[WinEH] Start inserting state number stores for C++ EH

This moves all the state numbering code for C++ EH to WinEHPrepare so
that we can call it from the X86 state numbering IR pass that runs
before isel.

Now we just call the same state numbering machinery and insert a bunch
of stores. It also populates MachineModuleInfo with information about
the current function.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238514 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Kleckner 2015-05-28 22:00:24 +00:00
parent fb48de619e
commit 5f50442d79
6 changed files with 658 additions and 414 deletions

View File

@ -23,6 +23,7 @@ class BasicBlock;
class Constant;
class Function;
class GlobalVariable;
class InvokeInst;
class IntrinsicInst;
class LandingPadInst;
class MCSymbol;
@ -153,5 +154,11 @@ struct WinEHFuncInfo {
NumIPToStateFuncsVisited(0) {}
};
/// Analyze the IR in ParentFn and it's handlers to build WinEHFuncInfo, which
/// describes the state numbers and tables used by __CxxFrameHandler3. This
/// analysis assumes that WinEHPrepare has already been run.
void calculateWinCXXEHStateNumbers(const Function *ParentFn,
WinEHFuncInfo &FuncInfo);
}
#endif // LLVM_CODEGEN_WINEHFUNCINFO_H

View File

@ -80,33 +80,6 @@ static ISD::NodeType getPreferredExtendForValue(const Value *V) {
return ExtendKind;
}
namespace {
struct WinEHNumbering {
WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo),
CurrentBaseState(-1), NextState(0) {}
WinEHFuncInfo &FuncInfo;
int CurrentBaseState;
int NextState;
SmallVector<std::unique_ptr<ActionHandler>, 4> HandlerStack;
SmallPtrSet<const Function *, 4> VisitedHandlers;
int currentEHNumber() const {
return HandlerStack.empty() ? CurrentBaseState : HandlerStack.back()->getEHState();
}
void createUnwindMapEntry(int ToState, ActionHandler *AH);
void createTryBlockMapEntry(int TryLow, int TryHigh,
ArrayRef<CatchHandler *> Handlers);
void processCallSite(MutableArrayRef<std::unique_ptr<ActionHandler>> Actions,
ImmutableCallSite CS);
void popUnmatchedActions(int FirstMismatch);
void calculateStateNumbers(const Function &F);
void findActionRootLPads(const Function &F);
};
}
void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
SelectionDAG *DAG) {
Fn = &fn;
@ -291,31 +264,18 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
if (!isMSVCEHPersonality(Personality))
return;
WinEHFuncInfo *EHInfo = nullptr;
if (Personality == EHPersonality::MSVC_Win64SEH) {
addSEHHandlersForLPads(LPads);
} else if (Personality == EHPersonality::MSVC_CXX) {
const Function *WinEHParentFn = MMI.getWinEHParent(&fn);
EHInfo = &MMI.getWinEHFuncInfo(WinEHParentFn);
if (EHInfo->LandingPadStateMap.empty()) {
WinEHNumbering Num(*EHInfo);
Num.findActionRootLPads(*WinEHParentFn);
// The VisitedHandlers list is used by both findActionRootLPads and
// calculateStateNumbers, but both functions need to visit all handlers.
Num.VisitedHandlers.clear();
Num.calculateStateNumbers(*WinEHParentFn);
// Pop everything on the handler stack.
// It may be necessary to call this more than once because a handler can
// be pushed on the stack as a result of clearing the stack.
while (!Num.HandlerStack.empty())
Num.processCallSite(None, ImmutableCallSite());
}
WinEHFuncInfo &EHInfo = MMI.getWinEHFuncInfo(WinEHParentFn);
calculateWinCXXEHStateNumbers(WinEHParentFn, EHInfo);
// Copy the state numbers to LandingPadInfo for the current function, which
// could be a handler or the parent.
for (const LandingPadInst *LP : LPads) {
MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()];
MMI.addWinEHState(LPadMBB, EHInfo->LandingPadStateMap[LP]);
MMI.addWinEHState(LPadMBB, EHInfo.LandingPadStateMap[LP]);
}
}
}
@ -358,334 +318,6 @@ void FunctionLoweringInfo::addSEHHandlersForLPads(
}
}
void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) {
WinEHUnwindMapEntry UME;
UME.ToState = ToState;
if (auto *CH = dyn_cast_or_null<CleanupHandler>(AH))
UME.Cleanup = cast<Function>(CH->getHandlerBlockOrFunc());
else
UME.Cleanup = nullptr;
FuncInfo.UnwindMap.push_back(UME);
}
void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh,
ArrayRef<CatchHandler *> Handlers) {
// See if we already have an entry for this set of handlers.
// This is using iterators rather than a range-based for loop because
// if we find the entry we're looking for we'll need the iterator to erase it.
int NumHandlers = Handlers.size();
auto I = FuncInfo.TryBlockMap.begin();
auto E = FuncInfo.TryBlockMap.end();
for ( ; I != E; ++I) {
auto &Entry = *I;
if (Entry.HandlerArray.size() != (size_t)NumHandlers)
continue;
int N;
for (N = 0; N < NumHandlers; ++N) {
if (Entry.HandlerArray[N].Handler != Handlers[N]->getHandlerBlockOrFunc())
break; // breaks out of inner loop
}
// If all the handlers match, this is what we were looking for.
if (N == NumHandlers) {
break;
}
}
// If we found an existing entry for this set of handlers, extend the range
// but move the entry to the end of the map vector. The order of entries
// in the map is critical to the way that the runtime finds handlers.
// FIXME: Depending on what has happened with block ordering, this may
// incorrectly combine entries that should remain separate.
if (I != E) {
// Copy the existing entry.
WinEHTryBlockMapEntry Entry = *I;
Entry.TryLow = std::min(TryLow, Entry.TryLow);
Entry.TryHigh = std::max(TryHigh, Entry.TryHigh);
assert(Entry.TryLow <= Entry.TryHigh);
// Erase the old entry and add this one to the back.
FuncInfo.TryBlockMap.erase(I);
FuncInfo.TryBlockMap.push_back(Entry);
return;
}
// If we didn't find an entry, create a new one.
