New C++ PBQP solver. Currently about as fast (read _slow_) as the old C based solver, but I'll be working to improve that. The PBQP allocator has been updated to use the new solver.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78354 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Lang Hames 2009-08-06 23:32:48 +00:00
parent 14e545d18e
commit 6699fb2709
13 changed files with 2846 additions and 1781 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,284 +0,0 @@
//===---------------- PBQP.cpp --------- PBQP Solver ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Developed by: Bernhard Scholz
// The University of Sydney
// http://www.it.usyd.edu.au/~scholz
//===----------------------------------------------------------------------===//
// TODO:
//
// * Default to null costs on vector initialisation?
// * C++-ify the rest of the solver.
#ifndef LLVM_CODEGEN_PBQPSOLVER_H
#define LLVM_CODEGEN_PBQPSOLVER_H
#include <cassert>
#include <algorithm>
#include <functional>
namespace llvm {
//! \brief Floating point type to use in PBQP solver.
typedef double PBQPNum;
//! \brief PBQP Vector class.
class PBQPVector {
public:
//! \brief Construct a PBQP vector of the given size.
explicit PBQPVector(unsigned length) :
length(length), data(new PBQPNum[length]) {
std::fill(data, data + length, 0);
}
//! \brief Copy construct a PBQP vector.
PBQPVector(const PBQPVector &v) :
length(v.length), data(new PBQPNum[length]) {
std::copy(v.data, v.data + length, data);
}
~PBQPVector() { delete[] data; }
//! \brief Assignment operator.
PBQPVector& operator=(const PBQPVector &v) {
delete[] data;
length = v.length;
data = new PBQPNum[length];
std::copy(v.data, v.data + length, data);
return *this;
}
//! \brief Return the length of the vector
unsigned getLength() const throw () {
return length;
}
//! \brief Element access.
PBQPNum& operator[](unsigned index) {
assert(index < length && "PBQPVector element access out of bounds.");
return data[index];
}
//! \brief Const element access.
const PBQPNum& operator[](unsigned index) const {
assert(index < length && "PBQPVector element access out of bounds.");
return data[index];
}
//! \brief Add another vector to this one.
PBQPVector& operator+=(const PBQPVector &v) {
assert(length == v.length && "PBQPVector length mismatch.");
std::transform(data, data + length, v.data, data, std::plus<PBQPNum>());
return *this;
}
//! \brief Subtract another vector from this one.
PBQPVector& operator-=(const PBQPVector &v) {
assert(length == v.length && "PBQPVector length mismatch.");
std::transform(data, data + length, v.data, data, std::minus<PBQPNum>());
return *this;
}
//! \brief Returns the index of the minimum value in this vector
unsigned minIndex() const {
return std::min_element(data, data + length) - data;
}
private:
unsigned length;
PBQPNum *data;
};
//! \brief PBQP Matrix class
class PBQPMatrix {
public:
//! \brief Construct a PBQP Matrix with the given dimensions.
PBQPMatrix(unsigned rows, unsigned cols) :
rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
std::fill(data, data + (rows * cols), 0);
}
//! \brief Copy construct a PBQP matrix.
PBQPMatrix(const PBQPMatrix &m) :
rows(m.rows), cols(m.cols), data(new PBQPNum[rows * cols]) {
std::copy(m.data, m.data + (rows * cols), data);
}
~PBQPMatrix() { delete[] data; }
//! \brief Assignment operator.
PBQPMatrix& operator=(const PBQPMatrix &m) {
delete[] data;
rows = m.rows; cols = m.cols;
data = new PBQPNum[rows * cols];
std::copy(m.data, m.data + (rows * cols), data);
return *this;
}
//! \brief Return the number of rows in this matrix.
unsigned getRows() const throw () { return rows; }
//! \brief Return the number of cols in this matrix.
unsigned getCols() const throw () { return cols; }
//! \brief Matrix element access.
PBQPNum* operator[](unsigned r) {
assert(r < rows && "Row out of bounds.");
return data + (r * cols);
}
//! \brief Matrix element access.
const PBQPNum* operator[](unsigned r) const {
assert(r < rows && "Row out of bounds.");
return data + (r * cols);
}
//! \brief Returns the given row as a vector.
PBQPVector getRowAsVector(unsigned r) const {
PBQPVector v(cols);
for (unsigned c = 0; c < cols; ++c)
v[c] = (*this)[r][c];
return v;
}
//! \brief Reset the matrix to the given value.
PBQPMatrix& reset(PBQPNum val = 0) {
std::fill(data, data + (rows * cols), val);
return *this;
}
//! \brief Set a single row of this matrix to the given value.
PBQPMatrix& setRow(unsigned r, PBQPNum val) {
assert(r < rows && "Row out of bounds.");
std::fill(data + (r * cols), data + ((r + 1) * cols), val);
return *this;
}
//! \brief Set a single column of this matrix to the given value.
PBQPMatrix& setCol(unsigned c, PBQPNum val) {
assert(c < cols && "Column out of bounds.");
for (unsigned r = 0; r < rows; ++r)
(*this)[r][c] = val;
return *this;
}
//! \brief Matrix transpose.
PBQPMatrix transpose() const {
PBQPMatrix m(cols, rows);
for (unsigned r = 0; r < rows; ++r)
for (unsigned c = 0; c < cols; ++c)
m[c][r] = (*this)[r][c];
return m;
}
//! \brief Returns the diagonal of the matrix as a vector.
//!
//! Matrix must be square.
PBQPVector diagonalize() const {
assert(rows == cols && "Attempt to diagonalize non-square matrix.");
PBQPVector v(rows);
for (unsigned r = 0; r < rows; ++r)
v[r] = (*this)[r][r];
return v;
}
//! \brief Add the given matrix to this one.
PBQPMatrix& operator+=(const PBQPMatrix &m) {
assert(rows == m.rows && cols == m.cols &&
"Matrix dimensions mismatch.");
std::transform(data, data + (rows * cols), m.data, data,
std::plus<PBQPNum>());
return *this;
}
//! \brief Returns the minimum of the given row
PBQPNum getRowMin(unsigned r) const {
assert(r < rows && "Row out of bounds");
return *std::min_element(data + (r * cols), data + ((r + 1) * cols));
}
//! \brief Returns the minimum of the given column
PBQPNum getColMin(unsigned c) const {
PBQPNum minElem = (*this)[0][c];
for (unsigned r = 1; r < rows; ++r)
if ((*this)[r][c] < minElem) minElem = (*this)[r][c];
return minElem;
}
//! \brief Subtracts the given scalar from the elements of the given row.
PBQPMatrix& subFromRow(unsigned r, PBQPNum val) {
assert(r < rows && "Row out of bounds");
std::transform(data + (r * cols), data + ((r + 1) * cols),
data + (r * cols),
std::bind2nd(std::minus<PBQPNum>(), val));
return *this;
}
//! \brief Subtracts the given scalar from the elements of the given column.
PBQPMatrix& subFromCol(unsigned c, PBQPNum val) {
for (unsigned r = 0; r < rows; ++r)
(*this)[r][c] -= val;
return *this;
}
//! \brief Returns true if this is a zero matrix.
bool isZero() const {
return find_if(data, data + (rows * cols),
std::bind2nd(std::not_equal_to<PBQPNum>(), 0)) ==
data + (rows * cols);
}
private:
unsigned rows, cols;
PBQPNum *data;
};
#define EPS (1E-8)
#ifndef PBQP_TYPE
#define PBQP_TYPE
struct pbqp;
typedef struct pbqp pbqp;
#endif
/*****************
* PBQP routines *
*****************/
/* allocate pbqp problem */
pbqp *alloc_pbqp(int num);
/* add node costs */
void add_pbqp_nodecosts(pbqp *this_,int u, PBQPVector *costs);
/* add edge mat */
void add_pbqp_edgecosts(pbqp *this_,int u,int v,PBQPMatrix *costs);
/* solve PBQP problem */
void solve_pbqp(pbqp *this_);
/* get solution of a node */
int get_pbqp_solution(pbqp *this_,int u);
/* alloc PBQP */
pbqp *alloc_pbqp(int num);
/* free PBQP */
void free_pbqp(pbqp *this_);
/* is optimal */
bool is_pbqp_optimal(pbqp *this_);
}
#endif

View File

@ -0,0 +1,170 @@
#ifndef LLVM_CODEGEN_PBQP_ANNOTATEDGRAPH_H
#define LLVM_CODEGEN_PBQP_ANNOTATEDGRAPH_H
#include "GraphBase.h"
namespace PBQP {
template <typename NodeData, typename EdgeData> class AnnotatedEdge;
template <typename NodeData, typename EdgeData>
class AnnotatedNode : public NodeBase<AnnotatedNode<NodeData, EdgeData>,
AnnotatedEdge<NodeData, EdgeData> > {
private:
NodeData nodeData;
public:
AnnotatedNode(const Vector &costs, const NodeData &nodeData) :
NodeBase<AnnotatedNode<NodeData, EdgeData>,
AnnotatedEdge<NodeData, EdgeData> >(costs),
nodeData(nodeData) {}
NodeData& getNodeData() { return nodeData; }
const NodeData& getNodeData() const { return nodeData; }
};
template <typename NodeData, typename EdgeData>
class AnnotatedEdge : public EdgeBase<AnnotatedNode<NodeData, EdgeData>,
AnnotatedEdge<NodeData, EdgeData> > {
private:
typedef typename GraphBase<AnnotatedNode<NodeData, EdgeData>,
AnnotatedEdge<NodeData, EdgeData> >::NodeIterator
NodeIterator;
EdgeData edgeData;
public:
AnnotatedEdge(const NodeIterator &node1Itr, const NodeIterator &node2Itr,
const Matrix &costs, const EdgeData &edgeData) :
EdgeBase<AnnotatedNode<NodeData, EdgeData>,
AnnotatedEdge<NodeData, EdgeData> >(node1Itr, node2Itr, costs),
edgeData(edgeData) {}
EdgeData& getEdgeData() { return edgeData; }
const EdgeData& getEdgeData() const { return edgeData; }
};
template <typename NodeData, typename EdgeData>
class AnnotatedGraph : public GraphBase<AnnotatedNode<NodeData, EdgeData>,
AnnotatedEdge<NodeData, EdgeData> > {
private:
typedef GraphBase<AnnotatedNode<NodeData, EdgeData>,
AnnotatedEdge<NodeData, EdgeData> > PGraph;
typedef AnnotatedNode<NodeData, EdgeData> NodeEntry;
typedef AnnotatedEdge<NodeData, EdgeData> EdgeEntry;
void copyFrom(const AnnotatedGraph &other) {
if (!other.areNodeIDsValid()) {
other.assignNodeIDs();
}
std::vector<NodeIterator> newNodeItrs(other.getNumNodes());
for (ConstNodeIterator nItr = other.nodesBegin(), nEnd = other.nodesEnd();
nItr != nEnd; ++nItr) {
newNodeItrs[other.getNodeID(nItr)] = addNode(other.getNodeCosts(nItr));
}
for (ConstEdgeIterator eItr = other.edgesBegin(), eEnd = other.edgesEnd();
eItr != eEnd; ++eItr) {
unsigned node1ID = other.getNodeID(other.getEdgeNode1(eItr)),
node2ID = other.getNodeID(other.getEdgeNode2(eItr));
addEdge(newNodeItrs[node1ID], newNodeItrs[node2ID],
other.getEdgeCosts(eItr), other.getEdgeData(eItr));
}
}
public:
typedef typename PGraph::NodeIterator NodeIterator;
typedef typename PGraph::ConstNodeIterator ConstNodeIterator;
typedef typename PGraph::EdgeIterator EdgeIterator;
typedef typename PGraph::ConstEdgeIterator ConstEdgeIterator;
AnnotatedGraph() {}
AnnotatedGraph(const AnnotatedGraph &other) {
copyFrom(other);
}
AnnotatedGraph& operator=(const AnnotatedGraph &other) {
PGraph::clear();
copyFrom(other);
return *this;
}
NodeIterator addNode(const Vector &costs, const NodeData &data) {
return PGraph::addConstructedNode(NodeEntry(costs, data));
}
EdgeIterator addEdge(const NodeIterator &node1Itr,
const NodeIterator &node2Itr,
const Matrix &costs, const EdgeData &data) {
return PGraph::addConstructedEdge(EdgeEntry(node1Itr, node2Itr,
costs, data));
}
NodeData& getNodeData(const NodeIterator &nodeItr) {
return getNodeEntry(nodeItr).getNodeData();
}
const NodeData& getNodeData(const NodeIterator &nodeItr) const {
return getNodeEntry(nodeItr).getNodeData();
}
EdgeData& getEdgeData(const EdgeIterator &edgeItr) {
return getEdgeEntry(edgeItr).getEdgeData();
}
const EdgeEntry& getEdgeData(const EdgeIterator &edgeItr) const {
return getEdgeEntry(edgeItr).getEdgeData();
}
SimpleGraph toSimpleGraph() const {
SimpleGraph g;
if (!PGraph::areNodeIDsValid()) {
PGraph::assignNodeIDs();
}
std::vector<SimpleGraph::NodeIterator> newNodeItrs(PGraph::getNumNodes());
for (ConstNodeIterator nItr = PGraph::nodesBegin(),
nEnd = PGraph::nodesEnd();
nItr != nEnd; ++nItr) {
newNodeItrs[getNodeID(nItr)] = g.addNode(getNodeCosts(nItr));
}
for (ConstEdgeIterator
eItr = PGraph::edgesBegin(), eEnd = PGraph::edgesEnd();
eItr != eEnd; ++eItr) {
unsigned node1ID = getNodeID(getEdgeNode1(eItr)),
node2ID = getNodeID(getEdgeNode2(eItr));
g.addEdge(newNodeItrs[node1ID], newNodeItrs[node2ID],
getEdgeCosts(eItr));
}
return g;
}
};
}
#endif // LLVM_CODEGEN_PBQP_ANNOTATEDGRAPH_H

