
/// ContainedTys - The list of types contained by this one. For example, this
/// includes the arguments of a function type, the elements of the structure,
/// the pointee of a pointer, etc. Note that keeping this vector in the Type
/// class wastes some space for types that do not contain anything (such as
/// primitive types). However, keeping it here allows the subtype_* members
/// to be implemented MUCH more efficiently, and dynamically very few types do
/// not contain any elements (most are derived).
std::vector<PATypeHandle> ContainedTys;
/// AbstractTypeUsers - Implement a list of the users that need to be notified /// AbstractTypeUsers - Implement a list of the users that need to be notified
/// if I am a type, and I get resolved into a more concrete type. /// if I am a type, and I get resolved into a more concrete type.
/// ///
mutable std::vector<AbstractTypeUser *> AbstractTypeUsers; mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
/// NumContainedTys - Keeps track of how many PATypeHandle instances there
/// are at the end of this type instance for the list of contained types. It
/// is the subclasses responsibility to set this up. Set to 0 if there are no
/// contained types in this type.
unsigned NumContainedTys;
/// ContainedTys - A pointer to the array of Types (PATypeHandle) contained
/// by this Type. For example, this includes the arguments of a function
/// type, the elements of a structure, the pointee of a pointer, the element
/// type of an array, etc. This pointer may be 0 for types that don't
/// contain other types (Integer, Double, Float). In general, the subclass
/// should arrange for space for the PATypeHandles to be included in the
/// allocation of the type object and set this pointer to the address of the
/// first element. This allows the Type class to manipulate the ContainedTys
/// without understanding the subclass's placement for this array. keeping
/// it here also allows the subtype_* members to be implemented MUCH more
/// efficiently, and dynamically very few types do not contain any elements.
PATypeHandle *ContainedTys;
public: public:
void print(std::ostream &O) const; void print(std::ostream &O) const;
void print(std::ostream *O) const { if (O) print(*O); } void print(std::ostream *O) const { if (O) print(*O); }
@ -235,23 +253,22 @@ public:
//===--------------------------------------------------------------------===// //===--------------------------------------------------------------------===//
// Type Iteration support // Type Iteration support
// //
typedef std::vector<PATypeHandle>::const_iterator subtype_iterator; typedef PATypeHandle *subtype_iterator;
subtype_iterator subtype_begin() const { return ContainedTys.begin(); } subtype_iterator subtype_begin() const { return ContainedTys; }
subtype_iterator subtype_end() const { return ContainedTys.end(); } subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
/// getContainedType - This method is used to implement the type iterator /// getContainedType - This method is used to implement the type iterator
/// (defined a the end of the file). For derived types, this returns the /// (defined a the end of the file). For derived types, this returns the
/// types 'contained' in the derived type. /// types 'contained' in the derived type.
/// ///
const Type *getContainedType(unsigned i) const { const Type *getContainedType(unsigned i) const {
assert(i < ContainedTys.size() && "Index out of range!"); assert(i < NumContainedTys && "Index out of range!");
return ContainedTys[i]; return ContainedTys[i].get();
} }
/// getNumContainedTypes - Return the number of types in the derived type. /// getNumContainedTypes - Return the number of types in the derived type.
/// ///
typedef std::vector<PATypeHandle>::size_type size_type; unsigned getNumContainedTypes() const { return NumContainedTys; }
size_type getNumContainedTypes() const { return ContainedTys.size(); }
//===--------------------------------------------------------------------===// //===--------------------------------------------------------------------===//
// Static members exported by the Type class itself. Useful for getting // Static members exported by the Type class itself. Useful for getting
@ -282,7 +299,7 @@ public:
// If this is the last PATypeHolder using this object, and there are no // If this is the last PATypeHolder using this object, and there are no
// PATypeHandles using it, the type is dead, delete it now. // PATypeHandles using it, the type is dead, delete it now.
if (--RefCount == 0 && AbstractTypeUsers.empty()) if (--RefCount == 0 && AbstractTypeUsers.empty())
delete this; this->destroy();
} }
/// addAbstractTypeUser - Notify an abstract type that there is a new user of /// addAbstractTypeUser - Notify an abstract type that there is a new user of

View File

@ -63,11 +63,52 @@ static ManagedStatic<std::map<const Type*,
std::string> > AbstractTypeDescriptions; std::string> > AbstractTypeDescriptions;
Type::Type(const char *Name, TypeID id) Type::Type(const char *Name, TypeID id)
: ID(id), Abstract(false), SubclassData(0), RefCount(0), ForwardType(0) { : ID(id), Abstract(false), SubclassData(0), RefCount(0), ForwardType(0),
NumContainedTys(0), ContainedTys(0) {
assert(Name && Name[0] && "Should use other ctor if no name!"); assert(Name && Name[0] && "Should use other ctor if no name!");
(*ConcreteTypeDescriptions)[this] = Name; (*ConcreteTypeDescriptions)[this] = Name;
} }
/// Because of the way Type subclasses are allocated, this function is necessary
/// to use the correct kind of "delete" operator to deallocate the Type object.