WinEHTryBlockMapEntry TBME;
TBME.TryLow = TryLow;
TBME.TryHigh = TryHigh;
assert(TBME.TryLow <= TBME.TryHigh);
for (CatchHandler *CH : Handlers) {
WinEHHandlerType HT;
if (CH->getSelector()->isNullValue()) {
HT.Adjectives = 0x40;
HT.TypeDescriptor = nullptr;
} else {
auto *GV = cast<GlobalVariable>(CH->getSelector()->stripPointerCasts());
// Selectors are always pointers to GlobalVariables with 'struct' type.
// The struct has two fields, adjectives and a type descriptor.
auto *CS = cast<ConstantStruct>(GV->getInitializer());
HT.Adjectives =
cast<ConstantInt>(CS->getAggregateElement(0U))->getZExtValue();
HT.TypeDescriptor =
cast<GlobalVariable>(CS->getAggregateElement(1)->stripPointerCasts());
}
HT.Handler = cast<Function>(CH->getHandlerBlockOrFunc());
HT.CatchObjRecoverIdx = CH->getExceptionVarIndex();
TBME.HandlerArray.push_back(HT);
}
FuncInfo.TryBlockMap.push_back(TBME);
}
static void print_name(const Value *V) {
#ifndef NDEBUG
if (!V) {
DEBUG(dbgs() << "null");
return;
}
if (const auto *F = dyn_cast<Function>(V))
DEBUG(dbgs() << F->getName());
else
DEBUG(V->dump());
#endif
}
void WinEHNumbering::processCallSite(
MutableArrayRef<std::unique_ptr<ActionHandler>> Actions,
ImmutableCallSite CS) {
DEBUG(dbgs() << "processCallSite (EH state = " << currentEHNumber()
<< ") for: ");
print_name(CS ? CS.getCalledValue() : nullptr);
DEBUG(dbgs() << '\n');
DEBUG(dbgs() << "HandlerStack: \n");
for (int I = 0, E = HandlerStack.size(); I < E; ++I) {
DEBUG(dbgs() << " ");
print_name(HandlerStack[I]->getHandlerBlockOrFunc());
DEBUG(dbgs() << '\n');
}
DEBUG(dbgs() << "Actions: \n");
for (int I = 0, E = Actions.size(); I < E; ++I) {
DEBUG(dbgs() << " ");
print_name(Actions[I]->getHandlerBlockOrFunc());
DEBUG(dbgs() << '\n');
}
int FirstMismatch = 0;
for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E;
++FirstMismatch) {
if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() !=
Actions[FirstMismatch]->getHandlerBlockOrFunc())
break;
}
// Remove unmatched actions from the stack and process their EH states.
popUnmatchedActions(FirstMismatch);
DEBUG(dbgs() << "Pushing actions for CallSite: ");
print_name(CS ? CS.getCalledValue() : nullptr);
DEBUG(dbgs() << '\n');
bool LastActionWasCatch = false;
const LandingPadInst *LastRootLPad = nullptr;
for (size_t I = FirstMismatch; I != Actions.size(); ++I) {
// We can reuse eh states when pushing two catches for the same invoke.
bool CurrActionIsCatch = isa<CatchHandler>(Actions[I].get());
auto *Handler = cast<Function>(Actions[I]->getHandlerBlockOrFunc());
// Various conditions can lead to a handler being popped from the
// stack and re-pushed later. That shouldn't create a new state.
// FIXME: Can code optimization lead to re-used handlers?
if (FuncInfo.HandlerEnclosedState.count(Handler)) {
// If we already assigned the state enclosed by this handler re-use it.
Actions[I]->setEHState(FuncInfo.HandlerEnclosedState[Handler]);
continue;
}
const LandingPadInst* RootLPad = FuncInfo.RootLPad[Handler];
if (CurrActionIsCatch && LastActionWasCatch && RootLPad == LastRootLPad) {
DEBUG(dbgs() << "setEHState for handler to " << currentEHNumber() << "\n");
Actions[I]->setEHState(currentEHNumber());
} else {
DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber() << ", ");
print_name(Actions[I]->getHandlerBlockOrFunc());
DEBUG(dbgs() << ") with EH state " << NextState << "\n");
createUnwindMapEntry(currentEHNumber(), Actions[I].get());
DEBUG(dbgs() << "setEHState for handler to " << NextState << "\n");
Actions[I]->setEHState(NextState);
NextState++;
}
HandlerStack.push_back(std::move(Actions[I]));
LastActionWasCatch = CurrActionIsCatch;
LastRootLPad = RootLPad;
}
// This is used to defer numbering states for a handler until after the
// last time it appears in an invoke action list.
if (CS.isInvoke()) {
for (int I = 0, E = HandlerStack.size(); I < E; ++I) {
auto *Handler = cast<Function>(HandlerStack[I]->getHandlerBlockOrFunc());
if (FuncInfo.LastInvoke[Handler] != cast<InvokeInst>(CS.getInstruction()))
continue;
FuncInfo.LastInvokeVisited[Handler] = true;
DEBUG(dbgs() << "Last invoke of ");
print_name(Handler);
DEBUG(dbgs() << " has been visited.\n");
}
}
DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: ");
print_name(CS ? CS.getCalledValue() : nullptr);
DEBUG(dbgs() << '\n');
}
void WinEHNumbering::popUnmatchedActions(int FirstMismatch) {
// Don't recurse while we are looping over the handler stack. Instead, defer
// the numbering of the catch handlers until we are done popping.
SmallVector<CatchHandler *, 4> PoppedCatches;
for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) {
std::unique_ptr<ActionHandler> Handler = HandlerStack.pop_back_val();
if (isa<CatchHandler>(Handler.get()))
PoppedCatches.push_back(cast<CatchHandler>(Handler.release()));
}
int TryHigh = NextState - 1;
int LastTryLowIdx = 0;
for (int I = 0, E = PoppedCatches.size(); I != E; ++I) {
CatchHandler *CH = PoppedCatches[I];
DEBUG(dbgs() << "Popped handler with state " << CH->getEHState() << "\n");
if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) {
int TryLow = CH->getEHState();
auto Handlers =
makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1);
DEBUG(dbgs() << "createTryBlockMapEntry(" << TryLow << ", " << TryHigh);
for (size_t J = 0; J < Handlers.size(); ++J) {
DEBUG(dbgs() << ", ");
print_name(Handlers[J]->getHandlerBlockOrFunc());
}
DEBUG(dbgs() << ")\n");
createTryBlockMapEntry(TryLow, TryHigh, Handlers);
LastTryLowIdx = I + 1;
}
}
for (CatchHandler *CH : PoppedCatches) {
if (auto *F = dyn_cast<Function>(CH->getHandlerBlockOrFunc())) {
if (FuncInfo.LastInvokeVisited[F]) {
DEBUG(dbgs() << "Assigning base state " << NextState << " to ");
print_name(F);
DEBUG(dbgs() << '\n');
FuncInfo.HandlerBaseState[F] = NextState;
DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber()
<< ", null)\n");
createUnwindMapEntry(currentEHNumber(), nullptr);
++NextState;
calculateStateNumbers(*F);
}
else {
DEBUG(dbgs() << "Deferring handling of ");
print_name(F);
DEBUG(dbgs() << " until last invoke visited.\n");
}
}
delete CH;
}
}
void WinEHNumbering::calculateStateNumbers(const Function &F) {
auto I = VisitedHandlers.insert(&F);
if (!I.second)
return; // We've already visited this handler, don't renumber it.