View File

@ -0,0 +1,93 @@
#ifndef LLVM_CODEGEN_PBQP_EXHAUSTIVESOLVER_H
#define LLVM_CODEGEN_PBQP_EXHAUSTIVESOLVER_H
#include "Solver.h"
namespace PBQP {
class ExhaustiveSolverImpl {
private:
const SimpleGraph &g;
PBQPNum getSolutionCost(const Solution &solution) const {
PBQPNum cost = 0.0;
for (SimpleGraph::ConstNodeIterator
nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
unsigned nodeId = g.getNodeID(nodeItr);
cost += g.getNodeCosts(nodeItr)[solution.getSelection(nodeId)];
}
for (SimpleGraph::ConstEdgeIterator
edgeItr = g.edgesBegin(), edgeEnd = g.edgesEnd();
edgeItr != edgeEnd; ++edgeItr) {
SimpleGraph::ConstNodeIterator n1 = g.getEdgeNode1Itr(edgeItr),
n2 = g.getEdgeNode2Itr(edgeItr);
unsigned sol1 = solution.getSelection(g.getNodeID(n1)),
sol2 = solution.getSelection(g.getNodeID(n2));
cost += g.getEdgeCosts(edgeItr)[sol1][sol2];
}
return cost;
}
public:
ExhaustiveSolverImpl(const SimpleGraph &g) : g(g) {}
Solution solve() const {
Solution current(g.getNumNodes(), true), optimal(current);
PBQPNum bestCost = std::numeric_limits<PBQPNum>::infinity();
bool finished = false;
while (!finished) {
PBQPNum currentCost = getSolutionCost(current);
if (currentCost < bestCost) {
optimal = current;
bestCost = currentCost;
}
// assume we're done.
finished = true;
for (unsigned i = 0; i < g.getNumNodes(); ++i) {
if (current.getSelection(i) ==
(g.getNodeCosts(g.getNodeItr(i)).getLength() - 1)) {
current.setSelection(i, 0);
}
else {
current.setSelection(i, current.getSelection(i) + 1);
finished = false;
break;
}
}
}
optimal.setSolutionCost(bestCost);
return optimal;
}
};
class ExhaustiveSolver : public Solver {
public:
~ExhaustiveSolver() {}
Solution solve(const SimpleGraph &g) const {
ExhaustiveSolverImpl solver(g);
return solver.solve();
}
};
}
#endif // LLVM_CODGEN_PBQP_EXHAUSTIVESOLVER_HPP

View File

@ -0,0 +1,570 @@
#ifndef LLVM_CODEGEN_PBQP_GRAPHBASE_H
#define LLVM_CODEGEN_PBQP_GRAPHBASE_H
#include "PBQPMath.h"
#include <list>
#include <vector>
namespace PBQP {
// UGLY, but I'm not sure there's a good way around this: We need to be able to
// look up a Node's "adjacent edge list" structure type before the Node type is
// fully constructed. We can enable this by pushing the choice of data type
// out into this traits class.
template <typename Graph>
class NodeBaseTraits {
public:
typedef std::list<typename Graph::EdgeIterator> AdjEdgeList;
typedef typename AdjEdgeList::iterator AdjEdgeIterator;
typedef typename AdjEdgeList::const_iterator ConstAdjEdgeIterator;
};
/// \brief Base for concrete graph classes. Provides a basic set of graph
/// operations which are useful for PBQP solvers.
template <typename NodeEntry, typename EdgeEntry>
class GraphBase {
private:
typedef GraphBase<NodeEntry, EdgeEntry> ThisGraphT;
typedef std::list<NodeEntry> NodeList;
typedef std::list<EdgeEntry> EdgeList;
NodeList nodeList;
unsigned nodeListSize;
EdgeList edgeList;
unsigned edgeListSize;
GraphBase(const ThisGraphT &other) { abort(); }
void operator=(const ThisGraphT &other) { abort(); }
public:
/// \brief Iterates over the nodes of a graph.
typedef typename NodeList::iterator NodeIterator;
/// \brief Iterates over the nodes of a const graph.
typedef typename NodeList::const_iterator ConstNodeIterator;
/// \brief Iterates over the edges of a graph.
typedef typename EdgeList::iterator EdgeIterator;
/// \brief Iterates over the edges of a const graph.
typedef typename EdgeList::const_iterator ConstEdgeIterator;
/// \brief Iterates over the edges attached to a node.
typedef typename NodeBaseTraits<ThisGraphT>::AdjEdgeIterator
AdjEdgeIterator;
/// \brief Iterates over the edges attached to a node in a const graph.
typedef typename NodeBaseTraits<ThisGraphT>::ConstAdjEdgeIterator
ConstAdjEdgeIterator;
private:
typedef std::vector<NodeIterator> IDToNodeMap;
IDToNodeMap idToNodeMap;
bool nodeIDsValid;
void invalidateNodeIDs() {
if (nodeIDsValid) {
idToNodeMap.clear();
nodeIDsValid = false;
}
}
template <typename ItrT>
bool iteratorInRange(ItrT itr, const ItrT &begin, const ItrT &end) {
for (ItrT t = begin; t != end; ++t) {
if (itr == t)
return true;
}
return false;
}
protected:
GraphBase() : nodeListSize(0), edgeListSize(0), nodeIDsValid(false) {}
NodeEntry& getNodeEntry(const NodeIterator &nodeItr) { return *nodeItr; }
const NodeEntry& getNodeEntry(const ConstNodeIterator &nodeItr) const {
return *nodeItr;
}
EdgeEntry& getEdgeEntry(const EdgeIterator &edgeItr) { return *edgeItr; }
const EdgeEntry& getEdgeEntry(const ConstEdgeIterator &edgeItr) const {
return *edgeItr;
}
NodeIterator addConstructedNode(const NodeEntry &nodeEntry) {
++nodeListSize;
invalidateNodeIDs();
NodeIterator newNodeItr = nodeList.insert(nodeList.end(), nodeEntry);
return newNodeItr;
}
EdgeIterator addConstructedEdge(const EdgeEntry &edgeEntry) {
assert((findEdge(edgeEntry.getNode1Itr(), edgeEntry.getNode2Itr())
== edgeList.end()) && "Attempt to add duplicate edge.");
++edgeListSize;
// Add the edge to the graph.
EdgeIterator edgeItr = edgeList.insert(edgeList.end(), edgeEntry);
// Get a reference to the version in the graph.
EdgeEntry &newEdgeEntry = getEdgeEntry(edgeItr);
// Node entries:
NodeEntry &node1Entry = getNodeEntry(newEdgeEntry.getNode1Itr()),
&node2Entry = getNodeEntry(newEdgeEntry.getNode2Itr());
unsigned n1Len = node1Entry.getCosts().getLength(),
n2Len = node2Entry.getCosts().getLength(),
mRows = newEdgeEntry.getCosts().getRows(),
mCols = newEdgeEntry.getCosts().getCols();
// Sanity check on matrix dimensions.
assert((n1Len == mRows) && (n2Len == mCols) &&
"Matrix dimensions do not match cost vector dimensions.");
// Create links between nodes and edges.
newEdgeEntry.setNode1ThisEdgeItr(
node1Entry.addAdjEdge(edgeItr));
newEdgeEntry.setNode2ThisEdgeItr(
node2Entry.addAdjEdge(edgeItr));
return edgeItr;
}
public:
/// \brief Returns the number of nodes in this graph.
unsigned getNumNodes() const { return nodeListSize; }
/// \brief Returns the number of edges in this graph.
unsigned getNumEdges() const { return edgeListSize; }
/// \brief Return the cost vector for the given node.
Vector& getNodeCosts(const NodeIterator &nodeItr) {
return getNodeEntry(nodeItr).getCosts();
}
/// \brief Return the cost vector for the give node.
const Vector& getNodeCosts(const ConstNodeIterator &nodeItr) const {
return getNodeEntry(nodeItr).getCosts();
}
/// \brief Return the degree of the given node.
unsigned getNodeDegree(const NodeIterator &nodeItr) const {
return getNodeEntry(nodeItr).getDegree();
}
/// \brief Assigns sequential IDs to the nodes, starting at 0, which
/// remain valid until the next addition or removal of a node.
void assignNodeIDs() {
unsigned curID = 0;
idToNodeMap.resize(getNumNodes());
for (NodeIterator nodeItr = nodesBegin(), nodeEnd = nodesEnd();
nodeItr != nodeEnd; ++nodeItr, ++curID) {
getNodeEntry(nodeItr).setID(curID);
idToNodeMap[curID] = nodeItr;
}
nodeIDsValid = true;
}
/// \brief Assigns sequential IDs to the nodes using the ordering of the
/// given vector.
void assignNodeIDs(const std::vector<NodeIterator> &nodeOrdering) {
assert((getNumNodes() == nodeOrdering.size()) &&
"Wrong number of nodes in node ordering.");
idToNodeMap = nodeOrdering;
for (unsigned nodeID = 0; nodeID < idToNodeMap.size(); ++nodeID) {
getNodeEntry(idToNodeMap[nodeID]).setID(nodeID);
}
nodeIDsValid = true;
}
/// \brief Returns true if valid node IDs are assigned, false otherwise.
bool areNodeIDsValid() const { return nodeIDsValid; }
/// \brief Return the numeric ID of the given node.
///
/// Calls to this method will result in an assertion failure if there have
/// been any node additions or removals since the last call to
/// assignNodeIDs().
unsigned getNodeID(const ConstNodeIterator &nodeItr) const {
assert(nodeIDsValid && "Attempt to retrieve invalid ID.");
return getNodeEntry(nodeItr).getID();
}
/// \brief Returns the iterator associated with the given node ID.
NodeIterator getNodeItr(unsigned nodeID) {
assert(nodeIDsValid && "Attempt to retrieve iterator with invalid ID.");
return idToNodeMap[nodeID];
}
/// \brief Returns the iterator associated with the given node ID.
ConstNodeIterator getNodeItr(unsigned nodeID) const {
assert(nodeIDsValid && "Attempt to retrieve iterator with invalid ID.");
return idToNodeMap[nodeID];
}
/// \brief Removes the given node (and all attached edges) from the graph.
void removeNode(const NodeIterator &nodeItr) {
assert(iteratorInRange(nodeItr, nodeList.begin(), nodeList.end()) &&
"Iterator does not belong to this graph!");
invalidateNodeIDs();
NodeEntry &nodeEntry = getNodeEntry(nodeItr);
// We need to copy this out because it will be destroyed as the edges are
// removed.
typedef std::vector<EdgeIterator> AdjEdgeList;
typedef typename AdjEdgeList::iterator AdjEdgeListItr;
AdjEdgeList adjEdges;
adjEdges.reserve(nodeEntry.getDegree());
std::copy(nodeEntry.adjEdgesBegin(), nodeEntry.adjEdgesEnd(),
std::back_inserter(adjEdges));
// Iterate over the copied out edges and remove them from the graph.
for (AdjEdgeListItr itr = adjEdges.begin(), end = adjEdges.end();
itr != end; ++itr) {
removeEdge(*itr);
}
// Erase the node from the nodelist.
nodeList.erase(nodeItr);
--nodeListSize;
}
NodeIterator nodesBegin() { return nodeList.begin(); }
ConstNodeIterator nodesBegin() const { return nodeList.begin(); }
NodeIterator nodesEnd() { return nodeList.end(); }
ConstNodeIterator nodesEnd() const { return nodeList.end(); }
AdjEdgeIterator adjEdgesBegin(const NodeIterator &nodeItr) {
return getNodeEntry(nodeItr).adjEdgesBegin();
}
ConstAdjEdgeIterator adjEdgesBegin(const ConstNodeIterator &nodeItr) const {
return getNodeEntry(nodeItr).adjEdgesBegin();
}
AdjEdgeIterator adjEdgesEnd(const NodeIterator &nodeItr) {
return getNodeEntry(nodeItr).adjEdgesEnd();
}
ConstAdjEdgeIterator adjEdgesEnd(const ConstNodeIterator &nodeItr) const {
getNodeEntry(nodeItr).adjEdgesEnd();
}
EdgeIterator findEdge(const NodeIterator &node1Itr,
const NodeIterator &node2Itr) {
for (AdjEdgeIterator adjEdgeItr = adjEdgesBegin(node1Itr),
adjEdgeEnd = adjEdgesEnd(node1Itr);
adjEdgeItr != adjEdgeEnd; ++adjEdgeItr) {
if ((getEdgeNode1Itr(*adjEdgeItr) == node2Itr) ||
(getEdgeNode2Itr(*adjEdgeItr) == node2Itr)) {
return *adjEdgeItr;
}
}
return edgeList.end();
}
ConstEdgeIterator findEdge(const ConstNodeIterator &node1Itr,
const ConstNodeIterator &node2Itr) const {
for (ConstAdjEdgeIterator adjEdgeItr = adjEdgesBegin(node1Itr),
adjEdgeEnd = adjEdgesEnd(node1Itr);
adjEdgeItr != adjEdgesEnd; ++adjEdgeItr) {
if ((getEdgeNode1Itr(*adjEdgeItr) == node2Itr) ||
(getEdgeNode2Itr(*adjEdgeItr) == node2Itr)) {
return *adjEdgeItr;
}
}
return edgeList.end();
}
Matrix& getEdgeCosts(const EdgeIterator &edgeItr) {
return getEdgeEntry(edgeItr).getCosts();
}
const Matrix& getEdgeCosts(const ConstEdgeIterator &edgeItr) const {
return getEdgeEntry(edgeItr).getCosts();
}
NodeIterator getEdgeNode1Itr(const EdgeIterator &edgeItr) {
return getEdgeEntry(edgeItr).getNode1Itr();
}
ConstNodeIterator getEdgeNode1Itr(const ConstEdgeIterator &edgeItr) const {
return getEdgeEntry(edgeItr).getNode1Itr();
}
NodeIterator getEdgeNode2Itr(const EdgeIterator &edgeItr) {
return getEdgeEntry(edgeItr).getNode2Itr();
}
ConstNodeIterator getEdgeNode2Itr(const ConstEdgeIterator &edgeItr) const {
return getEdgeEntry(edgeItr).getNode2Itr();
}
NodeIterator getEdgeOtherNode(const EdgeIterator &edgeItr,
const NodeIterator &nodeItr) {
EdgeEntry &edgeEntry = getEdgeEntry(edgeItr);
if (nodeItr == edgeEntry.getNode1Itr()) {
return edgeEntry.getNode2Itr();
}
//else
return edgeEntry.getNode1Itr();
}
ConstNodeIterator getEdgeOtherNode(const ConstEdgeIterator &edgeItr,
const ConstNodeIterator &nodeItr) const {
const EdgeEntry &edgeEntry = getEdgeEntry(edgeItr);
if (nodeItr == edgeEntry.getNode1Itr()) {
return edgeEntry.getNode2Itr();
}
//else
return edgeEntry.getNode1Itr();
}
void removeEdge(const EdgeIterator &edgeItr) {
assert(iteratorInRange(edgeItr, edgeList.begin(), edgeList.end()) &&
"Iterator does not belong to this graph!");
--edgeListSize;
// Get the edge entry.
EdgeEntry &edgeEntry = getEdgeEntry(edgeItr);
// Get the nodes entry.
NodeEntry &node1Entry(getNodeEntry(edgeEntry.getNode1Itr())),
&node2Entry(getNodeEntry(edgeEntry.getNode2Itr()));
// Disconnect the edge from the nodes.
node1Entry.removeAdjEdge(edgeEntry.getNode1ThisEdgeItr());
node2Entry.removeAdjEdge(edgeEntry.getNode2ThisEdgeItr());
// Remove the edge from the graph.
edgeList.erase(edgeItr);
}
EdgeIterator edgesBegin() { return edgeList.begin(); }
ConstEdgeIterator edgesBegin() const { return edgeList.begin(); }
EdgeIterator edgesEnd() { return edgeList.end(); }
ConstEdgeIterator edgesEnd() const { return edgeList.end(); }
void clear() {
nodeList.clear();
nodeListSize = 0;
edgeList.clear();
edgeListSize = 0;
idToNodeMap.clear();
}
template <typename OStream>
void printDot(OStream &os) const {
assert(areNodeIDsValid() &&
"Cannot print a .dot of a graph unless IDs have been assigned.");
os << "graph {\n";
for (ConstNodeIterator nodeItr = nodesBegin(), nodeEnd = nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
os << " node" << getNodeID(nodeItr) << " [ label=\""
<< getNodeID(nodeItr) << ": " << getNodeCosts(nodeItr) << "\" ]\n";
}
os << " edge [ len=" << getNumNodes() << " ]\n";
for (ConstEdgeIterator edgeItr = edgesBegin(), edgeEnd = edgesEnd();
edgeItr != edgeEnd; ++edgeItr) {
os << " node" << getNodeID(getEdgeNode1Itr(edgeItr))
<< " -- node" << getNodeID(getEdgeNode2Itr(edgeItr))
<< " [ label=\"";
const Matrix &edgeCosts = getEdgeCosts(edgeItr);
for (unsigned i = 0; i < edgeCosts.getRows(); ++i) {
os << edgeCosts.getRowAsVector(i) << "\\n";
}
os << "\" ]\n";
}
os << "}\n";
}
template <typename OStream>
void printDot(OStream &os) {
if (!areNodeIDsValid()) {
assignNodeIDs();
}
const_cast<const ThisGraphT*>(this)->printDot(os);
}
template <typename OStream>
void dumpTo(OStream &os) const {
typedef ConstNodeIterator ConstNodeID;
assert(areNodeIDsValid() &&
"Cannot dump a graph unless IDs have been assigned.");
for (ConstNodeIterator nItr = nodesBegin(), nEnd = nodesEnd();
nItr != nEnd; ++nItr) {
os << getNodeID(nItr) << "\n";
}
unsigned edgeNumber = 1;
for (ConstEdgeIterator eItr = edgesBegin(), eEnd = edgesEnd();
eItr != eEnd; ++eItr) {
os << edgeNumber++ << ": { "
<< getNodeID(getEdgeNode1Itr(eItr)) << ", "
<< getNodeID(getEdgeNode2Itr(eItr)) << " }\n";
}
}
template <typename OStream>
void dumpTo(OStream &os) {
if (!areNodeIDsValid()) {
assignNodeIDs();
}
const_cast<const ThisGraphT*>(this)->dumpTo(os);
}
};
/// \brief Provides a base from which to derive nodes for GraphBase.
template <typename NodeImpl, typename EdgeImpl>
class NodeBase {
private:
typedef GraphBase<NodeImpl, EdgeImpl> GraphBaseT;
typedef NodeBaseTraits<GraphBaseT> ThisNodeBaseTraits;
public:
typedef typename GraphBaseT::EdgeIterator EdgeIterator;
private:
typedef typename ThisNodeBaseTraits::AdjEdgeList AdjEdgeList;
unsigned degree, id;
Vector costs;
AdjEdgeList adjEdges;
void operator=(const NodeBase& other) {
assert(false && "Can't assign NodeEntrys.");
}
public:
typedef typename ThisNodeBaseTraits::AdjEdgeIterator AdjEdgeIterator;
typedef typename ThisNodeBaseTraits::ConstAdjEdgeIterator
ConstAdjEdgeIterator;
NodeBase(const Vector &costs) : degree(0), costs(costs) {
assert((costs.getLength() > 0) && "Can't have zero-length cost vector.");
}
Vector& getCosts() { return costs; }
const Vector& getCosts() const { return costs; }
unsigned getDegree() const { return degree; }
void setID(unsigned id) { this->id = id; }
unsigned getID() const { return id; }
AdjEdgeIterator addAdjEdge(const EdgeIterator &edgeItr) {
++degree;
return adjEdges.insert(adjEdges.end(), edgeItr);
}
void removeAdjEdge(const AdjEdgeIterator &adjEdgeItr) {
--degree;
adjEdges.erase(adjEdgeItr);
}
AdjEdgeIterator adjEdgesBegin() { return adjEdges.begin(); }
ConstAdjEdgeIterator adjEdgesBegin() const { return adjEdges.begin(); }
AdjEdgeIterator adjEdgesEnd() { return adjEdges.end(); }
ConstAdjEdgeIterator adjEdgesEnd() const { return adjEdges.end(); }
};
template <typename NodeImpl, typename EdgeImpl>
class EdgeBase {
public:
typedef typename GraphBase<NodeImpl, EdgeImpl>::NodeIterator NodeIterator;
typedef typename GraphBase<NodeImpl, EdgeImpl>::EdgeIterator EdgeIterator;
typedef typename NodeImpl::AdjEdgeIterator NodeAdjEdgeIterator;
private:
NodeIterator node1Itr, node2Itr;
NodeAdjEdgeIterator node1ThisEdgeItr, node2ThisEdgeItr;
Matrix costs;
void operator=(const EdgeBase &other) {
assert(false && "Can't assign EdgeEntrys.");
}
public:
EdgeBase(const NodeIterator &node1Itr, const NodeIterator &node2Itr,
const Matrix &costs) :
node1Itr(node1Itr), node2Itr(node2Itr), costs(costs) {
assert((costs.getRows() > 0) && (costs.getCols() > 0) &&
"Can't have zero-dimensioned cost matrices");
}
Matrix& getCosts() { return costs; }
const Matrix& getCosts() const { return costs; }
const NodeIterator& getNode1Itr() const { return node1Itr; }
const NodeIterator& getNode2Itr() const { return node2Itr; }
void setNode1ThisEdgeItr(const NodeAdjEdgeIterator &node1ThisEdgeItr) {
this->node1ThisEdgeItr = node1ThisEdgeItr;
}
const NodeAdjEdgeIterator& getNode1ThisEdgeItr() const {
return node1ThisEdgeItr;
}
void setNode2ThisEdgeItr(const NodeAdjEdgeIterator &node2ThisEdgeItr) {
this->node2ThisEdgeItr = node2ThisEdgeItr;
}
const NodeAdjEdgeIterator& getNode2ThisEdgeItr() const {
return node2ThisEdgeItr;
}
};
}
#endif // LLVM_CODEGEN_PBQP_GRAPHBASE_HPP

