mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-04-05 01:31:05 +00:00
remove trailing whitespace
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105333 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
b9abe9f2ad
commit
63ef367954
@ -70,35 +70,35 @@ protected:
|
||||
#endif
|
||||
} FirstEl;
|
||||
// Space after 'FirstEl' is clobbered, do not add any instance vars after it.
|
||||
|
||||
|
||||
protected:
|
||||
SmallVectorBase(size_t Size)
|
||||
: BeginX(&FirstEl), EndX(&FirstEl), CapacityX((char*)&FirstEl+Size) {}
|
||||
|
||||
|
||||
/// isSmall - Return true if this is a smallvector which has not had dynamic
|
||||
/// memory allocated for it.
|
||||
bool isSmall() const {
|
||||
return BeginX == static_cast<const void*>(&FirstEl);
|
||||
}
|
||||
|
||||
|
||||
/// size_in_bytes - This returns size()*sizeof(T).
|
||||
size_t size_in_bytes() const {
|
||||
return size_t((char*)EndX - (char*)BeginX);
|
||||
}
|
||||
|
||||
|
||||
/// capacity_in_bytes - This returns capacity()*sizeof(T).
|
||||
size_t capacity_in_bytes() const {
|
||||
return size_t((char*)CapacityX - (char*)BeginX);
|
||||
}
|
||||
|
||||
|
||||
/// grow_pod - This is an implementation of the grow() method which only works
|
||||
/// on POD-like datatypes and is out of line to reduce code duplication.
|
||||
void grow_pod(size_t MinSizeInBytes, size_t TSize);
|
||||
|
||||
|
||||
public:
|
||||
bool empty() const { return BeginX == EndX; }
|
||||
};
|
||||
|
||||
|
||||
|
||||
template <typename T>
|
||||
class SmallVectorTemplateCommon : public SmallVectorBase {
|
||||
@ -106,21 +106,21 @@ protected:
|
||||
void setEnd(T *P) { this->EndX = P; }
|
||||
public:
|
||||
SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {}
|
||||
|
||||
|
||||
typedef size_t size_type;
|
||||
typedef ptrdiff_t difference_type;
|
||||
typedef T value_type;
|
||||
typedef T *iterator;
|
||||
typedef const T *const_iterator;
|
||||
|
||||
|
||||
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
|
||||
typedef std::reverse_iterator<iterator> reverse_iterator;
|
||||
|
||||
|
||||
typedef T &reference;
|
||||
typedef const T &const_reference;
|
||||
typedef T *pointer;
|
||||
typedef const T *const_pointer;
|
||||
|
||||
|
||||
// forward iterator creation methods.
|
||||
iterator begin() { return (iterator)this->BeginX; }
|
||||
const_iterator begin() const { return (const_iterator)this->BeginX; }
|
||||
@ -130,7 +130,7 @@ protected:
|
||||
iterator capacity_ptr() { return (iterator)this->CapacityX; }
|
||||
const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
|
||||
public:
|
||||
|
||||
|
||||
// reverse iterator creation methods.
|
||||
reverse_iterator rbegin() { return reverse_iterator(end()); }
|
||||
const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
|
||||
@ -139,16 +139,16 @@ public:
|
||||
|
||||
size_type size() const { return end()-begin(); }
|
||||
size_type max_size() const { return size_type(-1) / sizeof(T); }
|
||||
|
||||
|
||||
/// capacity - Return the total number of elements in the currently allocated
|
||||
/// buffer.
|
||||
size_t capacity() const { return capacity_ptr() - begin(); }
|
||||
|
||||
|
||||
/// data - Return a pointer to the vector's buffer, even if empty().
|
||||
pointer data() { return pointer(begin()); }
|
||||
/// data - Return a pointer to the vector's buffer, even if empty().
|
||||
const_pointer data() const { return const_pointer(begin()); }
|
||||
|
||||
|
||||
reference operator[](unsigned idx) {
|
||||
assert(begin() + idx < end());
|
||||
return begin()[idx];
|
||||
@ -172,7 +172,7 @@ public:
|
||||
return end()[-1];
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
|
||||
/// implementations that are designed to work with non-POD-like T's.