int OldBaseState = CurrentBaseState;
if (FuncInfo.HandlerBaseState.count(&F)) {
CurrentBaseState = FuncInfo.HandlerBaseState[&F];
}
size_t SavedHandlerStackSize = HandlerStack.size();
DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n');
SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
for (const BasicBlock &BB : F) {
for (const Instruction &I : BB) {
const auto *CI = dyn_cast<CallInst>(&I);
if (!CI || CI->doesNotThrow())
continue;
processCallSite(None, CI);
}
const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
if (!II)
continue;
const LandingPadInst *LPI = II->getLandingPadInst();
auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
if (!ActionsCall)
continue;
assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions);
parseEHActions(ActionsCall, ActionList);
if (ActionList.empty())
continue;
processCallSite(ActionList, II);
ActionList.clear();
FuncInfo.LandingPadStateMap[LPI] = currentEHNumber();
DEBUG(dbgs() << "Assigning state " << currentEHNumber()
<< " to landing pad at " << LPI->getParent()->getName()
<< '\n');
}
// Pop any actions that were pushed on the stack for this function.
popUnmatchedActions(SavedHandlerStackSize);
DEBUG(dbgs() << "Assigning max state " << NextState - 1
<< " to " << F.getName() << '\n');
FuncInfo.CatchHandlerMaxState[&F] = NextState - 1;
CurrentBaseState = OldBaseState;
}
// This function follows the same basic traversal as calculateStateNumbers
// but it is necessary to identify the root landing pad associated
// with each action before we start assigning state numbers.
void WinEHNumbering::findActionRootLPads(const Function &F) {
auto I = VisitedHandlers.insert(&F);
if (!I.second)
return; // We've already visited this handler, don't revisit it.
SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
for (const BasicBlock &BB : F) {
const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
if (!II)
continue;
const LandingPadInst *LPI = II->getLandingPadInst();
auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
if (!ActionsCall)
continue;
assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions);
parseEHActions(ActionsCall, ActionList);
if (ActionList.empty())
continue;
for (int I = 0, E = ActionList.size(); I < E; ++I) {
if (auto *Handler
= dyn_cast<Function>(ActionList[I]->getHandlerBlockOrFunc())) {
FuncInfo.LastInvoke[Handler] = II;
// Don't replace the root landing pad if we previously saw this
// handler in a different function.
if (FuncInfo.RootLPad.count(Handler) &&
FuncInfo.RootLPad[Handler]->getParent()->getParent() != &F)
continue;
DEBUG(dbgs() << "Setting root lpad for ");
print_name(Handler);
DEBUG(dbgs() << " to " << LPI->getParent()->getName() << '\n');
FuncInfo.RootLPad[Handler] = LPI;
}
}
// Walk the actions again and look for nested handlers. This has to
// happen after all of the actions have been processed in the current
// function.
for (int I = 0, E = ActionList.size(); I < E; ++I)
if (auto *Handler
= dyn_cast<Function>(ActionList[I]->getHandlerBlockOrFunc()))
findActionRootLPads(*Handler);
ActionList.clear();
}
}
/// clear - Clear out all the function-specific state. This returns this
/// FunctionLoweringInfo to an empty state, ready to be used for a
/// different function.

View File

@ -2480,3 +2480,377 @@ void llvm::parseEHActions(
}
std::reverse(Actions.begin(), Actions.end());
}
namespace {
struct WinEHNumbering {
WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo),
CurrentBaseState(-1), NextState(0) {}
WinEHFuncInfo &FuncInfo;
int CurrentBaseState;
int NextState;
SmallVector<std::unique_ptr<ActionHandler>, 4> HandlerStack;
SmallPtrSet<const Function *, 4> VisitedHandlers;
int currentEHNumber() const {
return HandlerStack.empty() ? CurrentBaseState : HandlerStack.back()->getEHState();
}
void createUnwindMapEntry(int ToState, ActionHandler *AH);
void createTryBlockMapEntry(int TryLow, int TryHigh,
ArrayRef<CatchHandler *> Handlers);
void processCallSite(MutableArrayRef<std::unique_ptr<ActionHandler>> Actions,
ImmutableCallSite CS);
void popUnmatchedActions(int FirstMismatch);
void calculateStateNumbers(const Function &F);
void findActionRootLPads(const Function &F);
};
}
void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) {
WinEHUnwindMapEntry UME;
UME.ToState = ToState;
if (auto *CH = dyn_cast_or_null<CleanupHandler>(AH))
UME.Cleanup = cast<Function>(CH->getHandlerBlockOrFunc());
else
UME.Cleanup = nullptr;
FuncInfo.UnwindMap.push_back(UME);
}
void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh,
ArrayRef<CatchHandler *> Handlers) {
// See if we already have an entry for this set of handlers.
// This is using iterators rather than a range-based for loop because
// if we find the entry we're looking for we'll need the iterator to erase it.
int NumHandlers = Handlers.size();
auto I = FuncInfo.TryBlockMap.begin();
auto E = FuncInfo.TryBlockMap.end();
for ( ; I != E; ++I) {
auto &Entry = *I;
if (Entry.HandlerArray.size() != (size_t)NumHandlers)
continue;
int N;
for (N = 0; N < NumHandlers; ++N) {
if (Entry.HandlerArray[N].Handler != Handlers[N]->getHandlerBlockOrFunc())
break; // breaks out of inner loop
}
// If all the handlers match, this is what we were looking for.
if (N == NumHandlers) {
break;
}
}
// If we found an existing entry for this set of handlers, extend the range
// but move the entry to the end of the map vector. The order of entries
// in the map is critical to the way that the runtime finds handlers.