View File

@ -0,0 +1,195 @@
#ifndef LLVM_CODEGEN_PBQP_GRAPHGENERATOR_H
#define LLVM_CODEGEN_PBQP_GRAPHGENERATOR_H
#include "PBQPMath.h"
namespace PBQP {
unsigned randRange(unsigned min, unsigned max) {
return min + (rand() % (max - min + 1));
}
class BasicNodeCostsGenerator {
private:
unsigned maxDegree, minCost, maxCost;
public:
BasicNodeCostsGenerator(unsigned maxDegree, unsigned minCost,
unsigned maxCost) :
maxDegree(maxDegree), minCost(minCost), maxCost(maxCost) { }
Vector operator()() const {
Vector v(randRange(1, maxDegree));
for (unsigned i = 0; i < v.getLength(); ++i) {
v[i] = randRange(minCost, maxCost);
}
return v;
};
};
class FixedDegreeSpillCostGenerator {
private:
unsigned degree, spillCostMin, spillCostMax;
public:
FixedDegreeSpillCostGenerator(unsigned degree, unsigned spillCostMin,
unsigned spillCostMax) :
degree(degree), spillCostMin(spillCostMin), spillCostMax(spillCostMax) { }
Vector operator()() const {
Vector v(degree, 0);
v[0] = randRange(spillCostMin, spillCostMax);
return v;
}
};
class BasicEdgeCostsGenerator {
private:
unsigned minCost, maxCost;
public:
BasicEdgeCostsGenerator(unsigned minCost, unsigned maxCost) :
minCost(minCost), maxCost(maxCost) {}
Matrix operator()(const SimpleGraph &g,
const SimpleGraph::ConstNodeIterator &n1,
const SimpleGraph::ConstNodeIterator &n2) const {
Matrix m(g.getNodeCosts(n1).getLength(),
g.getNodeCosts(n2).getLength());
for (unsigned i = 0; i < m.getRows(); ++i) {
for (unsigned j = 0; j < m.getCols(); ++j) {
m[i][j] = randRange(minCost, maxCost);
}
}
return m;
}
};
class InterferenceCostsGenerator {
public:
Matrix operator()(const SimpleGraph &g,
const SimpleGraph::ConstNodeIterator &n1,
const SimpleGraph::ConstNodeIterator &n2) const {
unsigned len = g.getNodeCosts(n1).getLength();
assert(len == g.getNodeCosts(n2).getLength());
Matrix m(len, len);
m[0][0] = 0;
for (unsigned i = 1; i < len; ++i) {
m[i][i] = std::numeric_limits<PBQPNum>::infinity();
}
return m;
}
};
class RingEdgeGenerator {
public:
template <typename EdgeCostsGenerator>
void operator()(SimpleGraph &g, EdgeCostsGenerator &edgeCostsGen) {
assert(g.areNodeIDsValid() && "Graph must have valid node IDs.");
if (g.getNumNodes() < 2)
return;
if (g.getNumNodes() == 2) {
SimpleGraph::NodeIterator n1 = g.getNodeItr(0),
n2 = g.getNodeItr(1);
g.addEdge(n1, n2, edgeCostsGen(g, n1, n2));
return;
}
// Else |V| > 2:
for (unsigned i = 0; i < g.getNumNodes(); ++i) {
SimpleGraph::NodeIterator
n1 = g.getNodeItr(i),
n2 = g.getNodeItr((i + 1) % g.getNumNodes());
g.addEdge(n1, n2, edgeCostsGen(g, n1, n2));
}
}
};
class FullyConnectedEdgeGenerator {
public:
template <typename EdgeCostsGenerator>
void operator()(SimpleGraph &g, EdgeCostsGenerator &edgeCostsGen) {
assert(g.areNodeIDsValid() && "Graph must have valid node IDs.");
for (unsigned i = 0; i < g.getNumNodes(); ++i) {
for (unsigned j = i + 1; j < g.getNumNodes(); ++j) {
SimpleGraph::NodeIterator
n1 = g.getNodeItr(i),
n2 = g.getNodeItr(j);
g.addEdge(n1, n2, edgeCostsGen(g, n1, n2));
}
}
}
};
class RandomEdgeGenerator {
public:
template <typename EdgeCostsGenerator>
void operator()(SimpleGraph &g, EdgeCostsGenerator &edgeCostsGen) {
assert(g.areNodeIDsValid() && "Graph must have valid node IDs.");
for (unsigned i = 0; i < g.getNumNodes(); ++i) {
for (unsigned j = i + 1; j < g.getNumNodes(); ++j) {
if (rand() % 2 == 0) {
SimpleGraph::NodeIterator
n1 = g.getNodeItr(i),
n2 = g.getNodeItr(j);
g.addEdge(n1, n2, edgeCostsGen(g, n1, n2));
}
}
}
}
};
template <typename NodeCostsGenerator,
typename EdgesGenerator,
typename EdgeCostsGenerator>
SimpleGraph createRandomGraph(unsigned numNodes,
NodeCostsGenerator nodeCostsGen,
EdgesGenerator edgeGen,
EdgeCostsGenerator edgeCostsGen) {
SimpleGraph g;
for (unsigned n = 0; n < numNodes; ++n) {
g.addNode(nodeCostsGen());
}
g.assignNodeIDs();
edgeGen(g, edgeCostsGen);
return g;
}
}
#endif // LLVM_CODEGEN_PBQP_GRAPHGENERATOR_H