/// Some type objects (FunctionTy, StructTy) allocate additional space after
/// the space for their derived type to hold the contained types array of
/// PATypeHandles. Using this allocation scheme means all the PATypeHandles are
/// allocated with the type object, decreasing allocations and eliminating the
/// need for a std::vector to be used in the Type class itself.
/// @brief Type destruction function
void Type::destroy() const {
// Structures and Functions allocate their contained types past the end of
// the type object itself. These need to be destroyed differently than the
// other types.
if (isa<FunctionType>(this) || isa<StructType>(this)) {
// First, make sure we destruct any PATypeHandles allocated by these
// subclasses. They must be manually destructed.
for (unsigned i = 0; i < NumContainedTys; ++i)
ContainedTys[i].PATypeHandle::~PATypeHandle();
// Now call the destructor for the subclass directly because we're going
// to delete this as an array of char.
if (isa<FunctionType>(this))
((FunctionType*)this)->FunctionType::~FunctionType();
else
((StructType*)this)->StructType::~StructType();
// Finally, remove the memory as an array deallocation of the chars it was
// constructed from.
delete [] reinterpret_cast<const char*>(this);
return;
}
// For all the other type subclasses, there is either no contained types or
// just one (all Sequentials). For Sequentials, the PATypeHandle is not
// allocated past the type object, its included directly in the SequentialType
// class. This means we can safely just do "normal" delete of this object and
// all the destructors that need to run will be run.
delete this;
}
const Type *Type::getPrimitiveType(TypeID IDNumber) { const Type *Type::getPrimitiveType(TypeID IDNumber) {
switch (IDNumber) { switch (IDNumber) {
@ -330,7 +371,7 @@ bool StructType::indexValid(const Value *V) const {
// Structure indexes require 32-bit integer constants. // Structure indexes require 32-bit integer constants.
if (V->getType() == Type::Int32Ty) if (V->getType() == Type::Int32Ty)
if (const ConstantInt *CU = dyn_cast<ConstantInt>(V)) if (const ConstantInt *CU = dyn_cast<ConstantInt>(V))
return CU->getZExtValue() < ContainedTys.size(); return CU->getZExtValue() < NumContainedTys;
return false; return false;
} }
@ -371,19 +412,19 @@ const IntegerType *Type::Int64Ty = new BuiltinIntegerType(64);
FunctionType::FunctionType(const Type *Result, FunctionType::FunctionType(const Type *Result,
const std::vector<const Type*> &Params, const std::vector<const Type*> &Params,
bool IsVarArgs, const ParamAttrsList &Attrs) bool IsVarArgs, const ParamAttrsList &Attrs)
: DerivedType(FunctionTyID), isVarArgs(IsVarArgs) { : DerivedType(FunctionTyID), isVarArgs(IsVarArgs), ParamAttrs(0) {
ContainedTys = reinterpret_cast<PATypeHandle*>(this+1);
NumContainedTys = Params.size() + 1; // + 1 for result type
assert((Result->isFirstClassType() || Result == Type::VoidTy || assert((Result->isFirstClassType() || Result == Type::VoidTy ||
isa<OpaqueType>(Result)) && isa<OpaqueType>(Result)) &&
"LLVM functions cannot return aggregates"); "LLVM functions cannot return aggregates");
bool isAbstract = Result->isAbstract(); bool isAbstract = Result->isAbstract();
ContainedTys.reserve(Params.size()+1); new (&ContainedTys[0]) PATypeHandle(Result, this);
ContainedTys.push_back(PATypeHandle(Result, this));
for (unsigned i = 0; i != Params.size(); ++i) { for (unsigned i = 0; i != Params.size(); ++i) {
assert((Params[i]->isFirstClassType() || isa<OpaqueType>(Params[i])) && assert((Params[i]->isFirstClassType() || isa<OpaqueType>(Params[i])) &&
"Function arguments must be value types!"); "Function arguments must be value types!");
new (&ContainedTys[i+1]) PATypeHandle(Params[i],this);
ContainedTys.push_back(PATypeHandle(Params[i], this));
isAbstract |= Params[i]->isAbstract(); isAbstract |= Params[i]->isAbstract();
} }
@ -400,12 +441,13 @@ FunctionType::FunctionType(const Type *Result,
StructType::StructType(const std::vector<const Type*> &Types, bool isPacked) StructType::StructType(const std::vector<const Type*> &Types, bool isPacked)
: CompositeType(StructTyID) { : CompositeType(StructTyID) {
ContainedTys = reinterpret_cast<PATypeHandle*>(this + 1);
NumContainedTys = Types.size();
setSubclassData(isPacked); setSubclassData(isPacked);
ContainedTys.reserve(Types.size());
bool isAbstract = false; bool isAbstract = false;
for (unsigned i = 0; i < Types.size(); ++i) { for (unsigned i = 0; i < Types.size(); ++i) {
assert(Types[i] != Type::VoidTy && "Void type for structure field!!"); assert(Types[i] != Type::VoidTy && "Void type for structure field!!");
ContainedTys.push_back(PATypeHandle(Types[i], this)); new (&ContainedTys[i]) PATypeHandle(Types[i], this);
isAbstract |= Types[i]->isAbstract(); isAbstract |= Types[i]->isAbstract();
} }
@ -449,17 +491,17 @@ OpaqueType::OpaqueType() : DerivedType(OpaqueTyID) {
// another (more concrete) type, we must eliminate all references to other // another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems. // types, to avoid some circular reference problems.