// FIXME: Depending on what has happened with block ordering, this may
// incorrectly combine entries that should remain separate.
if (I != E) {
// Copy the existing entry.
WinEHTryBlockMapEntry Entry = *I;
Entry.TryLow = std::min(TryLow, Entry.TryLow);
Entry.TryHigh = std::max(TryHigh, Entry.TryHigh);
assert(Entry.TryLow <= Entry.TryHigh);
// Erase the old entry and add this one to the back.
FuncInfo.TryBlockMap.erase(I);
FuncInfo.TryBlockMap.push_back(Entry);
return;
}
// If we didn't find an entry, create a new one.
WinEHTryBlockMapEntry TBME;
TBME.TryLow = TryLow;
TBME.TryHigh = TryHigh;
assert(TBME.TryLow <= TBME.TryHigh);
for (CatchHandler *CH : Handlers) {
WinEHHandlerType HT;
if (CH->getSelector()->isNullValue()) {
HT.Adjectives = 0x40;
HT.TypeDescriptor = nullptr;
} else {
auto *GV = cast<GlobalVariable>(CH->getSelector()->stripPointerCasts());
// Selectors are always pointers to GlobalVariables with 'struct' type.
// The struct has two fields, adjectives and a type descriptor.
auto *CS = cast<ConstantStruct>(GV->getInitializer());
HT.Adjectives =
cast<ConstantInt>(CS->getAggregateElement(0U))->getZExtValue();
HT.TypeDescriptor =
cast<GlobalVariable>(CS->getAggregateElement(1)->stripPointerCasts());
}
HT.Handler = cast<Function>(CH->getHandlerBlockOrFunc());
HT.CatchObjRecoverIdx = CH->getExceptionVarIndex();
TBME.HandlerArray.push_back(HT);
}
FuncInfo.TryBlockMap.push_back(TBME);
}
static void print_name(const Value *V) {
#ifndef NDEBUG
if (!V) {
DEBUG(dbgs() << "null");
return;
}
if (const auto *F = dyn_cast<Function>(V))
DEBUG(dbgs() << F->getName());
else
DEBUG(V->dump());
#endif
}
void WinEHNumbering::processCallSite(
MutableArrayRef<std::unique_ptr<ActionHandler>> Actions,
ImmutableCallSite CS) {
DEBUG(dbgs() << "processCallSite (EH state = " << currentEHNumber()
<< ") for: ");
print_name(CS ? CS.getCalledValue() : nullptr);
DEBUG(dbgs() << '\n');
DEBUG(dbgs() << "HandlerStack: \n");
for (int I = 0, E = HandlerStack.size(); I < E; ++I) {
DEBUG(dbgs() << " ");
print_name(HandlerStack[I]->getHandlerBlockOrFunc());
DEBUG(dbgs() << '\n');
}
DEBUG(dbgs() << "Actions: \n");
for (int I = 0, E = Actions.size(); I < E; ++I) {
DEBUG(dbgs() << " ");
print_name(Actions[I]->getHandlerBlockOrFunc());
DEBUG(dbgs() << '\n');
}
int FirstMismatch = 0;
for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E;
++FirstMismatch) {
if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() !=
Actions[FirstMismatch]->getHandlerBlockOrFunc())
break;
}
// Remove unmatched actions from the stack and process their EH states.
popUnmatchedActions(FirstMismatch);
DEBUG(dbgs() << "Pushing actions for CallSite: ");
print_name(CS ? CS.getCalledValue() : nullptr);
DEBUG(dbgs() << '\n');
bool LastActionWasCatch = false;
const LandingPadInst *LastRootLPad = nullptr;
for (size_t I = FirstMismatch; I != Actions.size(); ++I) {
// We can reuse eh states when pushing two catches for the same invoke.
bool CurrActionIsCatch = isa<CatchHandler>(Actions[I].get());
auto *Handler = cast<Function>(Actions[I]->getHandlerBlockOrFunc());
// Various conditions can lead to a handler being popped from the
// stack and re-pushed later. That shouldn't create a new state.
// FIXME: Can code optimization lead to re-used handlers?
if (FuncInfo.HandlerEnclosedState.count(Handler)) {
// If we already assigned the state enclosed by this handler re-use it.
Actions[I]->setEHState(FuncInfo.HandlerEnclosedState[Handler]);
continue;
}
const LandingPadInst* RootLPad = FuncInfo.RootLPad[Handler];
if (CurrActionIsCatch && LastActionWasCatch && RootLPad == LastRootLPad) {
DEBUG(dbgs() << "setEHState for handler to " << currentEHNumber() << "\n");
Actions[I]->setEHState(currentEHNumber());
} else {
DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber() << ", ");
print_name(Actions[I]->getHandlerBlockOrFunc());
DEBUG(dbgs() << ") with EH state " << NextState << "\n");
createUnwindMapEntry(currentEHNumber(), Actions[I].get());
DEBUG(dbgs() << "setEHState for handler to " << NextState << "\n");
Actions[I]->setEHState(NextState);
NextState++;
}
HandlerStack.push_back(std::move(Actions[I]));
LastActionWasCatch = CurrActionIsCatch;
LastRootLPad = RootLPad;
}
// This is used to defer numbering states for a handler until after the
// last time it appears in an invoke action list.
if (CS.isInvoke()) {
for (int I = 0, E = HandlerStack.size(); I < E; ++I) {
auto *Handler = cast<Function>(HandlerStack[I]->getHandlerBlockOrFunc());
if (FuncInfo.LastInvoke[Handler] != cast<InvokeInst>(CS.getInstruction()))
continue;
FuncInfo.LastInvokeVisited[Handler] = true;
DEBUG(dbgs() << "Last invoke of ");
print_name(Handler);
DEBUG(dbgs() << " has been visited.\n");
}
}
DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: ");
print_name(CS ? CS.getCalledValue() : nullptr);
DEBUG(dbgs() << '\n');
}
void WinEHNumbering::popUnmatchedActions(int FirstMismatch) {
// Don't recurse while we are looping over the handler stack. Instead, defer
// the numbering of the catch handlers until we are done popping.