View File

@ -0,0 +1,799 @@
#ifndef LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
#define LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
#include "Solver.h"
#include "AnnotatedGraph.h"
#include <limits>
#include <iostream>
namespace PBQP {
/// \brief Important types for the HeuristicSolverImpl.
///
/// Declared seperately to allow access to heuristic classes before the solver
/// is fully constructed.
template <typename HeuristicNodeData, typename HeuristicEdgeData>
class HSITypes {
public:
class NodeData;
class EdgeData;
typedef AnnotatedGraph<NodeData, EdgeData> SolverGraph;
typedef typename SolverGraph::NodeIterator GraphNodeIterator;
typedef typename SolverGraph::EdgeIterator GraphEdgeIterator;
typedef typename SolverGraph::AdjEdgeIterator GraphAdjEdgeIterator;
typedef std::list<GraphNodeIterator> NodeList;
typedef typename NodeList::iterator NodeListIterator;
typedef std::vector<GraphNodeIterator> NodeStack;
typedef typename NodeStack::iterator NodeStackIterator;
class NodeData {
friend class EdgeData;
private:
typedef std::list<GraphEdgeIterator> LinksList;
unsigned numLinks;
LinksList links, solvedLinks;
NodeListIterator bucketItr;
HeuristicNodeData heuristicData;
public:
typedef typename LinksList::iterator AdjLinkIterator;
private:
AdjLinkIterator addLink(const GraphEdgeIterator &edgeItr) {
++numLinks;
return links.insert(links.end(), edgeItr);
}
void delLink(const AdjLinkIterator &adjLinkItr) {
--numLinks;
links.erase(adjLinkItr);
}
public:
NodeData() : numLinks(0) {}
unsigned getLinkDegree() const { return numLinks; }
HeuristicNodeData& getHeuristicData() { return heuristicData; }
const HeuristicNodeData& getHeuristicData() const {
return heuristicData;
}
void setBucketItr(const NodeListIterator &bucketItr) {
this->bucketItr = bucketItr;
}
const NodeListIterator& getBucketItr() const {
return bucketItr;
}
AdjLinkIterator adjLinksBegin() {
return links.begin();
}
AdjLinkIterator adjLinksEnd() {
return links.end();
}
void addSolvedLink(const GraphEdgeIterator &solvedLinkItr) {
solvedLinks.push_back(solvedLinkItr);
}
AdjLinkIterator solvedLinksBegin() {
return solvedLinks.begin();
}
AdjLinkIterator solvedLinksEnd() {
return solvedLinks.end();
}
};
class EdgeData {
private:
SolverGraph &g;
GraphNodeIterator node1Itr, node2Itr;
HeuristicEdgeData heuristicData;
typename NodeData::AdjLinkIterator node1ThisEdgeItr, node2ThisEdgeItr;
public:
EdgeData(SolverGraph &g) : g(g) {}
HeuristicEdgeData& getHeuristicData() { return heuristicData; }
const HeuristicEdgeData& getHeuristicData() const {
return heuristicData;
}
void setup(const GraphEdgeIterator &thisEdgeItr) {
node1Itr = g.getEdgeNode1Itr(thisEdgeItr);
node2Itr = g.getEdgeNode2Itr(thisEdgeItr);
node1ThisEdgeItr = g.getNodeData(node1Itr).addLink(thisEdgeItr);
node2ThisEdgeItr = g.getNodeData(node2Itr).addLink(thisEdgeItr);
}
void unlink() {
g.getNodeData(node1Itr).delLink(node1ThisEdgeItr);
g.getNodeData(node2Itr).delLink(node2ThisEdgeItr);
}
};
};
template <typename Heuristic>
class HeuristicSolverImpl {
public:
// Typedefs to make life easier:
typedef HSITypes<typename Heuristic::NodeData,
typename Heuristic::EdgeData> HSIT;
typedef typename HSIT::SolverGraph SolverGraph;
typedef typename HSIT::NodeData NodeData;
typedef typename HSIT::EdgeData EdgeData;
typedef typename HSIT::GraphNodeIterator GraphNodeIterator;
typedef typename HSIT::GraphEdgeIterator GraphEdgeIterator;
typedef typename HSIT::GraphAdjEdgeIterator GraphAdjEdgeIterator;
typedef typename HSIT::NodeList NodeList;
typedef typename HSIT::NodeListIterator NodeListIterator;
typedef std::vector<GraphNodeIterator> NodeStack;
typedef typename NodeStack::iterator NodeStackIterator;
/*!
* \brief Constructor, which performs all the actual solver work.
*/
HeuristicSolverImpl(const SimpleGraph &orig) :
solution(orig.getNumNodes(), true)
{
copyGraph(orig);
simplify();
setup();
computeSolution();
computeSolutionCost(orig);
}
/*!
* \brief Returns the graph for this solver.
*/
SolverGraph& getGraph() { return g; }
/*!
* \brief Return the solution found by this solver.
*/
const Solution& getSolution() const { return solution; }
private:
/*!
* \brief Add the given node to the appropriate bucket for its link
* degree.
*/
void addToBucket(const GraphNodeIterator &nodeItr) {
NodeData &nodeData = g.getNodeData(nodeItr);
switch (nodeData.getLinkDegree()) {
case 0: nodeData.setBucketItr(
r0Bucket.insert(r0Bucket.end(), nodeItr));
break;
case 1: nodeData.setBucketItr(
r1Bucket.insert(r1Bucket.end(), nodeItr));
break;
case 2: nodeData.setBucketItr(
r2Bucket.insert(r2Bucket.end(), nodeItr));
break;
default: heuristic.addToRNBucket(nodeItr);
break;
}
}
/*!
* \brief Remove the given node from the appropriate bucket for its link
* degree.
*/
void removeFromBucket(const GraphNodeIterator &nodeItr) {
NodeData &nodeData = g.getNodeData(nodeItr);
switch (nodeData.getLinkDegree()) {
case 0: r0Bucket.erase(nodeData.getBucketItr()); break;
case 1: r1Bucket.erase(nodeData.getBucketItr()); break;
case 2: r2Bucket.erase(nodeData.getBucketItr()); break;
default: heuristic.removeFromRNBucket(nodeItr); break;
}
}
public:
/*!
* \brief Add a link.
*/
void addLink(const GraphEdgeIterator &edgeItr) {
g.getEdgeData(edgeItr).setup(edgeItr);
if ((g.getNodeData(g.getEdgeNode1Itr(edgeItr)).getLinkDegree() > 2) ||
(g.getNodeData(g.getEdgeNode2Itr(edgeItr)).getLinkDegree() > 2)) {
heuristic.handleAddLink(edgeItr);
}
}
/*!
* \brief Remove link, update info for node.
*
* Only updates information for the given node, since usually the other
* is about to be removed.
*/
void removeLink(const GraphEdgeIterator &edgeItr,
const GraphNodeIterator &nodeItr) {
if (g.getNodeData(nodeItr).getLinkDegree() > 2) {
heuristic.handleRemoveLink(edgeItr, nodeItr);
}
g.getEdgeData(edgeItr).unlink();
}
/*!
* \brief Remove link, update info for both nodes. Useful for R2 only.
*/
void removeLinkR2(const GraphEdgeIterator &edgeItr) {
GraphNodeIterator node1Itr = g.getEdgeNode1Itr(edgeItr);
if (g.getNodeData(node1Itr).getLinkDegree() > 2) {
heuristic.handleRemoveLink(edgeItr, node1Itr);
}
removeLink(edgeItr, g.getEdgeNode2Itr(edgeItr));
}
/*!
* \brief Removes all links connected to the given node.
*/
void unlinkNode(const GraphNodeIterator &nodeItr) {
NodeData &nodeData = g.getNodeData(nodeItr);
typedef std::vector<GraphEdgeIterator> TempEdgeList;
TempEdgeList edgesToUnlink;
edgesToUnlink.reserve(nodeData.getLinkDegree());
// Copy adj edges into a temp vector. We want to destroy them during
// the unlink, and we can't do that while we're iterating over them.
std::copy(nodeData.adjLinksBegin(), nodeData.adjLinksEnd(),
std::back_inserter(edgesToUnlink));
for (typename TempEdgeList::iterator
edgeItr = edgesToUnlink.begin(), edgeEnd = edgesToUnlink.end();
edgeItr != edgeEnd; ++edgeItr) {
GraphNodeIterator otherNode = g.getEdgeOtherNode(*edgeItr, nodeItr);
removeFromBucket(otherNode);
removeLink(*edgeItr, otherNode);
addToBucket(otherNode);
}
}
/*!
* \brief Push the given node onto the stack to be solved with
* backpropagation.
*/
void pushStack(const GraphNodeIterator &nodeItr) {
stack.push_back(nodeItr);
}
/*!
* \brief Set the solution of the given node.
*/
void setSolution(const GraphNodeIterator &nodeItr, unsigned solIndex) {
solution.setSelection(g.getNodeID(nodeItr), solIndex);
for (GraphAdjEdgeIterator adjEdgeItr = g.adjEdgesBegin(nodeItr),
adjEdgeEnd = g.adjEdgesEnd(nodeItr);
adjEdgeItr != adjEdgeEnd; ++adjEdgeItr) {
GraphEdgeIterator edgeItr(*adjEdgeItr);
GraphNodeIterator adjNodeItr(g.getEdgeOtherNode(edgeItr, nodeItr));
g.getNodeData(adjNodeItr).addSolvedLink(edgeItr);
}
}
private:
SolverGraph g;
Heuristic heuristic;
Solution solution;
NodeList r0Bucket,
r1Bucket,
r2Bucket;
NodeStack stack;
// Copy the SimpleGraph into an annotated graph which we can use for reduction.
void copyGraph(const SimpleGraph &orig) {
assert((g.getNumEdges() == 0) && (g.getNumNodes() == 0) &&
"Graph should be empty prior to solver setup.");
assert(orig.areNodeIDsValid() &&
"Cannot copy from a graph with invalid node IDs.");
std::vector<GraphNodeIterator> newNodeItrs;
for (unsigned nodeID = 0; nodeID < orig.getNumNodes(); ++nodeID) {
newNodeItrs.push_back(
g.addNode(orig.getNodeCosts(orig.getNodeItr(nodeID)), NodeData()));
}
for (SimpleGraph::ConstEdgeIterator
origEdgeItr = orig.edgesBegin(), origEdgeEnd = orig.edgesEnd();
origEdgeItr != origEdgeEnd; ++origEdgeItr) {
unsigned id1 = orig.getNodeID(orig.getEdgeNode1Itr(origEdgeItr)),
id2 = orig.getNodeID(orig.getEdgeNode2Itr(origEdgeItr));
g.addEdge(newNodeItrs[id1], newNodeItrs[id2],
orig.getEdgeCosts(origEdgeItr), EdgeData(g));
}
// Assign IDs to the new nodes using the ordering from the old graph,
// this will lead to nodes in the new graph getting the same ID as the
// corresponding node in the old graph.
g.assignNodeIDs(newNodeItrs);
}
// Simplify the annotated graph by eliminating independent edges and trivial
// nodes.
void simplify() {
disconnectTrivialNodes();
eliminateIndependentEdges();
}
// Eliminate trivial nodes.
void disconnectTrivialNodes() {
for (GraphNodeIterator nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
if (g.getNodeCosts(nodeItr).getLength() == 1) {
std::vector<GraphEdgeIterator> edgesToRemove;
for (GraphAdjEdgeIterator adjEdgeItr = g.adjEdgesBegin(nodeItr),
adjEdgeEnd = g.adjEdgesEnd(nodeItr);
adjEdgeItr != adjEdgeEnd; ++adjEdgeItr) {
GraphEdgeIterator edgeItr = *adjEdgeItr;
if (g.getEdgeNode1Itr(edgeItr) == nodeItr) {
GraphNodeIterator otherNodeItr = g.getEdgeNode2Itr(edgeItr);
g.getNodeCosts(otherNodeItr) +=
g.getEdgeCosts(edgeItr).getRowAsVector(0);
}
else {
GraphNodeIterator otherNodeItr = g.getEdgeNode1Itr(edgeItr);
g.getNodeCosts(otherNodeItr) +=