void DerivedType::dropAllTypeUses() { void DerivedType::dropAllTypeUses() {
if (!ContainedTys.empty()) { if (NumContainedTys != 0) {
// The type must stay abstract. To do this, we insert a pointer to a type // The type must stay abstract. To do this, we insert a pointer to a type
// that will never get resolved, thus will always be abstract. // that will never get resolved, thus will always be abstract.
static Type *AlwaysOpaqueTy = OpaqueType::get(); static Type *AlwaysOpaqueTy = OpaqueType::get();
static PATypeHolder Holder(AlwaysOpaqueTy); static PATypeHolder Holder(AlwaysOpaqueTy);
ContainedTys[0] = AlwaysOpaqueTy; ContainedTys[0] = AlwaysOpaqueTy;
// Change the rest of the types to be intty's. It doesn't matter what we // Change the rest of the types to be Int32Ty's. It doesn't matter what we
// pick so long as it doesn't point back to this type. We choose something // pick so long as it doesn't point back to this type. We choose something
// concrete to avoid overhead for adding to AbstracTypeUser lists and stuff. // concrete to avoid overhead for adding to AbstracTypeUser lists and stuff.
for (unsigned i = 1, e = ContainedTys.size(); i != e; ++i) for (unsigned i = 1, e = NumContainedTys; i != e; ++i)
ContainedTys[i] = Type::Int32Ty; ContainedTys[i] = Type::Int32Ty;
} }
} }
@ -812,7 +854,7 @@ public:
unsigned OldTypeHash = ValType::hashTypeStructure(Ty); unsigned OldTypeHash = ValType::hashTypeStructure(Ty);
// Find the type element we are refining... and change it now! // Find the type element we are refining... and change it now!
for (unsigned i = 0, e = Ty->ContainedTys.size(); i != e; ++i) for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i)
if (Ty->ContainedTys[i] == OldType) if (Ty->ContainedTys[i] == OldType)
Ty->ContainedTys[i] = NewType; Ty->ContainedTys[i] = NewType;
unsigned NewTypeHash = ValType::hashTypeStructure(Ty); unsigned NewTypeHash = ValType::hashTypeStructure(Ty);
@ -1047,7 +1089,9 @@ FunctionType *FunctionType::get(const Type *ReturnType,
FunctionType *MT = FunctionTypes->get(VT); FunctionType *MT = FunctionTypes->get(VT);
if (MT) return MT; if (MT) return MT;
MT = new FunctionType(ReturnType, Params, isVarArg, *TheAttrs); MT = (FunctionType*) new char[sizeof(FunctionType) +
sizeof(PATypeHandle)*(Params.size()+1)];
new (MT) FunctionType(ReturnType, Params, isVarArg, *TheAttrs);
FunctionTypes->add(VT, MT); FunctionTypes->add(VT, MT);
#ifdef DEBUG_MERGE_TYPES #ifdef DEBUG_MERGE_TYPES
@ -1214,7 +1258,10 @@ StructType *StructType::get(const std::vector<const Type*> &ETypes,
if (ST) return ST; if (ST) return ST;
// Value not found. Derive a new type! // Value not found. Derive a new type!
StructTypes->add(STV, ST = new StructType(ETypes, isPacked)); ST = (StructType*) new char[sizeof(StructType) +
sizeof(PATypeHandle) * ETypes.size()];
new (ST) StructType(ETypes, isPacked);
StructTypes->add(STV, ST);
#ifdef DEBUG_MERGE_TYPES #ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *ST << "\n"; DOUT << "Derived new type: " << *ST << "\n";
@ -1304,11 +1351,10 @@ void Type::removeAbstractTypeUser(AbstractTypeUser *U) const {
DOUT << "DELETEing unused abstract type: <" << *this DOUT << "DELETEing unused abstract type: <" << *this
<< ">[" << (void*)this << "]" << "\n"; << ">[" << (void*)this << "]" << "\n";
#endif #endif
delete this; // No users of this abstract type! this->destroy();
} }
} }
// refineAbstractTypeTo - This function is used when it is discovered that // refineAbstractTypeTo - This function is used when it is discovered that
// the 'this' abstract type is actually equivalent to the NewType specified. // the 'this' abstract type is actually equivalent to the NewType specified.
// This causes all users of 'this' to switch to reference the more concrete type // This causes all users of 'this' to switch to reference the more concrete type