SmallVector<CatchHandler *, 4> PoppedCatches;
for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) {
std::unique_ptr<ActionHandler> Handler = HandlerStack.pop_back_val();
if (isa<CatchHandler>(Handler.get()))
PoppedCatches.push_back(cast<CatchHandler>(Handler.release()));
}
int TryHigh = NextState - 1;
int LastTryLowIdx = 0;
for (int I = 0, E = PoppedCatches.size(); I != E; ++I) {
CatchHandler *CH = PoppedCatches[I];
DEBUG(dbgs() << "Popped handler with state " << CH->getEHState() << "\n");
if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) {
int TryLow = CH->getEHState();
auto Handlers =
makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1);
DEBUG(dbgs() << "createTryBlockMapEntry(" << TryLow << ", " << TryHigh);
for (size_t J = 0; J < Handlers.size(); ++J) {
DEBUG(dbgs() << ", ");
print_name(Handlers[J]->getHandlerBlockOrFunc());
}
DEBUG(dbgs() << ")\n");
createTryBlockMapEntry(TryLow, TryHigh, Handlers);
LastTryLowIdx = I + 1;
}
}
for (CatchHandler *CH : PoppedCatches) {
if (auto *F = dyn_cast<Function>(CH->getHandlerBlockOrFunc())) {
if (FuncInfo.LastInvokeVisited[F]) {
DEBUG(dbgs() << "Assigning base state " << NextState << " to ");
print_name(F);
DEBUG(dbgs() << '\n');
FuncInfo.HandlerBaseState[F] = NextState;
DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber()
<< ", null)\n");
createUnwindMapEntry(currentEHNumber(), nullptr);
++NextState;
calculateStateNumbers(*F);
}
else {
DEBUG(dbgs() << "Deferring handling of ");
print_name(F);
DEBUG(dbgs() << " until last invoke visited.\n");
}
}
delete CH;
}
}
void WinEHNumbering::calculateStateNumbers(const Function &F) {
auto I = VisitedHandlers.insert(&F);
if (!I.second)
return; // We've already visited this handler, don't renumber it.
int OldBaseState = CurrentBaseState;
if (FuncInfo.HandlerBaseState.count(&F)) {
CurrentBaseState = FuncInfo.HandlerBaseState[&F];
}
size_t SavedHandlerStackSize = HandlerStack.size();
DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n');
SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
for (const BasicBlock &BB : F) {
for (const Instruction &I : BB) {
const auto *CI = dyn_cast<CallInst>(&I);
if (!CI || CI->doesNotThrow())
continue;
processCallSite(None, CI);
}
const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
if (!II)
continue;
const LandingPadInst *LPI = II->getLandingPadInst();
auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
if (!ActionsCall)
continue;
assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions);
parseEHActions(ActionsCall, ActionList);
if (ActionList.empty())
continue;
processCallSite(ActionList, II);
ActionList.clear();
FuncInfo.LandingPadStateMap[LPI] = currentEHNumber();
DEBUG(dbgs() << "Assigning state " << currentEHNumber()
<< " to landing pad at " << LPI->getParent()->getName()
<< '\n');
}
// Pop any actions that were pushed on the stack for this function.
popUnmatchedActions(SavedHandlerStackSize);
DEBUG(dbgs() << "Assigning max state " << NextState - 1
<< " to " << F.getName() << '\n');
FuncInfo.CatchHandlerMaxState[&F] = NextState - 1;
CurrentBaseState = OldBaseState;
}
// This function follows the same basic traversal as calculateStateNumbers
// but it is necessary to identify the root landing pad associated
// with each action before we start assigning state numbers.
void WinEHNumbering::findActionRootLPads(const Function &F) {
auto I = VisitedHandlers.insert(&F);
if (!I.second)
return; // We've already visited this handler, don't revisit it.
SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
for (const BasicBlock &BB : F) {
const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
if (!II)
continue;
const LandingPadInst *LPI = II->getLandingPadInst();
auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
if (!ActionsCall)
continue;
assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions);
parseEHActions(ActionsCall, ActionList);
if (ActionList.empty())
continue;
for (int I = 0, E = ActionList.size(); I < E; ++I) {
if (auto *Handler
= dyn_cast<Function>(ActionList[I]->getHandlerBlockOrFunc())) {
FuncInfo.LastInvoke[Handler] = II;
// Don't replace the root landing pad if we previously saw this
// handler in a different function.
if (FuncInfo.RootLPad.count(Handler) &&
FuncInfo.RootLPad[Handler]->getParent()->getParent() != &F)
continue;
DEBUG(dbgs() << "Setting root lpad for ");
print_name(Handler);
DEBUG(dbgs() << " to " << LPI->getParent()->getName() << '\n');
FuncInfo.RootLPad[Handler] = LPI;
}
}
// Walk the actions again and look for nested handlers. This has to
// happen after all of the actions have been processed in the current
// function.
for (int I = 0, E = ActionList.size(); I < E; ++I)
if (auto *Handler
= dyn_cast<Function>(ActionList[I]->getHandlerBlockOrFunc()))
findActionRootLPads(*Handler);
ActionList.clear();
}
}
void llvm::calculateWinCXXEHStateNumbers(const Function *ParentFn,
WinEHFuncInfo &FuncInfo) {
// Return if it's already been done.
if (!FuncInfo.LandingPadStateMap.empty())
return;
WinEHNumbering Num(FuncInfo);
Num.findActionRootLPads(*ParentFn);
// The VisitedHandlers list is used by both findActionRootLPads and
// calculateStateNumbers, but both functions need to visit all handlers.
Num.VisitedHandlers.clear();
Num.calculateStateNumbers(*ParentFn);
// Pop everything on the handler stack.
// It may be necessary to call this more than once because a handler can
// be pushed on the stack as a result of clearing the stack.
while (!Num.HandlerStack.empty())
Num.processCallSite(None, ImmutableCallSite());
}

View File

@ -16,6 +16,7 @@
#include "X86.h"
#include "llvm/Analysis/LibCallSemantics.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/Dominators.h"
@ -59,14 +60,19 @@ public:
private:
void emitExceptionRegistrationRecord(Function *F);
void linkExceptionRegistration(IRBuilder<> &Builder, Value *RegNode,
Value *Handler);
void unlinkExceptionRegistration(IRBuilder<> &Builder, Value *RegNode);
void linkExceptionRegistration(IRBuilder<> &Builder, Value *Handler);
void unlinkExceptionRegistration(IRBuilder<> &Builder);
void addCXXStateStores(Function &F, MachineModuleInfo &MMI);
void addCXXStateStoresToFunclet(Value *ParentRegNode, WinEHFuncInfo &FuncInfo,
Function &F, int BaseState);
void insertStateNumberStore(Value *ParentRegNode, Instruction *IP, int State);
Value *emitEHLSDA(IRBuilder<> &Builder, Function *F);
Function *generateLSDAInEAXThunk(Function *ParentFunc);
int escapeRegNode(Function &F);
// Module-level type getters.