g.getEdgeCosts(edgeItr).getColAsVector(0);
}
edgesToRemove.push_back(edgeItr);
}
while (!edgesToRemove.empty()) {
g.removeEdge(edgesToRemove.back());
edgesToRemove.pop_back();
}
}
}
}
void eliminateIndependentEdges() {
std::vector<GraphEdgeIterator> edgesToProcess;
for (GraphEdgeIterator edgeItr = g.edgesBegin(), edgeEnd = g.edgesEnd();
edgeItr != edgeEnd; ++edgeItr) {
edgesToProcess.push_back(edgeItr);
}
while (!edgesToProcess.empty()) {
tryToEliminateEdge(edgesToProcess.back());
edgesToProcess.pop_back();
}
}
void tryToEliminateEdge(const GraphEdgeIterator &edgeItr) {
if (tryNormaliseEdgeMatrix(edgeItr)) {
g.removeEdge(edgeItr);
}
}
bool tryNormaliseEdgeMatrix(const GraphEdgeIterator &edgeItr) {
Matrix &edgeCosts = g.getEdgeCosts(edgeItr);
Vector &uCosts = g.getNodeCosts(g.getEdgeNode1Itr(edgeItr)),
&vCosts = g.getNodeCosts(g.getEdgeNode2Itr(edgeItr));
for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
PBQPNum rowMin = edgeCosts.getRowMin(r);
uCosts[r] += rowMin;
if (rowMin != std::numeric_limits<PBQPNum>::infinity()) {
edgeCosts.subFromRow(r, rowMin);
}
else {
edgeCosts.setRow(r, 0);
}
}
for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
PBQPNum colMin = edgeCosts.getColMin(c);
vCosts[c] += colMin;
if (colMin != std::numeric_limits<PBQPNum>::infinity()) {
edgeCosts.subFromCol(c, colMin);
}
else {
edgeCosts.setCol(c, 0);
}
}
return edgeCosts.isZero();
}
void setup() {
setupLinks();
heuristic.initialise(*this);
setupBuckets();
}
void setupLinks() {
for (GraphEdgeIterator edgeItr = g.edgesBegin(), edgeEnd = g.edgesEnd();
edgeItr != edgeEnd; ++edgeItr) {
g.getEdgeData(edgeItr).setup(edgeItr);
}
}
void setupBuckets() {
for (GraphNodeIterator nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
addToBucket(nodeItr);
}
}
void computeSolution() {
assert(g.areNodeIDsValid() &&
"Nodes cannot be added/removed during reduction.");
reduce();
computeTrivialSolutions();
backpropagate();
}
void printNode(const GraphNodeIterator &nodeItr) {
std::cerr << "Node " << g.getNodeID(nodeItr) << " (" << &*nodeItr << "):\n"
<< " costs = " << g.getNodeCosts(nodeItr) << "\n"
<< " link degree = " << g.getNodeData(nodeItr).getLinkDegree() << "\n"
<< " links = [ ";
for (typename HSIT::NodeData::AdjLinkIterator
aeItr = g.getNodeData(nodeItr).adjLinksBegin(),
aeEnd = g.getNodeData(nodeItr).adjLinksEnd();
aeItr != aeEnd; ++aeItr) {
std::cerr << "(" << g.getNodeID(g.getEdgeNode1Itr(*aeItr))
<< ", " << g.getNodeID(g.getEdgeNode2Itr(*aeItr))
<< ") ";
}
std::cout << "]\n";
}
void dumpState() {
std::cerr << "\n";
for (GraphNodeIterator nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
printNode(nodeItr);
}
NodeList* buckets[] = { &r0Bucket, &r1Bucket, &r2Bucket };
for (unsigned b = 0; b < 3; ++b) {
NodeList &bucket = *buckets[b];
std::cerr << "Bucket " << b << ": [ ";
for (NodeListIterator nItr = bucket.begin(), nEnd = bucket.end();
nItr != nEnd; ++nItr) {
std::cerr << g.getNodeID(*nItr) << " ";
}
std::cerr << "]\n";
}
std::cerr << "Stack: [ ";
for (NodeStackIterator nsItr = stack.begin(), nsEnd = stack.end();
nsItr != nsEnd; ++nsItr) {
std::cerr << g.getNodeID(*nsItr) << " ";
}
std::cerr << "]\n";
}
void reduce() {
bool reductionFinished = r1Bucket.empty() && r2Bucket.empty() &&
heuristic.rNBucketEmpty();
while (!reductionFinished) {
if (!r1Bucket.empty()) {
processR1();
}
else if (!r2Bucket.empty()) {
processR2();
}
else if (!heuristic.rNBucketEmpty()) {
solution.setProvedOptimal(false);
solution.incRNReductions();
heuristic.processRN();
}
else reductionFinished = true;
}
};
void processR1() {
// Remove the first node in the R0 bucket:
GraphNodeIterator xNodeItr = r1Bucket.front();
r1Bucket.pop_front();
solution.incR1Reductions();
//std::cerr << "Applying R1 to " << g.getNodeID(xNodeItr) << "\n";
assert((g.getNodeData(xNodeItr).getLinkDegree() == 1) &&
"Node in R1 bucket has degree != 1");
GraphEdgeIterator edgeItr = *g.getNodeData(xNodeItr).adjLinksBegin();
const Matrix &edgeCosts = g.getEdgeCosts(edgeItr);
const Vector &xCosts = g.getNodeCosts(xNodeItr);
unsigned xLen = xCosts.getLength();
// Duplicate a little code to avoid transposing matrices:
if (xNodeItr == g.getEdgeNode1Itr(edgeItr)) {
GraphNodeIterator yNodeItr = g.getEdgeNode2Itr(edgeItr);
Vector &yCosts = g.getNodeCosts(yNodeItr);
unsigned yLen = yCosts.getLength();
for (unsigned j = 0; j < yLen; ++j) {
PBQPNum min = edgeCosts[0][j] + xCosts[0];
for (unsigned i = 1; i < xLen; ++i) {
PBQPNum c = edgeCosts[i][j] + xCosts[i];
if (c < min)
min = c;
}
yCosts[j] += min;
}
}
else {
GraphNodeIterator yNodeItr = g.getEdgeNode1Itr(edgeItr);
Vector &yCosts = g.getNodeCosts(yNodeItr);
unsigned yLen = yCosts.getLength();
for (unsigned i = 0; i < yLen; ++i) {
PBQPNum min = edgeCosts[i][0] + xCosts[0];
for (unsigned j = 1; j < xLen; ++j) {
PBQPNum c = edgeCosts[i][j] + xCosts[j];
if (c < min)
min = c;
}
yCosts[i] += min;
}
}
unlinkNode(xNodeItr);
pushStack(xNodeItr);
}
void processR2() {
GraphNodeIterator xNodeItr = r2Bucket.front();
r2Bucket.pop_front();
solution.incR2Reductions();
// Unlink is unsafe here. At some point it may optimistically more a node
// to a lower-degree list when its degree will later rise, or vice versa,
// violating the assumption that node degrees monotonically decrease
// during the reduction phase. Instead we'll bucket shuffle manually.
pushStack(xNodeItr);
assert((g.getNodeData(xNodeItr).getLinkDegree() == 2) &&
"Node in R2 bucket has degree != 2");
const Vector &xCosts = g.getNodeCosts(xNodeItr);
typename NodeData::AdjLinkIterator tempItr =
g.getNodeData(xNodeItr).adjLinksBegin();
GraphEdgeIterator yxEdgeItr = *tempItr,
zxEdgeItr = *(++tempItr);
GraphNodeIterator yNodeItr = g.getEdgeOtherNode(yxEdgeItr, xNodeItr),
zNodeItr = g.getEdgeOtherNode(zxEdgeItr, xNodeItr);
removeFromBucket(yNodeItr);
removeFromBucket(zNodeItr);
removeLink(yxEdgeItr, yNodeItr);
removeLink(zxEdgeItr, zNodeItr);
// Graph some of the costs:
bool flipEdge1 = (g.getEdgeNode1Itr(yxEdgeItr) == xNodeItr),
flipEdge2 = (g.getEdgeNode1Itr(zxEdgeItr) == xNodeItr);
const Matrix *yxCosts = flipEdge1 ?
new Matrix(g.getEdgeCosts(yxEdgeItr).transpose()) :
&g.getEdgeCosts(yxEdgeItr),
*zxCosts = flipEdge2 ?
new Matrix(g.getEdgeCosts(zxEdgeItr).transpose()) :
&g.getEdgeCosts(zxEdgeItr);
unsigned xLen = xCosts.getLength(),
yLen = yxCosts->getRows(),
zLen = zxCosts->getRows();
// Compute delta:
Matrix delta(yLen, zLen);
for (unsigned i = 0; i < yLen; ++i) {
for (unsigned j = 0; j < zLen; ++j) {
PBQPNum min = (*yxCosts)[i][0] + (*zxCosts)[j][0] + xCosts[0];
for (unsigned k = 1; k < xLen; ++k) {
PBQPNum c = (*yxCosts)[i][k] + (*zxCosts)[j][k] + xCosts[k];
if (c < min) {
min = c;
}
}
delta[i][j] = min;
}
}
if (flipEdge1)
delete yxCosts;
if (flipEdge2)
delete zxCosts;
// Deal with the potentially induced yz edge.
GraphEdgeIterator yzEdgeItr = g.findEdge(yNodeItr, zNodeItr);
if (yzEdgeItr == g.edgesEnd()) {
yzEdgeItr = g.addEdge(yNodeItr, zNodeItr, delta, EdgeData(g));
}
else {
// There was an edge, but we're going to screw with it. Delete the old
// link, update the costs. We'll re-link it later.
removeLinkR2(yzEdgeItr);
g.getEdgeCosts(yzEdgeItr) +=
(yNodeItr == g.getEdgeNode1Itr(yzEdgeItr)) ?
delta : delta.transpose();
}
bool nullCostEdge = tryNormaliseEdgeMatrix(yzEdgeItr);
// Nulled the edge, remove it entirely.
if (nullCostEdge) {
g.removeEdge(yzEdgeItr);
}
else {
// Edge remains - re-link it.
addLink(yzEdgeItr);
}
addToBucket(yNodeItr);
addToBucket(zNodeItr);
}
void computeTrivialSolutions() {
for (NodeListIterator r0Itr = r0Bucket.begin(), r0End = r0Bucket.end();
r0Itr != r0End; ++r0Itr) {
GraphNodeIterator nodeItr = *r0Itr;
solution.incR0Reductions();
setSolution(nodeItr, g.getNodeCosts(nodeItr).minIndex());
}
}
void backpropagate() {
while (!stack.empty()) {
computeSolution(stack.back());
stack.pop_back();
}
}
void computeSolution(const GraphNodeIterator &nodeItr) {
NodeData &nodeData = g.getNodeData(nodeItr);
Vector v(g.getNodeCosts(nodeItr));
// Solve based on existing links.
for (typename NodeData::AdjLinkIterator
solvedLinkItr = nodeData.solvedLinksBegin(),
solvedLinkEnd = nodeData.solvedLinksEnd();
solvedLinkItr != solvedLinkEnd; ++solvedLinkItr) {
GraphEdgeIterator solvedEdgeItr(*solvedLinkItr);
Matrix &edgeCosts = g.getEdgeCosts(solvedEdgeItr);
if (nodeItr == g.getEdgeNode1Itr(solvedEdgeItr)) {
GraphNodeIterator adjNode(g.getEdgeNode2Itr(solvedEdgeItr));
unsigned adjSolution =
solution.getSelection(g.getNodeID(adjNode));
v += edgeCosts.getColAsVector(adjSolution);
}
else {
GraphNodeIterator adjNode(g.getEdgeNode1Itr(solvedEdgeItr));
unsigned adjSolution =
solution.getSelection(g.getNodeID(adjNode));
v += edgeCosts.getRowAsVector(adjSolution);
}
}
setSolution(nodeItr, v.minIndex());
}
void computeSolutionCost(const SimpleGraph &orig) {
PBQPNum cost = 0.0;
for (SimpleGraph::ConstNodeIterator
nodeItr = orig.nodesBegin(), nodeEnd = orig.nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
unsigned nodeId = orig.getNodeID(nodeItr);
cost += orig.getNodeCosts(nodeItr)[solution.getSelection(nodeId)];
}
for (SimpleGraph::ConstEdgeIterator
edgeItr = orig.edgesBegin(), edgeEnd = orig.edgesEnd();
edgeItr != edgeEnd; ++edgeItr) {
SimpleGraph::ConstNodeIterator n1 = orig.getEdgeNode1Itr(edgeItr),
n2 = orig.getEdgeNode2Itr(edgeItr);
unsigned sol1 = solution.getSelection(orig.getNodeID(n1)),
sol2 = solution.getSelection(orig.getNodeID(n2));
cost += orig.getEdgeCosts(edgeItr)[sol1][sol2];
}
solution.setSolutionCost(cost);
}
};
template <typename Heuristic>
class HeuristicSolver : public Solver {
public:
Solution solve(const SimpleGraph &g) const {
HeuristicSolverImpl<Heuristic> solverImpl(g);
return solverImpl.getSolution();
}
};
}
#endif // LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H