|
||||
template <typename T, bool isPodLike>
|
||||
@ -186,14 +186,14 @@ public:
|
||||
E->~T();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
|
||||
/// starting with "Dest", constructing elements into it as needed.
|
||||
template<typename It1, typename It2>
|
||||
static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
|
||||
std::uninitialized_copy(I, E, Dest);
|
||||
}
|
||||
|
||||
|
||||
/// grow - double the size of the allocated memory, guaranteeing space for at
|
||||
/// least one more element or MinSize if specified.
|
||||
void grow(size_t MinSize = 0);
|
||||
@ -208,33 +208,33 @@ void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
|
||||
if (NewCapacity < MinSize)
|
||||
NewCapacity = MinSize;
|
||||
T *NewElts = static_cast<T*>(operator new(NewCapacity*sizeof(T)));
|
||||
|
||||
|
||||
// Copy the elements over.
|
||||
this->uninitialized_copy(this->begin(), this->end(), NewElts);
|
||||
|
||||
|
||||
// Destroy the original elements.
|
||||
destroy_range(this->begin(), this->end());
|
||||
|
||||
|
||||
// If this wasn't grown from the inline copy, deallocate the old space.
|
||||
if (!this->isSmall())
|
||||
operator delete(this->begin());
|
||||
|
||||
|
||||
this->setEnd(NewElts+CurSize);
|
||||
this->BeginX = NewElts;
|
||||
this->CapacityX = this->begin()+NewCapacity;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
|
||||
/// implementations that are designed to work with POD-like T's.
|
||||
template <typename T>
|
||||
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
|
||||
public:
|
||||
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
|
||||
|
||||
|
||||
// No need to do a destroy loop for POD's.
|
||||
static void destroy_range(T *, T *) {}
|
||||
|
||||
|
||||
/// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
|
||||
/// starting with "Dest", constructing elements into it as needed.
|
||||
template<typename It1, typename It2>
|
||||
@ -259,8 +259,8 @@ public:
|
||||
this->grow_pod(MinSize*sizeof(T), sizeof(T));
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
/// SmallVectorImpl - This class consists of common code factored out of the
|
||||
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
|
||||
/// template parameter.
|
||||
@ -270,22 +270,22 @@ class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
|
||||
public:
|
||||
typedef typename SuperClass::iterator iterator;
|
||||
typedef typename SuperClass::size_type size_type;
|
||||
|
||||
|
||||
// Default ctor - Initialize to empty.
|
||||
explicit SmallVectorImpl(unsigned N)
|
||||
: SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
|
||||
}
|
||||
|
||||
|
||||
~SmallVectorImpl() {
|
||||
// Destroy the constructed elements in the vector.
|
||||
this->destroy_range(this->begin(), this->end());
|
||||
|
||||
|
||||
// If this wasn't grown from the inline copy, deallocate the old space.
|
||||
if (!this->isSmall())
|
||||
operator delete(this->begin());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void clear() {
|
||||
this->destroy_range(this->begin(), this->end());
|
||||
this->EndX = this->BeginX;
|
||||
@ -319,7 +319,7 @@ public:
|
||||
if (this->capacity() < N)
|
||||
this->grow(N);
|
||||
}
|
||||
|
||||
|
||||
void push_back(const T &Elt) {
|
||||
if (this->EndX < this->CapacityX) {
|
||||
Retry:
|
||||
@ -330,21 +330,21 @@ public:
|
||||
this->grow();
|
||||
goto Retry;
|
||||
}
|
||||
|
||||
|
||||
void pop_back() {
|
||||
this->setEnd(this->end()-1);
|
||||
this->end()->~T();
|
||||
}
|
||||
|
||||
|
||||
T pop_back_val() {
|
||||
T Result = this->back();
|
||||
pop_back();
|
||||
return Result;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void swap(SmallVectorImpl &RHS);
|
||||
|
||||
|
||||
/// append - Add the specified range to the end of the SmallVector.