Type *getEHRegistrationType();
Type *getSEH3RegistrationType();
@ -83,6 +89,19 @@ private:
// Per-function state
EHPersonality Personality = EHPersonality::Unknown;
Function *PersonalityFn = nullptr;
/// The stack allocation containing all EH data, including the link in the
/// fs:00 chain and the current state.
AllocaInst *RegNode = nullptr;
/// Struct type of RegNode. Used for GEPing.
Type *RegNodeTy = nullptr;
/// The index of the state field of RegNode.
int StateFieldIndex = ~0U;
/// The linked list node subobject inside of RegNode.
Value *Link = nullptr;
};
}
@ -137,7 +156,13 @@ bool WinEHStatePass::runOnFunction(Function &F) {
return false;
emitExceptionRegistrationRecord(&F);
// FIXME: State insertion.
auto *MMIPtr = getAnalysisIfAvailable<MachineModuleInfo>();
assert(MMIPtr && "MachineModuleInfo should always be available");
MachineModuleInfo &MMI = *MMIPtr;
if (Personality == EHPersonality::MSVC_CXX) {
addCXXStateStores(F, MMI);
}
// Reset per-function state.
PersonalityFn = nullptr;
@ -238,62 +263,61 @@ void WinEHStatePass::emitExceptionRegistrationRecord(Function *F) {
StringRef PersonalityName = PersonalityFn->getName();
IRBuilder<> Builder(&F->getEntryBlock(), F->getEntryBlock().begin());
Type *Int8PtrType = Builder.getInt8PtrTy();
Value *SubRecord = nullptr;
if (PersonalityName == "__CxxFrameHandler3") {
Type *RegNodeTy = getCXXEH3RegistrationType();
Value *RegNode = Builder.CreateAlloca(RegNodeTy);
RegNodeTy = getCXXEH3RegistrationType();
RegNode = Builder.CreateAlloca(RegNodeTy);
// FIXME: We can skip this in -GS- mode, when we figure that out.
// SavedESP = llvm.stacksave()
Value *SP = Builder.CreateCall(
Intrinsic::getDeclaration(TheModule, Intrinsic::stacksave), {});
Builder.CreateStore(SP, Builder.CreateStructGEP(RegNodeTy, RegNode, 0));
// TryLevel = -1
Builder.CreateStore(Builder.getInt32(-1),
Builder.CreateStructGEP(RegNodeTy, RegNode, 2));
StateFieldIndex = 2;
insertStateNumberStore(RegNode, Builder.GetInsertPoint(), -1);
// Handler = __ehhandler$F
Function *Trampoline = generateLSDAInEAXThunk(F);
SubRecord = Builder.CreateStructGEP(RegNodeTy, RegNode, 1);
linkExceptionRegistration(Builder, SubRecord, Trampoline);
Link = Builder.CreateStructGEP(RegNodeTy, RegNode, 1);
linkExceptionRegistration(Builder, Trampoline);
} else if (PersonalityName == "_except_handler3") {
Type *RegNodeTy = getSEH3RegistrationType();
Value *RegNode = Builder.CreateAlloca(RegNodeTy);
RegNodeTy = getSEH3RegistrationType();
RegNode = Builder.CreateAlloca(RegNodeTy);
// TryLevel = -1
Builder.CreateStore(Builder.getInt32(-1),
Builder.CreateStructGEP(RegNodeTy, RegNode, 2));
StateFieldIndex = 2;
insertStateNumberStore(RegNode, Builder.GetInsertPoint(), -1);
// ScopeTable = llvm.x86.seh.lsda(F)
Value *LSDA = emitEHLSDA(Builder, F);
Builder.CreateStore(LSDA, Builder.CreateStructGEP(RegNodeTy, RegNode, 1));
SubRecord = Builder.CreateStructGEP(RegNodeTy, RegNode, 0);
linkExceptionRegistration(Builder, SubRecord, PersonalityFn);
Link = Builder.CreateStructGEP(RegNodeTy, RegNode, 0);
linkExceptionRegistration(Builder, PersonalityFn);
} else if (PersonalityName == "_except_handler4") {
Type *RegNodeTy = getSEH4RegistrationType();
Value *RegNode = Builder.CreateAlloca(RegNodeTy);
RegNodeTy = getSEH4RegistrationType();
RegNode = Builder.CreateAlloca(RegNodeTy);
// SavedESP = llvm.stacksave()
Value *SP = Builder.CreateCall(
Intrinsic::getDeclaration(TheModule, Intrinsic::stacksave), {});
Builder.CreateStore(SP, Builder.CreateStructGEP(RegNodeTy, RegNode, 0));
// TryLevel = -2
Builder.CreateStore(Builder.getInt32(-2),
Builder.CreateStructGEP(RegNodeTy, RegNode, 4));
// TryLevel = -1
StateFieldIndex = 4;
insertStateNumberStore(RegNode, Builder.GetInsertPoint(), -1);
// FIXME: XOR the LSDA with __security_cookie.
// ScopeTable = llvm.x86.seh.lsda(F)
Value *FI8 = Builder.CreateBitCast(F, Int8PtrType);
Value *LSDA = Builder.CreateCall(
Intrinsic::getDeclaration(TheModule, Intrinsic::x86_seh_lsda), FI8);
Builder.CreateStore(LSDA, Builder.CreateStructGEP(RegNodeTy, RegNode, 1));
SubRecord = Builder.CreateStructGEP(RegNodeTy, RegNode, 2);
linkExceptionRegistration(Builder, SubRecord, PersonalityFn);
Link = Builder.CreateStructGEP(RegNodeTy, RegNode, 2);
linkExceptionRegistration(Builder, PersonalityFn);
} else {
llvm_unreachable("unexpected personality function");
}
// FIXME: Insert an unlink before all returns.