View File

@ -0,0 +1,385 @@
#ifndef LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
#define LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
#include "../HeuristicSolver.h"
#include <set>
namespace PBQP {
namespace Heuristics {
class Briggs {
public:
class NodeData;
class EdgeData;
private:
typedef HeuristicSolverImpl<Briggs> Solver;
typedef HSITypes<NodeData, EdgeData> HSIT;
typedef HSIT::SolverGraph SolverGraph;
typedef HSIT::GraphNodeIterator GraphNodeIterator;
typedef HSIT::GraphEdgeIterator GraphEdgeIterator;
class LinkDegreeComparator {
public:
LinkDegreeComparator() : g(0) {}
LinkDegreeComparator(SolverGraph *g) : g(g) {}
bool operator()(const GraphNodeIterator &node1Itr,
const GraphNodeIterator &node2Itr) const {
assert((g != 0) && "Graph object not set, cannot access node data.");
unsigned n1Degree = g->getNodeData(node1Itr).getLinkDegree(),
n2Degree = g->getNodeData(node2Itr).getLinkDegree();
if (n1Degree > n2Degree) {
return true;
}
else if (n1Degree < n2Degree) {
return false;
}
// else they're "equal" by degree, differentiate based on ID.
return g->getNodeID(node1Itr) < g->getNodeID(node2Itr);
}
private:
SolverGraph *g;
};
class SpillPriorityComparator {
public:
SpillPriorityComparator() : g(0) {}
SpillPriorityComparator(SolverGraph *g) : g(g) {}
bool operator()(const GraphNodeIterator &node1Itr,
const GraphNodeIterator &node2Itr) const {
assert((g != 0) && "Graph object not set, cannot access node data.");
PBQPNum cost1 =
g->getNodeCosts(node1Itr)[0] /
g->getNodeData(node1Itr).getLinkDegree(),
cost2 =
g->getNodeCosts(node2Itr)[0] /
g->getNodeData(node2Itr).getLinkDegree();
if (cost1 < cost2) {
return true;
}
else if (cost1 > cost2) {
return false;
}
// else they'er "equal" again, differentiate based on address again.
return g->getNodeID(node1Itr) < g->getNodeID(node2Itr);
}
private:
SolverGraph *g;
};
typedef std::set<GraphNodeIterator, LinkDegreeComparator>
RNAllocableNodeList;
typedef RNAllocableNodeList::iterator RNAllocableNodeListIterator;
typedef std::set<GraphNodeIterator, SpillPriorityComparator>
RNUnallocableNodeList;
typedef RNUnallocableNodeList::iterator RNUnallocableNodeListIterator;
public:
class NodeData {
private:
RNAllocableNodeListIterator rNAllocableNodeListItr;
RNUnallocableNodeListIterator rNUnallocableNodeListItr;
unsigned numRegOptions, numDenied, numSafe;
std::vector<unsigned> unsafeDegrees;
bool allocable;
void addRemoveLink(SolverGraph &g, const GraphNodeIterator &nodeItr,
const GraphEdgeIterator &edgeItr, bool add) {
//assume we're adding...
unsigned udTarget = 0, dir = 1;
if (!add) {
udTarget = 1;
dir = -1;
}
EdgeData &linkEdgeData = g.getEdgeData(edgeItr).getHeuristicData();
EdgeData::ConstUnsafeIterator edgeUnsafeBegin, edgeUnsafeEnd;
if (nodeItr == g.getEdgeNode1Itr(edgeItr)) {
numDenied += (dir * linkEdgeData.getWorstDegree());
edgeUnsafeBegin = linkEdgeData.unsafeBegin();
edgeUnsafeEnd = linkEdgeData.unsafeEnd();
}
else {
numDenied += (dir * linkEdgeData.getReverseWorstDegree());
edgeUnsafeBegin = linkEdgeData.reverseUnsafeBegin();
edgeUnsafeEnd = linkEdgeData.reverseUnsafeEnd();
}
assert((unsafeDegrees.size() ==
static_cast<unsigned>(
std::distance(edgeUnsafeBegin, edgeUnsafeEnd)))
&& "Unsafe array size mismatch.");
std::vector<unsigned>::iterator unsafeDegreesItr =
unsafeDegrees.begin();
for (EdgeData::ConstUnsafeIterator edgeUnsafeItr = edgeUnsafeBegin;
edgeUnsafeItr != edgeUnsafeEnd;
++edgeUnsafeItr, ++unsafeDegreesItr) {
if ((*edgeUnsafeItr == 1) && (*unsafeDegreesItr == udTarget)) {
numSafe -= dir;
}
*unsafeDegreesItr += (dir * (*edgeUnsafeItr));
}
allocable = (numDenied < numRegOptions) || (numSafe > 0);
}
public:
void setup(SolverGraph &g, const GraphNodeIterator &nodeItr) {
numRegOptions = g.getNodeCosts(nodeItr).getLength() - 1;
numSafe = numRegOptions; // Optimistic, correct below.
numDenied = 0; // Also optimistic.
unsafeDegrees.resize(numRegOptions, 0);
HSIT::NodeData &nodeData = g.getNodeData(nodeItr);
for (HSIT::NodeData::AdjLinkIterator
adjLinkItr = nodeData.adjLinksBegin(),
adjLinkEnd = nodeData.adjLinksEnd();
adjLinkItr != adjLinkEnd; ++adjLinkItr) {
addRemoveLink(g, nodeItr, *adjLinkItr, true);
}
}
bool isAllocable() const { return allocable; }
void handleAddLink(SolverGraph &g, const GraphNodeIterator &nodeItr,
const GraphEdgeIterator &adjEdge) {
addRemoveLink(g, nodeItr, adjEdge, true);
}
void handleRemoveLink(SolverGraph &g, const GraphNodeIterator &nodeItr,
const GraphEdgeIterator &adjEdge) {
addRemoveLink(g, nodeItr, adjEdge, false);
}
void setRNAllocableNodeListItr(
const RNAllocableNodeListIterator &rNAllocableNodeListItr) {
this->rNAllocableNodeListItr = rNAllocableNodeListItr;
}
RNAllocableNodeListIterator getRNAllocableNodeListItr() const {
return rNAllocableNodeListItr;
}
void setRNUnallocableNodeListItr(
const RNUnallocableNodeListIterator &rNUnallocableNodeListItr) {
this->rNUnallocableNodeListItr = rNUnallocableNodeListItr;
}
RNUnallocableNodeListIterator getRNUnallocableNodeListItr() const {
return rNUnallocableNodeListItr;
}
};
class EdgeData {
private:
typedef std::vector<unsigned> UnsafeArray;
unsigned worstDegree,
reverseWorstDegree;
UnsafeArray unsafe, reverseUnsafe;
public:
EdgeData() : worstDegree(0), reverseWorstDegree(0) {}
typedef UnsafeArray::const_iterator ConstUnsafeIterator;
void setup(SolverGraph &g, const GraphEdgeIterator &edgeItr) {
const Matrix &edgeCosts = g.getEdgeCosts(edgeItr);
unsigned numRegs = edgeCosts.getRows() - 1,
numReverseRegs = edgeCosts.getCols() - 1;
unsafe.resize(numRegs, 0);
reverseUnsafe.resize(numReverseRegs, 0);
std::vector<unsigned> rowInfCounts(numRegs, 0),
colInfCounts(numReverseRegs, 0);
for (unsigned i = 0; i < numRegs; ++i) {
for (unsigned j = 0; j < numReverseRegs; ++j) {
if (edgeCosts[i + 1][j + 1] ==
std::numeric_limits<PBQPNum>::infinity()) {
unsafe[i] = 1;
reverseUnsafe[j] = 1;
++rowInfCounts[i];
++colInfCounts[j];
if (colInfCounts[j] > worstDegree) {
worstDegree = colInfCounts[j];
}
if (rowInfCounts[i] > reverseWorstDegree) {
reverseWorstDegree = rowInfCounts[i];
}
}
}
}
}
unsigned getWorstDegree() const { return worstDegree; }
unsigned getReverseWorstDegree() const { return reverseWorstDegree; }
ConstUnsafeIterator unsafeBegin() const { return unsafe.begin(); }
ConstUnsafeIterator unsafeEnd() const { return unsafe.end(); }
ConstUnsafeIterator reverseUnsafeBegin() const {
return reverseUnsafe.begin();
}
ConstUnsafeIterator reverseUnsafeEnd() const {
return reverseUnsafe.end();
}
};
void initialise(Solver &solver) {
this->s = &solver;
g = &s->getGraph();
rNAllocableBucket = RNAllocableNodeList(LinkDegreeComparator(g));
rNUnallocableBucket =
RNUnallocableNodeList(SpillPriorityComparator(g));
for (GraphEdgeIterator
edgeItr = g->edgesBegin(), edgeEnd = g->edgesEnd();
edgeItr != edgeEnd; ++edgeItr) {
g->getEdgeData(edgeItr).getHeuristicData().setup(*g, edgeItr);
}
for (GraphNodeIterator
nodeItr = g->nodesBegin(), nodeEnd = g->nodesEnd();
nodeItr != nodeEnd; ++nodeItr) {
g->getNodeData(nodeItr).getHeuristicData().setup(*g, nodeItr);
}
}
void addToRNBucket(const GraphNodeIterator &nodeItr) {
NodeData &nodeData = g->getNodeData(nodeItr).getHeuristicData();
if (nodeData.isAllocable()) {
nodeData.setRNAllocableNodeListItr(
rNAllocableBucket.insert(rNAllocableBucket.begin(), nodeItr));
}
else {
nodeData.setRNUnallocableNodeListItr(
rNUnallocableBucket.insert(rNUnallocableBucket.begin(), nodeItr));
}
}
void removeFromRNBucket(const GraphNodeIterator &nodeItr) {
NodeData &nodeData = g->getNodeData(nodeItr).getHeuristicData();
if (nodeData.isAllocable()) {
rNAllocableBucket.erase(nodeData.getRNAllocableNodeListItr());
}
else {
rNUnallocableBucket.erase(nodeData.getRNUnallocableNodeListItr());
}
}
void handleAddLink(const GraphEdgeIterator &edgeItr) {
// We assume that if we got here this edge is attached to at least
// one high degree node.
g->getEdgeData(edgeItr).getHeuristicData().setup(*g, edgeItr);
GraphNodeIterator n1Itr = g->getEdgeNode1Itr(edgeItr),
n2Itr = g->getEdgeNode2Itr(edgeItr);
HSIT::NodeData &n1Data = g->getNodeData(n1Itr),
&n2Data = g->getNodeData(n2Itr);
if (n1Data.getLinkDegree() > 2) {
n1Data.getHeuristicData().handleAddLink(*g, n1Itr, edgeItr);
}
if (n2Data.getLinkDegree() > 2) {
n2Data.getHeuristicData().handleAddLink(*g, n2Itr, edgeItr);
}
}
void handleRemoveLink(const GraphEdgeIterator &edgeItr,
const GraphNodeIterator &nodeItr) {
NodeData &nodeData = g->getNodeData(nodeItr).getHeuristicData();
nodeData.handleRemoveLink(*g, nodeItr, edgeItr);
}
void processRN() {
/*
std::cerr << "processRN():\n"
<< " rNAllocable = [ ";
for (RNAllocableNodeListIterator nItr = rNAllocableBucket.begin(),
nEnd = rNAllocableBucket.end();
nItr != nEnd; ++nItr) {
std::cerr << g->getNodeID(*nItr) << " (" << g->getNodeData(*nItr).getLinkDegree() << ") ";
}
std::cerr << "]\n"
<< " rNUnallocable = [ ";
for (RNUnallocableNodeListIterator nItr = rNUnallocableBucket.begin(),
nEnd = rNUnallocableBucket.end();
nItr != nEnd; ++nItr) {
float bCost = g->getNodeCosts(*nItr)[0] / g->getNodeData(*nItr).getLinkDegree();
std::cerr << g->getNodeID(*nItr) << " (" << bCost << ") ";
}
std::cerr << "]\n";
*/
if (!rNAllocableBucket.empty()) {
GraphNodeIterator selectedNodeItr = *rNAllocableBucket.begin();
//std::cerr << "RN safely pushing " << g->getNodeID(selectedNodeItr) << "\n";
rNAllocableBucket.erase(rNAllocableBucket.begin());
s->pushStack(selectedNodeItr);
s->unlinkNode(selectedNodeItr);
}
else {
GraphNodeIterator selectedNodeItr = *rNUnallocableBucket.begin();
//std::cerr << "RN optimistically pushing " << g->getNodeID(selectedNodeItr) << "\n";
rNUnallocableBucket.erase(rNUnallocableBucket.begin());
s->pushStack(selectedNodeItr);
s->unlinkNode(selectedNodeItr);
}
}
bool rNBucketEmpty() const {
return (rNAllocableBucket.empty() && rNUnallocableBucket.empty());
}
private:
Solver *s;
SolverGraph *g;
RNAllocableNodeList rNAllocableBucket;
RNUnallocableNodeList rNUnallocableBucket;
};
}
}
#endif // LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H

279
lib/CodeGen/PBQP/PBQPMath.h Normal file
View File

@ -0,0 +1,279 @@
#ifndef LLVM_CODEGEN_PBQP_PBQPMATH_H
#define LLVM_CODEGEN_PBQP_PBQPMATH_H
#include <cassert>
#include <algorithm>
#include <functional>
namespace PBQP {
typedef double PBQPNum;
/// \brief PBQP Vector class.
class Vector {
public:
/// \brief Construct a PBQP vector of the given size.
explicit Vector(unsigned length) :
length(length), data(new PBQPNum[length]) {
}
/// \brief Construct a PBQP vector with initializer.
Vector(unsigned length, PBQPNum initVal) :
length(length), data(new PBQPNum[length]) {
std::fill(data, data + length, initVal);
}
/// \brief Copy construct a PBQP vector.
Vector(const Vector &v) :
length(v.length), data(new PBQPNum[length]) {
std::copy(v.data, v.data + length, data);
}
/// \brief Destroy this vector, return its memory.
~Vector() { delete[] data; }
/// \brief Assignment operator.
Vector& operator=(const Vector &v) {
delete[] data;
length = v.length;
data = new PBQPNum[length];
std::copy(v.data, v.data + length, data);
return *this;
}
/// \brief Return the length of the vector
unsigned getLength() const throw () {
return length;
}
/// \brief Element access.
PBQPNum& operator[](unsigned index) {
assert(index < length && "Vector element access out of bounds.");
return data[index];
}
/// \brief Const element access.
const PBQPNum& operator[](unsigned index) const {
assert(index < length && "Vector element access out of bounds.");
return data[index];
}
/// \brief Add another vector to this one.
Vector& operator+=(const Vector &v) {
assert(length == v.length && "Vector length mismatch.");
std::transform(data, data + length, v.data, data, std::plus<PBQPNum>());
return *this;
}
/// \brief Subtract another vector from this one.
Vector& operator-=(const Vector &v) {
assert(length == v.length && "Vector length mismatch.");
std::transform(data, data + length, v.data, data, std::minus<PBQPNum>());
return *this;
}
/// \brief Returns the index of the minimum value in this vector
unsigned minIndex() const {
return std::min_element(data, data + length) - data;
}
private:
unsigned length;
PBQPNum *data;
};
/// \brief Output a textual representation of the given vector on the given
/// output stream.
template <typename OStream>
OStream& operator<<(OStream &os, const Vector &v) {
assert((v.getLength() != 0) && "Zero-length vector badness.");
os << "[ " << v[0];
for (unsigned i = 1; i < v.getLength(); ++i) {
os << ", " << v[i];
}
os << " ]";
return os;
}
/// \brief PBQP Matrix class
class Matrix {
public:
/// \brief Construct a PBQP Matrix with the given dimensions.
Matrix(unsigned rows, unsigned cols) :
rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
}
/// \brief Construct a PBQP Matrix with the given dimensions and initial
/// value.
Matrix(unsigned rows, unsigned cols, PBQPNum initVal) :
rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
std::fill(data, data + (rows * cols), initVal);
}
/// \brief Copy construct a PBQP matrix.
Matrix(const Matrix &m) :
rows(m.rows), cols(m.cols), data(new PBQPNum[rows * cols]) {
std::copy(m.data, m.data + (rows * cols), data);
}
/// \brief Destroy this matrix, return its memory.
~Matrix() { delete[] data; }
/// \brief Assignment operator.
Matrix& operator=(const Matrix &m) {
delete[] data;
rows = m.rows; cols = m.cols;
data = new PBQPNum[rows * cols];
std::copy(m.data, m.data + (rows * cols), data);
return *this;
}
/// \brief Return the number of rows in this matrix.
unsigned getRows() const throw () { return rows; }
/// \brief Return the number of cols in this matrix.
unsigned getCols() const throw () { return cols; }
/// \brief Matrix element access.
PBQPNum* operator[](unsigned r) {
assert(r < rows && "Row out of bounds.");
return data + (r * cols);
}
/// \brief Matrix element access.
const PBQPNum* operator[](unsigned r) const {
assert(r < rows && "Row out of bounds.");
return data + (r * cols);
}
/// \brief Returns the given row as a vector.
Vector getRowAsVector(unsigned r) const {
Vector v(cols);
for (unsigned c = 0; c < cols; ++c)
v[c] = (*this)[r][c];
return v;
}
/// \brief Returns the given column as a vector.
Vector getColAsVector(unsigned c) const {
Vector v(rows);
for (unsigned r = 0; r < rows; ++r)
v[r] = (*this)[r][c];
return v;
}
/// \brief Reset the matrix to the given value.
Matrix& reset(PBQPNum val = 0) {
std::fill(data, data + (rows * cols), val);
return *this;
}
/// \brief Set a single row of this matrix to the given value.
Matrix& setRow(unsigned r, PBQPNum val) {
assert(r < rows && "Row out of bounds.");
std::fill(data + (r * cols), data + ((r + 1) * cols), val);
return *this;
}
/// \brief Set a single column of this matrix to the given value.
Matrix& setCol(unsigned c, PBQPNum val) {
assert(c < cols && "Column out of bounds.");
for (unsigned r = 0; r < rows; ++r)
(*this)[r][c] = val;
return *this;
}
/// \brief Matrix transpose.
Matrix transpose() const {
Matrix m(cols, rows);
for (unsigned r = 0; r < rows; ++r)
for (unsigned c = 0; c < cols; ++c)
m[c][r] = (*this)[r][c];
return m;
}
/// \brief Returns the diagonal of the matrix as a vector.
///
/// Matrix must be square.
Vector diagonalize() const {
assert(rows == cols && "Attempt to diagonalize non-square matrix.");
Vector v(rows);
for (unsigned r = 0; r < rows; ++r)
v[r] = (*this)[r][r];
return v;
}
/// \brief Add the given matrix to this one.
Matrix& operator+=(const Matrix &m) {
assert(rows == m.rows && cols == m.cols &&
"Matrix dimensions mismatch.");
std::transform(data, data + (rows * cols), m.data, data,
std::plus<PBQPNum>());
return *this;
}
/// \brief Returns the minimum of the given row
PBQPNum getRowMin(unsigned r) const {
assert(r < rows && "Row out of bounds");
return *std::min_element(data + (r * cols), data + ((r + 1) * cols));
}
/// \brief Returns the minimum of the given column
PBQPNum getColMin(unsigned c) const {
PBQPNum minElem = (*this)[0][c];
for (unsigned r = 1; r < rows; ++r)
if ((*this)[r][c] < minElem) minElem = (*this)[r][c];
return minElem;
}
/// \brief Subtracts the given scalar from the elements of the given row.
Matrix& subFromRow(unsigned r, PBQPNum val) {
assert(r < rows && "Row out of bounds");
std::transform(data + (r * cols), data + ((r + 1) * cols),
data + (r * cols),
std::bind2nd(std::minus<PBQPNum>(), val));
return *this;
}
/// \brief Subtracts the given scalar from the elements of the given column.
Matrix& subFromCol(unsigned c, PBQPNum val) {
for (unsigned r = 0; r < rows; ++r)
(*this)[r][c] -= val;
return *this;
}
/// \brief Returns true if this is a zero matrix.
bool isZero() const {
return find_if(data, data + (rows * cols),
std::bind2nd(std::not_equal_to<PBQPNum>(), 0)) ==
data + (rows * cols);
}
private:
unsigned rows, cols;
PBQPNum *data;
};
/// \brief Output a textual representation of the given matrix on the given
/// output stream.
template <typename OStream>
OStream& operator<<(OStream &os, const Matrix &m) {
assert((m.getRows() != 0) && "Zero-row matrix badness.");
for (unsigned i = 0; i < m.getRows(); ++i) {
os << m.getRowAsVector(i);
}
return os;
}
}
#endif // LLVM_CODEGEN_PBQP_PBQPMATH_HPP

