[SystemZ] Split out comparison elimination into a separate pass

Perhaps predictably, doing comparison elimination on the fly during
SystemZLongBranch turned out to be a bad idea.  The next patches make
use of LOAD AND TEST and BRANCH ON COUNT, both of which require
changes to earlier instructions.

No functionality change intended.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187718 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Richard Sandiford 2013-08-05 10:58:53 +00:00
parent 13e6e9171f
commit 66fbb47818
5 changed files with 346 additions and 270 deletions

View File

@ -15,6 +15,7 @@ add_llvm_target(SystemZCodeGen
SystemZAsmPrinter.cpp
SystemZCallingConv.cpp
SystemZConstantPoolValue.cpp
SystemZElimCompare.cpp
SystemZFrameLowering.cpp
SystemZISelDAGToDAG.cpp
SystemZISelLowering.cpp

View File

@ -85,6 +85,7 @@ namespace llvm {
FunctionPass *createSystemZISelDag(SystemZTargetMachine &TM,
CodeGenOpt::Level OptLevel);
FunctionPass *createSystemZElimComparePass(SystemZTargetMachine &TM);
FunctionPass *createSystemZLongBranchPass(SystemZTargetMachine &TM);
} // end namespace llvm;
#endif

View File

@ -0,0 +1,311 @@
//===-- SystemZElimCompare.cpp - Eliminate comparison instructions --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass:
// (1) tries to remove compares if CC already contains the required information
// (2) fuses compares and branches into COMPARE AND BRANCH instructions
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "systemz-elim-compare"
#include "SystemZTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
STATISTIC(EliminatedComparisons, "Number of eliminated comparisons");
STATISTIC(FusedComparisons, "Number of fused compare-and-branch instructions");
namespace {
class SystemZElimCompare : public MachineFunctionPass {
public:
static char ID;
SystemZElimCompare(const SystemZTargetMachine &tm)
: MachineFunctionPass(ID), TII(0), TRI(0) {}
virtual const char *getPassName() const {
return "SystemZ Comparison Elimination";
}
bool processBlock(MachineBasicBlock *MBB);
bool runOnMachineFunction(MachineFunction &F);
private:
bool adjustCCMasksForInstr(MachineInstr *MI, MachineInstr *Compare,
SmallVectorImpl<MachineInstr *> &CCUsers);
bool optimizeCompareZero(MachineInstr *Compare,
SmallVectorImpl<MachineInstr *> &CCUsers);
bool fuseCompareAndBranch(MachineInstr *Compare,
SmallVectorImpl<MachineInstr *> &CCUsers);
const SystemZInstrInfo *TII;
const TargetRegisterInfo *TRI;
};
char SystemZElimCompare::ID = 0;
} // end of anonymous namespace
FunctionPass *llvm::createSystemZElimComparePass(SystemZTargetMachine &TM) {
return new SystemZElimCompare(TM);
}
// Return true if CC is live out of MBB.
static bool isCCLiveOut(MachineBasicBlock *MBB) {
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
if ((*SI)->isLiveIn(SystemZ::CC))
return true;
return false;
}
// Return true if any CC result of MI would reflect the value of subreg
// SubReg of Reg.
static bool resultTests(MachineInstr *MI, unsigned Reg, unsigned SubReg) {
if (MI->getNumOperands() > 0 &&
MI->getOperand(0).isReg() &&
MI->getOperand(0).isDef() &&
MI->getOperand(0).getReg() == Reg &&
MI->getOperand(0).getSubReg() == SubReg)
return true;
return false;
}
// The CC users in CCUsers are testing the result of a comparison of some
// value X against zero and we know that any CC value produced by MI
// would also reflect the value of X. Try to adjust CCUsers so that
// they test the result of MI directly, returning true on success.
// Leave everything unchanged on failure.
bool SystemZElimCompare::
adjustCCMasksForInstr(MachineInstr *MI, MachineInstr *Compare,
SmallVectorImpl<MachineInstr *> &CCUsers) {
int Opcode = MI->getOpcode();
const MCInstrDesc &Desc = TII->get(Opcode);
unsigned MIFlags = Desc.TSFlags;
// See which compare-style condition codes are available.
unsigned ReusableCCMask = 0;
if (MIFlags & SystemZII::CCHasZero)
ReusableCCMask |= SystemZ::CCMASK_CMP_EQ;
// For unsigned comparisons with zero, only equality makes sense.
unsigned CompareFlags = Compare->getDesc().TSFlags;
if (!(CompareFlags & SystemZII::IsLogical) &&
(MIFlags & SystemZII::CCHasOrder))
ReusableCCMask |= SystemZ::CCMASK_CMP_LT | SystemZ::CCMASK_CMP_GT;
if (ReusableCCMask == 0)
return false;
unsigned CCValues = SystemZII::getCCValues(MIFlags);
assert((ReusableCCMask & ~CCValues) == 0 && "Invalid CCValues");
// Now check whether these flags are enough for all users.
SmallVector<MachineOperand *, 4> AlterMasks;
for (unsigned int I = 0, E = CCUsers.size(); I != E; ++I) {
MachineInstr *MI = CCUsers[I];
// Fail if this isn't a use of CC that we understand.
unsigned Flags = MI->getDesc().TSFlags;
unsigned FirstOpNum;
if (Flags & SystemZII::CCMaskFirst)
FirstOpNum = 0;
else if (Flags & SystemZII::CCMaskLast)