// Insert an unlink before all returns.
for (BasicBlock &BB : *F) {
TerminatorInst *T = BB.getTerminator();
if (!isa<ReturnInst>(T))
continue;
Builder.SetInsertPoint(T);
unlinkExceptionRegistration(Builder, SubRecord);
unlinkExceptionRegistration(Builder);
}
}
@ -342,33 +366,127 @@ Function *WinEHStatePass::generateLSDAInEAXThunk(Function *ParentFunc) {
}
void WinEHStatePass::linkExceptionRegistration(IRBuilder<> &Builder,
Value *RegNode, Value *Handler) {
Type *RegNodeTy = getEHRegistrationType();
Value *Handler) {
Type *LinkTy = getEHRegistrationType();
// Handler = Handler
Handler = Builder.CreateBitCast(Handler, Builder.getInt8PtrTy());
Builder.CreateStore(Handler, Builder.CreateStructGEP(RegNodeTy, RegNode, 1));
Builder.CreateStore(Handler, Builder.CreateStructGEP(LinkTy, Link, 1));
// Next = [fs:00]
Constant *FSZero =
Constant::getNullValue(RegNodeTy->getPointerTo()->getPointerTo(257));
Constant::getNullValue(LinkTy->getPointerTo()->getPointerTo(257));
Value *Next = Builder.CreateLoad(FSZero);
Builder.CreateStore(Next, Builder.CreateStructGEP(RegNodeTy, RegNode, 0));
// [fs:00] = RegNode
Builder.CreateStore(RegNode, FSZero);
Builder.CreateStore(Next, Builder.CreateStructGEP(LinkTy, Link, 0));
// [fs:00] = Link
Builder.CreateStore(Link, FSZero);
}
void WinEHStatePass::unlinkExceptionRegistration(IRBuilder<> &Builder,
Value *RegNode) {
// Clone RegNode into the current BB for better address mode folding.
if (auto *GEP = dyn_cast<GetElementPtrInst>(RegNode)) {
void WinEHStatePass::unlinkExceptionRegistration(IRBuilder<> &Builder) {
// Clone Link into the current BB for better address mode folding.
if (auto *GEP = dyn_cast<GetElementPtrInst>(Link)) {
GEP = cast<GetElementPtrInst>(GEP->clone());
Builder.Insert(GEP);
RegNode = GEP;
Link = GEP;
}
Type *RegNodeTy = getEHRegistrationType();
// [fs:00] = RegNode->Next
Type *LinkTy = getEHRegistrationType();
// [fs:00] = Link->Next
Value *Next =
Builder.CreateLoad(Builder.CreateStructGEP(RegNodeTy, RegNode, 0));
Builder.CreateLoad(Builder.CreateStructGEP(LinkTy, Link, 0));
Constant *FSZero =
Constant::getNullValue(RegNodeTy->getPointerTo()->getPointerTo(257));
Constant::getNullValue(LinkTy->getPointerTo()->getPointerTo(257));
Builder.CreateStore(Next, FSZero);
}
void WinEHStatePass::addCXXStateStores(Function &F, MachineModuleInfo &MMI) {
WinEHFuncInfo &FuncInfo = MMI.getWinEHFuncInfo(&F);
calculateWinCXXEHStateNumbers(&F, FuncInfo);
// The base state for the parent is -1.
addCXXStateStoresToFunclet(RegNode, FuncInfo, F, -1);
// Set up RegNodeEscapeIndex
int RegNodeEscapeIndex = escapeRegNode(F);
// Only insert stores in catch handlers.
Function *FrameRecover =
Intrinsic::getDeclaration(TheModule, Intrinsic::framerecover);
Function *FrameAddress =
Intrinsic::getDeclaration(TheModule, Intrinsic::frameaddress);
Constant *FI8 =
ConstantExpr::getBitCast(&F, Type::getInt8PtrTy(TheModule->getContext()));
for (auto P : FuncInfo.HandlerBaseState) {
Function *Handler = const_cast<Function *>(P.first);
int BaseState = P.second;
IRBuilder<> Builder(&Handler->getEntryBlock(),
Handler->getEntryBlock().begin());
// FIXME: Find and reuse such a call if present.
Value *ParentFP = Builder.CreateCall(FrameAddress, {Builder.getInt32(1)});
Value *RecoveredRegNode = Builder.CreateCall(
FrameRecover, {FI8, ParentFP, Builder.getInt32(RegNodeEscapeIndex)});
RecoveredRegNode =
Builder.CreateBitCast(RecoveredRegNode, RegNodeTy->getPointerTo(0));
addCXXStateStoresToFunclet(RecoveredRegNode, FuncInfo, *Handler, BaseState);
}
}
/// Escape RegNode so that we can access it from child handlers. Find the call
/// to frameescape, if any, in the entry block and append RegNode to the list
/// of arguments.
int WinEHStatePass::escapeRegNode(Function &F) {
// Find the call to frameescape and extract its arguments.
IntrinsicInst *EscapeCall = nullptr;
for (Instruction &I : F.getEntryBlock()) {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
if (II && II->getIntrinsicID() == Intrinsic::frameescape) {
EscapeCall = II;
break;
}
}
SmallVector<Value *, 8> Args;
if (EscapeCall) {
auto Ops = EscapeCall->arg_operands();
Args.append(Ops.begin(), Ops.end());
}
Args.push_back(RegNode);
// Replace the call (if it exists) with new one. Otherwise, insert at the end
// of the entry block.
IRBuilder<> Builder(&F.getEntryBlock(),
EscapeCall ? EscapeCall : F.getEntryBlock().end());
Builder.CreateCall(
Intrinsic::getDeclaration(TheModule, Intrinsic::frameescape), Args);
if (EscapeCall)
EscapeCall->eraseFromParent();
return Args.size() - 1;
}
void WinEHStatePass::addCXXStateStoresToFunclet(Value *ParentRegNode,
WinEHFuncInfo &FuncInfo,
Function &F, int BaseState) {
// Iterate all the instructions and emit state number stores.
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
if (auto *CI = dyn_cast<CallInst>(&I)) {
// Possibly throwing call instructions have no actions to take after
// an unwind. Ensure they are in the -1 state.
if (CI->doesNotThrow())
continue;
insertStateNumberStore(ParentRegNode, CI, BaseState);
} else if (auto *II = dyn_cast<InvokeInst>(&I)) {
// Look up the state number of the landingpad this unwinds to.
LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst();
// FIXME: Why does this assertion fail?