|
||||
///
|
||||
template<typename in_iter>
|
||||
@ -353,26 +353,26 @@ public:
|
||||
// Grow allocated space if needed.
|
||||
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
|
||||
this->grow(this->size()+NumInputs);
|
||||
|
||||
|
||||
// Copy the new elements over.
|
||||
// TODO: NEED To compile time dispatch on whether in_iter is a random access
|
||||
// iterator to use the fast uninitialized_copy.
|
||||
std::uninitialized_copy(in_start, in_end, this->end());
|
||||
this->setEnd(this->end() + NumInputs);
|
||||
}
|
||||
|
||||
|
||||
/// append - Add the specified range to the end of the SmallVector.
|
||||
///
|
||||
void append(size_type NumInputs, const T &Elt) {
|
||||
// Grow allocated space if needed.
|
||||
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
|
||||
this->grow(this->size()+NumInputs);
|
||||
|
||||
|
||||
// Copy the new elements over.
|
||||
std::uninitialized_fill_n(this->end(), NumInputs, Elt);
|
||||
this->setEnd(this->end() + NumInputs);
|
||||
}
|
||||
|
||||
|
||||
void assign(unsigned NumElts, const T &Elt) {
|
||||
clear();
|
||||
if (this->capacity() < NumElts)
|
||||
@ -380,7 +380,7 @@ public:
|
||||
this->setEnd(this->begin()+NumElts);
|
||||
construct_range(this->begin(), this->end(), Elt);
|
||||
}
|
||||
|
||||
|
||||
iterator erase(iterator I) {
|
||||
iterator N = I;
|
||||
// Shift all elts down one.
|
||||
@ -389,7 +389,7 @@ public:
|
||||
pop_back();
|
||||
return(N);
|
||||
}
|
||||
|
||||
|
||||
iterator erase(iterator S, iterator E) {
|
||||
iterator N = S;
|
||||
// Shift all elts down.
|
||||
@ -399,13 +399,13 @@ public:
|
||||
this->setEnd(I);
|
||||
return(N);
|
||||
}
|
||||
|
||||
|
||||
iterator insert(iterator I, const T &Elt) {
|
||||
if (I == this->end()) { // Important special case for empty vector.
|
||||
push_back(Elt);
|
||||
return this->end()-1;
|
||||
}
|
||||
|
||||
|
||||
if (this->EndX < this->CapacityX) {
|
||||
Retry:
|
||||
new (this->end()) T(this->back());
|
||||
@ -420,22 +420,22 @@ public:
|
||||
I = this->begin()+EltNo;
|
||||
goto Retry;
|
||||
}
|
||||
|
||||
|
||||
iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
|
||||
if (I == this->end()) { // Important special case for empty vector.
|
||||
append(NumToInsert, Elt);
|
||||
return this->end()-1;
|
||||
}
|
||||
|
||||
|
||||
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
|
||||
size_t InsertElt = I - this->begin();
|
||||
|
||||
|
||||
// Ensure there is enough space.
|
||||
reserve(static_cast<unsigned>(this->size() + NumToInsert));
|
||||
|
||||
|
||||
// Uninvalidate the iterator.
|
||||
I = this->begin()+InsertElt;
|
||||
|
||||
|
||||
// If there are more elements between the insertion point and the end of the
|
||||
// range than there are being inserted, we can use a simple approach to
|
||||
// insertion. Since we already reserved space, we know that this won't
|
||||
@ -443,48 +443,48 @@ public:
|
||||
if (size_t(this->end()-I) >= NumToInsert) {
|
||||
T *OldEnd = this->end();
|
||||
append(this->end()-NumToInsert, this->end());
|
||||
|
||||
|
||||
// Copy the existing elements that get replaced.
|
||||
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
|
||||
|
||||
|
||||
std::fill_n(I, NumToInsert, Elt);
|
||||
return I;
|
||||
}
|
||||
|
||||
|
||||
// Otherwise, we're inserting more elements than exist already, and we're
|
||||
// not inserting at the end.
|
||||
|
||||
|
||||
// Copy over the elements that we're about to overwrite.