View File

@ -0,0 +1,86 @@
#ifndef LLVM_CODEGEN_PBQP_SIMPLEGRAPH_H
#define LLVM_CODEGEN_PBQP_SIMPLEGRAPH_H
#include "GraphBase.h"
namespace PBQP {
class SimpleEdge;
class SimpleNode : public NodeBase<SimpleNode, SimpleEdge> {
public:
SimpleNode(const Vector &costs) :
NodeBase<SimpleNode, SimpleEdge>(costs) {}
};
class SimpleEdge : public EdgeBase<SimpleNode, SimpleEdge> {
public:
SimpleEdge(const NodeIterator &node1Itr, const NodeIterator &node2Itr,
const Matrix &costs) :
EdgeBase<SimpleNode, SimpleEdge>(node1Itr, node2Itr, costs) {}
};
class SimpleGraph : public GraphBase<SimpleNode, SimpleEdge> {
private:
typedef GraphBase<SimpleNode, SimpleEdge> PGraph;
void copyFrom(const SimpleGraph &other) {
assert(other.areNodeIDsValid() &&
"Cannot copy from another graph unless IDs have been assigned.");
std::vector<NodeIterator> newNodeItrs(other.getNumNodes());
for (ConstNodeIterator nItr = other.nodesBegin(), nEnd = other.nodesEnd();
nItr != nEnd; ++nItr) {
newNodeItrs[other.getNodeID(nItr)] = addNode(other.getNodeCosts(nItr));
}
for (ConstEdgeIterator eItr = other.edgesBegin(), eEnd = other.edgesEnd();
eItr != eEnd; ++eItr) {
unsigned node1ID = other.getNodeID(other.getEdgeNode1Itr(eItr)),
node2ID = other.getNodeID(other.getEdgeNode2Itr(eItr));
addEdge(newNodeItrs[node1ID], newNodeItrs[node2ID],
other.getEdgeCosts(eItr));
}
}
void copyFrom(SimpleGraph &other) {
if (!other.areNodeIDsValid()) {
other.assignNodeIDs();
}
copyFrom(const_cast<const SimpleGraph&>(other));
}
public:
SimpleGraph() {}
SimpleGraph(const SimpleGraph &other) : PGraph() {
copyFrom(other);
}
SimpleGraph& operator=(const SimpleGraph &other) {
clear();
copyFrom(other);
return *this;
}
NodeIterator addNode(const Vector &costs) {
return PGraph::addConstructedNode(SimpleNode(costs));
}
EdgeIterator addEdge(const NodeIterator &node1Itr,
const NodeIterator &node2Itr,
const Matrix &costs) {
return PGraph::addConstructedEdge(SimpleEdge(node1Itr, node2Itr, costs));
}
};
}
#endif // LLVM_CODEGEN_PBQP_SIMPLEGRAPH_H

View File

@ -0,0 +1,74 @@
#ifndef LLVM_CODEGEN_PBQP_SOLUTION_H
#define LLVM_CODEGEN_PBQP_SOLUTION_H
#include "PBQPMath.h"
namespace PBQP {
class Solution {
friend class SolverImplementation;
private:
std::vector<unsigned> selections;
PBQPNum solutionCost;
bool provedOptimal;
unsigned r0Reductions, r1Reductions,
r2Reductions, rNReductions;
public:
Solution() :
solutionCost(0.0), provedOptimal(false),
r0Reductions(0), r1Reductions(0), r2Reductions(0), rNReductions(0) {}
Solution(unsigned length, bool assumeOptimal) :
selections(length), solutionCost(0.0), provedOptimal(assumeOptimal),
r0Reductions(0), r1Reductions(0), r2Reductions(0), rNReductions(0) {}
void setProvedOptimal(bool provedOptimal) {
this->provedOptimal = provedOptimal;
}
void setSelection(unsigned nodeID, unsigned selection) {
selections[nodeID] = selection;
}
void setSolutionCost(PBQPNum solutionCost) {
this->solutionCost = solutionCost;
}
void incR0Reductions() { ++r0Reductions; }
void incR1Reductions() { ++r1Reductions; }
void incR2Reductions() { ++r2Reductions; }
void incRNReductions() { ++rNReductions; }
unsigned numNodes() const { return selections.size(); }
unsigned getSelection(unsigned nodeID) const {
return selections[nodeID];
}
PBQPNum getCost() const { return solutionCost; }
bool isProvedOptimal() const { return provedOptimal; }
unsigned getR0Reductions() const { return r0Reductions; }
unsigned getR1Reductions() const { return r1Reductions; }
unsigned getR2Reductions() const { return r2Reductions; }
unsigned getRNReductions() const { return rNReductions; }
bool operator==(const Solution &other) const {
return (selections == other.selections);
}
bool operator!=(const Solution &other) const {
return !(*this == other);
}
};
}
#endif // LLVM_CODEGEN_PBQP_SOLUTION_H

21
lib/CodeGen/PBQP/Solver.h Normal file
View File

@ -0,0 +1,21 @@
#ifndef LLVM_CODEGEN_PBQP_SOLVER_H
#define LLVM_CODEGEN_PBQP_SOLVER_H
#include "SimpleGraph.h"
#include "Solution.h"
namespace PBQP {
/// \brief Interface for solver classes.
class Solver {
public:
virtual ~Solver() = 0;
virtual Solution solve(const SimpleGraph &orig) const = 0;
};
Solver::~Solver() {}
}
#endif // LLVM_CODEGEN_PBQP_SOLVER_H