//assert(FuncInfo.LandingPadStateMap.count(LPI) && "LP has no state!");
int State = FuncInfo.LandingPadStateMap[LPI];
insertStateNumberStore(ParentRegNode, II, State);
}
}
}
}
void WinEHStatePass::insertStateNumberStore(Value *ParentRegNode,
Instruction *IP, int State) {
IRBuilder<> Builder(IP);
Value *StateField =
Builder.CreateStructGEP(RegNodeTy, ParentRegNode, StateFieldIndex);
Builder.CreateStore(Builder.getInt32(State), StateField);
}

View File

@ -0,0 +1,112 @@
; RUN: llc -mtriple=i686-pc-windows-msvc < %s | FileCheck %s
; Based on this source:
; extern "C" void may_throw(int);
; void f() {
; try {
; may_throw(1);
; try {
; may_throw(2);
; } catch (int) {
; may_throw(3);
; }
; } catch (int) {
; may_throw(4);
; }
; }
%rtti.TypeDescriptor2 = type { i8**, i8*, [3 x i8] }
%eh.CatchHandlerType = type { i32, i8* }
declare void @may_throw(i32)
declare i32 @__CxxFrameHandler3(...)
declare void @llvm.eh.begincatch(i8*, i8*)
declare void @llvm.eh.endcatch()
declare i32 @llvm.eh.typeid.for(i8*)
$"\01??_R0H@8" = comdat any
@"\01??_7type_info@@6B@" = external constant i8*
@"\01??_R0H@8" = linkonce_odr global %rtti.TypeDescriptor2 { i8** @"\01??_7type_info@@6B@", i8* null, [3 x i8] c".H\00" }, comdat
@llvm.eh.handlertype.H.0 = private unnamed_addr constant %eh.CatchHandlerType { i32 0, i8* bitcast (%rtti.TypeDescriptor2* @"\01??_R0H@8" to i8*) }, section "llvm.metadata"
define void @f() #0 {
entry:
invoke void @may_throw(i32 1)
to label %invoke.cont unwind label %lpad
invoke.cont: ; preds = %entry
invoke void @may_throw(i32 2)
to label %try.cont.9 unwind label %lpad.1
try.cont.9: ; preds = %invoke.cont.3, %invoke.cont, %catch.7
; FIXME: Something about our CFG breaks TailDuplication. This empy asm blocks
; it so we can focus on testing the state numbering.
call void asm sideeffect "", "~{dirflag},~{fpsr},~{flags}"()
ret void
lpad: ; preds = %catch, %entry
%0 = landingpad { i8*, i32 } personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*)
catch %eh.CatchHandlerType* @llvm.eh.handlertype.H.0
%1 = extractvalue { i8*, i32 } %0, 0
%2 = extractvalue { i8*, i32 } %0, 1
br label %catch.dispatch.4
lpad.1: ; preds = %invoke.cont
%3 = landingpad { i8*, i32 } personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*)
catch i8* bitcast (%eh.CatchHandlerType* @llvm.eh.handlertype.H.0 to i8*)
%4 = extractvalue { i8*, i32 } %3, 0
%5 = extractvalue { i8*, i32 } %3, 1
%6 = tail call i32 @llvm.eh.typeid.for(i8* bitcast (%eh.CatchHandlerType* @llvm.eh.handlertype.H.0 to i8*)) #3
%matches = icmp eq i32 %5, %6
br i1 %matches, label %catch, label %catch.dispatch.4
catch.dispatch.4: ; preds = %lpad.1, %lpad
%exn.slot.0 = phi i8* [ %4, %lpad.1 ], [ %1, %lpad ]
%ehselector.slot.0 = phi i32 [ %5, %lpad.1 ], [ %2, %lpad ]
%.pre = tail call i32 @llvm.eh.typeid.for(i8* bitcast (%eh.CatchHandlerType* @llvm.eh.handlertype.H.0 to i8*)) #3
%matches6 = icmp eq i32 %ehselector.slot.0, %.pre
br i1 %matches6, label %catch.7, label %eh.resume
catch.7: ; preds = %catch.dispatch.4
tail call void @llvm.eh.begincatch(i8* %exn.slot.0, i8* null) #3
tail call void @may_throw(i32 4)
tail call void @llvm.eh.endcatch() #3
br label %try.cont.9
catch: ; preds = %lpad.1
tail call void @llvm.eh.begincatch(i8* %4, i8* null) #3
invoke void @may_throw(i32 3)
to label %invoke.cont.3 unwind label %lpad
invoke.cont.3: ; preds = %catch
tail call void @llvm.eh.endcatch() #3
br label %try.cont.9
eh.resume: ; preds = %catch.dispatch.4
%lpad.val = insertvalue { i8*, i32 } undef, i8* %exn.slot.0, 0
%lpad.val.12 = insertvalue { i8*, i32 } %lpad.val, i32 %ehselector.slot.0, 1
resume { i8*, i32 } %lpad.val.12
}
; CHECK-LABEL: _f:
; CHECK: movl $-1, [[state:[0-9]+]](%esp)
; CHECK: movl $___ehhandler$f, {{.*}}
;
; CHECK: movl $0, [[state]](%esp)
; CHECK: movl $1, (%esp)
; CHECK: calll _may_throw
;
; CHECK: movl $1, [[state]](%esp)
; CHECK: movl $2, (%esp)
; CHECK: calll _may_throw
; CHECK-LABEL: _f.catch:
; CHECK: movl $4, Lf$frame_escape_{{[0-9]+.*}}
; CHECK: movl $4, (%esp)
; CHECK: calll _may_throw
; CHECK-LABEL: _f.catch.1:
; CHECK: movl $3, Lf$frame_escape_{{[0-9]+.*}}
; CHECK: movl $3, (%esp)
; CHECK: calll _may_throw

View File

@ -46,7 +46,7 @@ catchall:
; CHECK-LABEL: _use_except_handler4:
; CHECK: subl ${{[0-9]+}}, %esp
; CHECK: movl %esp, (%esp)
; CHECK: movl $-2, 20(%esp)
; CHECK: movl $-1, 20(%esp)
; CHECK: movl $L__ehtable$use_except_handler4, 4(%esp)
; CHECK: leal 8(%esp), %[[node:[^ ,]*]]
; CHECK: movl $__except_handler4, 12(%esp)
@ -81,6 +81,7 @@ catchall:
; CHECK: movl %fs:0, %[[next:[^ ,]*]]
; CHECK: movl %[[next]], 4(%esp)
; CHECK: movl %[[node]], %fs:0
; CHECK: movl $0, 12(%esp)
; CHECK: calll _may_throw_or_crash
; CHECK: movl 4(%esp), %[[next:[^ ,]*]]
; CHECK: movl %[[next]], %fs:0