|
||||
T *OldEnd = this->end();
|
||||
this->setEnd(this->end() + NumToInsert);
|
||||
size_t NumOverwritten = OldEnd-I;
|
||||
this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
|
||||
|
||||
|
||||
// Replace the overwritten part.
|
||||
std::fill_n(I, NumOverwritten, Elt);
|
||||
|
||||
|
||||
// Insert the non-overwritten middle part.
|
||||
std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
|
||||
return I;
|
||||
}
|
||||
|
||||
|
||||
template<typename ItTy>
|
||||
iterator insert(iterator I, ItTy From, ItTy To) {
|
||||
if (I == this->end()) { // Important special case for empty vector.
|
||||
append(From, To);
|
||||
return this->end()-1;
|
||||
}
|
||||
|
||||
|
||||
size_t NumToInsert = std::distance(From, To);
|
||||
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
|
||||
size_t InsertElt = I - this->begin();
|
||||
|
||||
|
||||
// Ensure there is enough space.
|
||||
reserve(static_cast<unsigned>(this->size() + NumToInsert));
|
||||
|
||||
|
||||
// Uninvalidate the iterator.
|
||||
I = this->begin()+InsertElt;
|
||||
|
||||
|
||||
// If there are more elements between the insertion point and the end of the
|
||||
// range than there are being inserted, we can use a simple approach to
|
||||
// insertion. Since we already reserved space, we know that this won't
|
||||
@ -492,37 +492,37 @@ public:
|
||||
if (size_t(this->end()-I) >= NumToInsert) {
|
||||
T *OldEnd = this->end();
|
||||
append(this->end()-NumToInsert, this->end());
|
||||
|
||||
|
||||
// Copy the existing elements that get replaced.
|
||||
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
|
||||
|
||||
|
||||
std::copy(From, To, I);
|
||||
return I;
|
||||
}
|
||||
|
||||
|
||||
// Otherwise, we're inserting more elements than exist already, and we're
|
||||
// not inserting at the end.
|
||||
|
||||
|
||||
// Copy over the elements that we're about to overwrite.
|
||||
T *OldEnd = this->end();
|
||||
this->setEnd(this->end() + NumToInsert);
|
||||
size_t NumOverwritten = OldEnd-I;
|
||||
this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
|
||||
|
||||
|
||||
// Replace the overwritten part.
|
||||
for (; NumOverwritten > 0; --NumOverwritten) {
|
||||
*I = *From;
|
||||
++I; ++From;
|
||||
}
|
||||
|
||||
|
||||
// Insert the non-overwritten middle part.
|
||||
this->uninitialized_copy(From, To, OldEnd);
|
||||
return I;
|
||||
}
|
||||
|
||||
|
||||
const SmallVectorImpl
|
||||
&operator=(const SmallVectorImpl &RHS);
|
||||
|
||||
|
||||
bool operator==(const SmallVectorImpl &RHS) const {
|
||||
if (this->size() != RHS.size()) return false;
|
||||
return std::equal(this->begin(), this->end(), RHS.begin());
|
||||
@ -530,12 +530,12 @@ public:
|
||||
bool operator!=(const SmallVectorImpl &RHS) const {
|
||||
return !(*this == RHS);
|
||||
}
|
||||
|
||||
|
||||
bool operator<(const SmallVectorImpl &RHS) const {
|
||||
return std::lexicographical_compare(this->begin(), this->end(),
|
||||
RHS.begin(), RHS.end());
|
||||
}
|
||||
|
||||
|
||||
/// set_size - Set the array size to \arg N, which the current array must have
|
||||
/// enough capacity for.
|
||||
///
|
||||
@ -549,14 +549,14 @@ public:
|
||||
assert(N <= this->capacity());
|
||||
this->setEnd(this->begin() + N);
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
static void construct_range(T *S, T *E, const T &Elt) {
|
||||
for (; S != E; ++S)
|
||||
new (S) T(Elt);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template <typename T>
|
||||
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
|
||||
|
Loading…
x
Reference in New Issue
Block a user