View File

@ -31,7 +31,9 @@
#define DEBUG_TYPE "regalloc" #define DEBUG_TYPE "regalloc"
#include "PBQP.h" #include "PBQP/HeuristicSolver.h"
#include "PBQP/SimpleGraph.h"
#include "PBQP/Heuristics/Briggs.h"
#include "VirtRegMap.h" #include "VirtRegMap.h"
#include "VirtRegRewriter.h" #include "VirtRegRewriter.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h"
@ -54,42 +56,41 @@
using namespace llvm; using namespace llvm;
static RegisterRegAlloc static RegisterRegAlloc
registerPBQPRepAlloc("pbqp", "PBQP register allocator", registerPBQPRepAlloc("pbqp", "PBQP register allocator.",
createPBQPRegisterAllocator); llvm::createPBQPRegisterAllocator);
namespace { namespace {
//! ///
//! PBQP based allocators solve the register allocation problem by mapping /// PBQP based allocators solve the register allocation problem by mapping
//! register allocation problems to Partitioned Boolean Quadratic /// register allocation problems to Partitioned Boolean Quadratic
//! Programming problems. /// Programming problems.
class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass { class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
public: public:
static char ID; static char ID;
//! Construct a PBQP register allocator. /// Construct a PBQP register allocator.
PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {} PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
//! Return the pass name. /// Return the pass name.
virtual const char* getPassName() const throw() { virtual const char* getPassName() const throw() {
return "PBQP Register Allocator"; return "PBQP Register Allocator";
} }
//! PBQP analysis usage. /// PBQP analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &AU) const { virtual void getAnalysisUsage(AnalysisUsage &au) const {
AU.setPreservesCFG(); au.addRequired<LiveIntervals>();
AU.addRequired<LiveIntervals>(); //au.addRequiredID(SplitCriticalEdgesID);
AU.addRequiredTransitive<RegisterCoalescer>(); au.addRequired<LiveStacks>();
AU.addRequired<LiveStacks>(); au.addPreserved<LiveStacks>();
AU.addPreserved<LiveStacks>(); au.addRequired<MachineLoopInfo>();
AU.addRequired<MachineLoopInfo>(); au.addPreserved<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>(); au.addRequired<VirtRegMap>();
AU.addRequired<VirtRegMap>(); MachineFunctionPass::getAnalysisUsage(au);
MachineFunctionPass::getAnalysisUsage(AU);
} }
//! Perform register allocation /// Perform register allocation
virtual bool runOnMachineFunction(MachineFunction &MF); virtual bool runOnMachineFunction(MachineFunction &MF);
private: private:
@ -99,7 +100,7 @@ namespace {
typedef std::vector<AllowedSet> AllowedSetMap; typedef std::vector<AllowedSet> AllowedSetMap;
typedef std::set<unsigned> RegSet; typedef std::set<unsigned> RegSet;
typedef std::pair<unsigned, unsigned> RegPair; typedef std::pair<unsigned, unsigned> RegPair;
typedef std::map<RegPair, PBQPNum> CoalesceMap; typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
typedef std::set<LiveInterval*> LiveIntervalSet; typedef std::set<LiveInterval*> LiveIntervalSet;
@ -121,60 +122,60 @@ namespace {
emptyVRegIntervals; emptyVRegIntervals;
//! Builds a PBQP cost vector. /// Builds a PBQP cost vector.
template <typename RegContainer> template <typename RegContainer>
PBQPVector* buildCostVector(unsigned vReg, PBQP::Vector buildCostVector(unsigned vReg,
const RegContainer &allowed, const RegContainer &allowed,
const CoalesceMap &cealesces, const CoalesceMap &cealesces,
PBQPNum spillCost) const; PBQP::PBQPNum spillCost) const;
//! \brief Builds a PBQP interference matrix. /// \brief Builds a PBQP interference matrix.
//! ///
//! @return Either a pointer to a non-zero PBQP matrix representing the /// @return Either a pointer to a non-zero PBQP matrix representing the
//! allocation option costs, or a null pointer for a zero matrix. /// allocation option costs, or a null pointer for a zero matrix.
//! ///
//! Expects allowed sets for two interfering LiveIntervals. These allowed /// Expects allowed sets for two interfering LiveIntervals. These allowed
//! sets should contain only allocable registers from the LiveInterval's /// sets should contain only allocable registers from the LiveInterval's
//! register class, with any interfering pre-colored registers removed. /// register class, with any interfering pre-colored registers removed.
template <typename RegContainer> template <typename RegContainer>
PBQPMatrix* buildInterferenceMatrix(const RegContainer &allowed1, PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
const RegContainer &allowed2) const; const RegContainer &allowed2) const;
//! ///
//! Expects allowed sets for two potentially coalescable LiveIntervals, /// Expects allowed sets for two potentially coalescable LiveIntervals,
//! and an estimated benefit due to coalescing. The allowed sets should /// and an estimated benefit due to coalescing. The allowed sets should
//! contain only allocable registers from the LiveInterval's register /// contain only allocable registers from the LiveInterval's register
//! classes, with any interfering pre-colored registers removed. /// classes, with any interfering pre-colored registers removed.
template <typename RegContainer> template <typename RegContainer>
PBQPMatrix* buildCoalescingMatrix(const RegContainer &allowed1, PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
const RegContainer &allowed2, const RegContainer &allowed2,
PBQPNum cBenefit) const; PBQP::PBQPNum cBenefit) const;
//! \brief Finds coalescing opportunities and returns them as a map. /// \brief Finds coalescing opportunities and returns them as a map.
//! ///
//! Any entries in the map are guaranteed coalescable, even if their /// Any entries in the map are guaranteed coalescable, even if their
//! corresponding live intervals overlap. /// corresponding live intervals overlap.
CoalesceMap findCoalesces(); CoalesceMap findCoalesces();
//! \brief Finds the initial set of vreg intervals to allocate. /// \brief Finds the initial set of vreg intervals to allocate.
void findVRegIntervalsToAlloc(); void findVRegIntervalsToAlloc();
//! \brief Constructs a PBQP problem representation of the register /// \brief Constructs a PBQP problem representation of the register
//! allocation problem for this function. /// allocation problem for this function.
//! ///
//! @return a PBQP solver object for the register allocation problem. /// @return a PBQP solver object for the register allocation problem.
pbqp* constructPBQPProblem(); PBQP::SimpleGraph constructPBQPProblem();
//! \brief Adds a stack interval if the given live interval has been /// \brief Adds a stack interval if the given live interval has been
//! spilled. Used to support stack slot coloring. /// spilled. Used to support stack slot coloring.
void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri); void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
//! \brief Given a solved PBQP problem maps this solution back to a register /// \brief Given a solved PBQP problem maps this solution back to a register
//! assignment. /// assignment.
bool mapPBQPToRegAlloc(pbqp *problem); bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
//! \brief Postprocessing before final spilling. Sets basic block "live in" /// \brief Postprocessing before final spilling. Sets basic block "live in"
//! variables. /// variables.
void finalizeAlloc() const; void finalizeAlloc() const;
}; };
@ -184,17 +185,17 @@ namespace {
template <typename RegContainer> template <typename RegContainer>
PBQPVector* PBQPRegAlloc::buildCostVector(unsigned vReg, PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
const RegContainer &allowed, const RegContainer &allowed,
const CoalesceMap &coalesces, const CoalesceMap &coalesces,
PBQPNum spillCost) const { PBQP::PBQPNum spillCost) const {
typedef typename RegContainer::const_iterator AllowedItr; typedef typename RegContainer::const_iterator AllowedItr;
// Allocate vector. Additional element (0th) used for spill option // Allocate vector. Additional element (0th) used for spill option
PBQPVector *v = new PBQPVector(allowed.size() + 1); PBQP::Vector v(allowed.size() + 1, 0);
(*v)[0] = spillCost; v[0] = spillCost;
// Iterate over the allowed registers inserting coalesce benefits if there // Iterate over the allowed registers inserting coalesce benefits if there
// are any. // are any.
@ -212,14 +213,14 @@ PBQPVector* PBQPRegAlloc::buildCostVector(unsigned vReg,
continue; continue;
// We have a coalesce - insert the benefit. // We have a coalesce - insert the benefit.
(*v)[ai + 1] = -cmItr->second; v[ai + 1] = -cmItr->second;
} }
return v; return v;
} }
template <typename RegContainer> template <typename RegContainer>
PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix( PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
const RegContainer &allowed1, const RegContainer &allowed2) const { const RegContainer &allowed1, const RegContainer &allowed2) const {
typedef typename RegContainer::const_iterator RegContainerIterator; typedef typename RegContainer::const_iterator RegContainerIterator;
@ -232,7 +233,8 @@ PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
// that the spill option (element 0,0) has zero cost, since we can allocate // that the spill option (element 0,0) has zero cost, since we can allocate
// both intervals to memory safely (the cost for each individual allocation // both intervals to memory safely (the cost for each individual allocation
// to memory is accounted for by the cost vectors for each live interval). // to memory is accounted for by the cost vectors for each live interval).
PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1); PBQP::Matrix *m =
new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
// Assume this is a zero matrix until proven otherwise. Zero matrices occur // Assume this is a zero matrix until proven otherwise. Zero matrices occur
// between interfering live ranges with non-overlapping register sets (e.g. // between interfering live ranges with non-overlapping register sets (e.g.
@ -262,7 +264,7 @@ PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
// If the row/column regs are identical or alias insert an infinity. // If the row/column regs are identical or alias insert an infinity.
if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) { if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
(*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity(); (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
isZeroMatrix = false; isZeroMatrix = false;
} }
@ -284,9 +286,9 @@ PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
} }
template <typename RegContainer> template <typename RegContainer>
PBQPMatrix* PBQPRegAlloc::buildCoalescingMatrix( PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
const RegContainer &allowed1, const RegContainer &allowed2, const RegContainer &allowed1, const RegContainer &allowed2,
PBQPNum cBenefit) const { PBQP::PBQPNum cBenefit) const {
typedef typename RegContainer::const_iterator RegContainerIterator; typedef typename RegContainer::const_iterator RegContainerIterator;
@ -295,7 +297,8 @@ PBQPMatrix* PBQPRegAlloc::buildCoalescingMatrix(
// for the LiveIntervals which are (potentially) to be coalesced. The amount // for the LiveIntervals which are (potentially) to be coalesced. The amount
// -cBenefit will be placed in any element representing the same register // -cBenefit will be placed in any element representing the same register
// for both intervals. // for both intervals.
PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1); PBQP::Matrix *m =
new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
// Reset costs to zero. // Reset costs to zero.
m->reset(0); m->reset(0);
@ -497,10 +500,11 @@ void PBQPRegAlloc::findVRegIntervalsToAlloc() {
} }
} }
pbqp* PBQPRegAlloc::constructPBQPProblem() { PBQP::SimpleGraph PBQPRegAlloc::constructPBQPProblem() {
typedef std::vector<const LiveInterval*> LIVector; typedef std::vector<const LiveInterval*> LIVector;
typedef std::vector<unsigned> RegVector; typedef std::vector<unsigned> RegVector;
typedef std::vector<PBQP::SimpleGraph::NodeIterator> NodeVector;
// This will store the physical intervals for easy reference. // This will store the physical intervals for easy reference.
LIVector physIntervals; LIVector physIntervals;
@ -532,10 +536,11 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
} }
// Get the set of potential coalesces. // Get the set of potential coalesces.
CoalesceMap coalesces(findCoalesces()); CoalesceMap coalesces;//(findCoalesces());
// Construct a PBQP solver for this problem // Construct a PBQP solver for this problem
pbqp *solver = alloc_pbqp(vregIntervalsToAlloc.size()); PBQP::SimpleGraph problem;
NodeVector problemNodes(vregIntervalsToAlloc.size());
// Resize allowedSets container appropriately. // Resize allowedSets container appropriately.
allowedSets.resize(vregIntervalsToAlloc.size()); allowedSets.resize(vregIntervalsToAlloc.size());
@ -596,13 +601,13 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
// Set the spill cost to the interval weight, or epsilon if the // Set the spill cost to the interval weight, or epsilon if the
// interval weight is zero // interval weight is zero
PBQPNum spillCost = (li->weight != 0.0) ? PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
li->weight : std::numeric_limits<PBQPNum>::min(); li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
// Build a cost vector for this interval. // Build a cost vector for this interval.
add_pbqp_nodecosts(solver, node, problemNodes[node] =
buildCostVector(li->reg, allowedSets[node], coalesces, problem.addNode(
spillCost)); buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
} }
@ -618,7 +623,7 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
CoalesceMap::const_iterator cmItr = CoalesceMap::const_iterator cmItr =
coalesces.find(RegPair(li->reg, li2->reg)); coalesces.find(RegPair(li->reg, li2->reg));
PBQPMatrix *m = 0; PBQP::Matrix *m = 0;
if (cmItr != coalesces.end()) { if (cmItr != coalesces.end()) {
m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2], m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
@ -629,14 +634,29 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
} }
if (m != 0) { if (m != 0) {
add_pbqp_edgecosts(solver, node1, node2, m); problem.addEdge(problemNodes[node1],
problemNodes[node2],
*m);
delete m; delete m;
} }
} }
} }
problem.assignNodeIDs();
assert(problem.getNumNodes() == allowedSets.size());
for (unsigned i = 0; i < allowedSets.size(); ++i) {
assert(problem.getNodeItr(i) == problemNodes[i]);
}
/*
std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
<< problem.getNumEdges() << " edges.\n";
problem.printDot(std::cerr);
*/
// We're done, PBQP problem constructed - return it. // We're done, PBQP problem constructed - return it.
return solver; return problem;
} }
void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled, void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
@ -659,7 +679,9 @@ void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
stackInterval.MergeRangesInAsValue(rhsInterval, vni); stackInterval.MergeRangesInAsValue(rhsInterval, vni);
} }
bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) { bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
static unsigned round = 0;
// Set to true if we have any spills // Set to true if we have any spills
bool anotherRoundNeeded = false; bool anotherRoundNeeded = false;
@ -667,10 +689,56 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
// Clear the existing allocation. // Clear the existing allocation.
vrm->clearAllVirt(); vrm->clearAllVirt();
CoalesceMap coalesces;//(findCoalesces());
for (unsigned i = 0; i < node2LI.size(); ++i) {
if (solution.getSelection(i) == 0) {
continue;
}
unsigned iSel = solution.getSelection(i);
unsigned iAlloc = allowedSets[i][iSel - 1];
for (unsigned j = i + 1; j < node2LI.size(); ++j) {
if (solution.getSelection(j) == 0) {
continue;
}
unsigned jSel = solution.getSelection(j);
unsigned jAlloc = allowedSets[j][jSel - 1];
if ((iAlloc != jAlloc) && !tri->areAliases(iAlloc, jAlloc)) {
continue;
}
if (node2LI[i]->overlaps(*node2LI[j])) {
if (coalesces.find(RegPair(node2LI[i]->reg, node2LI[j]->reg)) == coalesces.end()) {
DEBUG(errs() << "In round " << ++round << ":\n"
<< "Bogusness in " << mf->getFunction()->getName() << "!\n"
<< "Live interval " << i << " (reg" << node2LI[i]->reg << ") and\n"
<< "Live interval " << j << " (reg" << node2LI[j]->reg << ")\n"
<< " were allocated registers " << iAlloc << " (index " << iSel << ") and "
<< jAlloc << "(index " << jSel
<< ") respectively in a graph of " << solution.numNodes() << " nodes.\n"
<< "li[i]->empty() = " << node2LI[i]->empty() << "\n"
<< "li[j]->empty() = " << node2LI[j]->empty() << "\n"
<< "li[i]->overlaps(li[j]) = " << node2LI[i]->overlaps(*node2LI[j]) << "\n"
<< "coalesce = " << (coalesces.find(RegPair(node2LI[i]->reg, node2LI[j]->reg)) != coalesces.end()) << "\n");
DEBUG(errs() << "solution.getCost() = " << solution.getCost() << "\n");
exit(1);
}
}
}
}
// Iterate over the nodes mapping the PBQP solution to a register assignment. // Iterate over the nodes mapping the PBQP solution to a register assignment.
for (unsigned node = 0; node < node2LI.size(); ++node) { for (unsigned node = 0; node < node2LI.size(); ++node) {
unsigned virtReg = node2LI[node]->reg, unsigned virtReg = node2LI[node]->reg,
allocSelection = get_pbqp_solution(problem, node); allocSelection = solution.getSelection(node);
// If the PBQP solution is non-zero it's a physical register... // If the PBQP solution is non-zero it's a physical register...
if (allocSelection != 0) { if (allocSelection != 0) {
@ -731,11 +799,12 @@ void PBQPRegAlloc::finalizeAlloc() const {
// First allocate registers for the empty intervals. // First allocate registers for the empty intervals.
for (LiveIntervalSet::const_iterator for (LiveIntervalSet::const_iterator
itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end(); itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
itr != end; ++itr) { itr != end; ++itr) {
LiveInterval *li = *itr; LiveInterval *li = *itr;
unsigned physReg = vrm->getRegAllocPref(li->reg); unsigned physReg = vrm->getRegAllocPref(li->reg);
if (physReg == 0) { if (physReg == 0) {
const TargetRegisterClass *liRC = mri->getRegClass(li->reg); const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
physReg = *liRC->allocation_order_begin(*mf); physReg = *liRC->allocation_order_begin(*mf);
@ -766,8 +835,8 @@ void PBQPRegAlloc::finalizeAlloc() const {
continue; continue;
} }
// Ignore unallocated vregs:
if (reg == 0) { if (reg == 0) {
// Filter out zero regs - they're for intervals that were spilled.
continue; continue;
} }
@ -806,8 +875,7 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
vrm = &getAnalysis<VirtRegMap>(); vrm = &getAnalysis<VirtRegMap>();
DEBUG(errs() << "PBQP Register Allocating for " DEBUG(errs() << "PBQP2 Register Allocating for " << mf->getFunction()->getName() << "\n");
<< mf->getFunction()->getName() << "\n");
// Allocator main loop: // Allocator main loop:
// //
@ -832,15 +900,19 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
unsigned round = 0; unsigned round = 0;
while (!pbqpAllocComplete) { while (!pbqpAllocComplete) {
DOUT << " PBQP Regalloc round " << round << ":\n"; DEBUG(errs() << " PBQP Regalloc round " << round << ":\n");
pbqp *problem = constructPBQPProblem(); PBQP::SimpleGraph problem = constructPBQPProblem();
PBQP::HeuristicSolver<PBQP::Heuristics::Briggs> solver;
solve_pbqp(problem); problem.assignNodeIDs();
PBQP::Solution solution = solver.solve(problem);
pbqpAllocComplete = mapPBQPToRegAlloc(problem); /*
std::cerr << "Solution:\n";
free_pbqp(problem); for (unsigned i = 0; i < solution.numNodes(); ++i) {
std::cerr << " " << i << " -> " << solution.getSelection(i) << "\n";
}
*/
pbqpAllocComplete = mapPBQPToRegAlloc(solution);
++round; ++round;
} }
@ -855,7 +927,7 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
node2LI.clear(); node2LI.clear();
allowedSets.clear(); allowedSets.clear();
DOUT << "Post alloc VirtRegMap:\n" << *vrm << "\n"; DEBUG(errs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
// Run rewriter // Run rewriter
std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter()); std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());