FirstOpNum = MI->getNumExplicitOperands() - 2;
else
return false;
// Check whether the instruction predicate treats all CC values
// outside of ReusableCCMask in the same way. In that case it
// doesn't matter what those CC values mean.
unsigned CCValid = MI->getOperand(FirstOpNum).getImm();
unsigned CCMask = MI->getOperand(FirstOpNum + 1).getImm();
unsigned OutValid = ~ReusableCCMask & CCValid;
unsigned OutMask = ~ReusableCCMask & CCMask;
if (OutMask != 0 && OutMask != OutValid)
return false;
AlterMasks.push_back(&MI->getOperand(FirstOpNum));
AlterMasks.push_back(&MI->getOperand(FirstOpNum + 1));
}
// All users are OK. Adjust the masks for MI.
for (unsigned I = 0, E = AlterMasks.size(); I != E; I += 2) {
AlterMasks[I]->setImm(CCValues);
unsigned CCMask = AlterMasks[I + 1]->getImm();
if (CCMask & ~ReusableCCMask)
AlterMasks[I + 1]->setImm((CCMask & ReusableCCMask) |
(CCValues & ~ReusableCCMask));
}
// CC is now live after MI.
int CCDef = MI->findRegisterDefOperandIdx(SystemZ::CC, false, true, TRI);
assert(CCDef >= 0 && "Couldn't find CC set");
MI->getOperand(CCDef).setIsDead(false);
// Clear any intervening kills of CC.
MachineBasicBlock::iterator MBBI = MI, MBBE = Compare;
for (++MBBI; MBBI != MBBE; ++MBBI)
MBBI->clearRegisterKills(SystemZ::CC, TRI);
return true;
}
// Try to optimize cases where comparison instruction Compare is testing
// a value against zero. Return true on success and if Compare should be
// deleted as dead. CCUsers is the list of instructions that use the CC
// value produced by Compare.
bool SystemZElimCompare::
optimizeCompareZero(MachineInstr *Compare,
SmallVectorImpl<MachineInstr *> &CCUsers) {
// Check whether this is a comparison against zero.
if (Compare->getNumExplicitOperands() != 2 ||
!Compare->getOperand(1).isImm() ||
Compare->getOperand(1).getImm() != 0)
return false;
// Search back for CC results that are based on the first operand.
unsigned SrcReg = Compare->getOperand(0).getReg();
unsigned SrcSubReg = Compare->getOperand(0).getSubReg();
MachineBasicBlock *MBB = Compare->getParent();
MachineBasicBlock::iterator MBBI = Compare, MBBE = MBB->begin();
while (MBBI != MBBE) {
--MBBI;
MachineInstr *MI = MBBI;
if (resultTests(MI, SrcReg, SrcSubReg) &&
adjustCCMasksForInstr(MI, Compare, CCUsers)) {
EliminatedComparisons += 1;
return true;
}
if (MI->modifiesRegister(SrcReg, TRI) ||
MI->modifiesRegister(SystemZ::CC, TRI))
return false;
}
return false;
}
// Try to fuse comparison instruction Compare into a later branch.
// Return true on success and if Compare is therefore redundant.
bool SystemZElimCompare::
fuseCompareAndBranch(MachineInstr *Compare,
SmallVectorImpl<MachineInstr *> &CCUsers) {
// See whether we have a comparison that can be fused.
unsigned FusedOpcode = TII->getCompareAndBranch(Compare->getOpcode(),
Compare);
if (!FusedOpcode)
return false;
// See whether we have a single branch with which to fuse.
if (CCUsers.size() != 1)
return false;
MachineInstr *Branch = CCUsers[0];
if (Branch->getOpcode() != SystemZ::BRC)
return false;
// Make sure that the operands are available at the branch.
unsigned SrcReg = Compare->getOperand(0).getReg();
unsigned SrcReg2 = (Compare->getOperand(1).isReg() ?
Compare->getOperand(1).getReg() : 0);
MachineBasicBlock::iterator MBBI = Compare, MBBE = Branch;
for (++MBBI; MBBI != MBBE; ++MBBI)
if (MBBI->modifiesRegister(SrcReg, TRI) ||
(SrcReg2 && MBBI->modifiesRegister(SrcReg2, TRI)))
return false;
// Read the branch mask and target.
MachineOperand CCMask(MBBI->getOperand(1));
MachineOperand Target(MBBI->getOperand(2));
assert((CCMask.getImm() & ~SystemZ::CCMASK_ICMP) == 0 &&
"Invalid condition-code mask for integer comparison");
// Clear out all current operands.
int CCUse = MBBI->findRegisterUseOperandIdx(SystemZ::CC, false, TRI);
assert(CCUse >= 0 && "BRC must use CC");
Branch->RemoveOperand(CCUse);
Branch->RemoveOperand(2);
Branch->RemoveOperand(1);
Branch->RemoveOperand(0);
// Rebuild Branch as a fused compare and branch.
Branch->setDesc(TII->get(FusedOpcode));
MachineInstrBuilder(*Branch->getParent()->getParent(), Branch)
.addOperand(Compare->getOperand(0))
.addOperand(Compare->getOperand(1))
.addOperand(CCMask)
.addOperand(Target)
.addReg(SystemZ::CC, RegState::ImplicitDefine);
// Clear any intervening kills of SrcReg and SrcReg2.
MBBI = Compare;
for (++MBBI; MBBI != MBBE; ++MBBI) {
MBBI->clearRegisterKills(SrcReg, TRI);
if (SrcReg2)
MBBI->clearRegisterKills(SrcReg2, TRI);
}
FusedComparisons += 1;
return true;
}
// Process all comparison instructions in MBB. Return true if something
// changed.
bool SystemZElimCompare::processBlock(MachineBasicBlock *MBB) {
bool Changed = false;
// Walk backwards through the block looking for comparisons, recording
// all CC users as we go. The subroutines can delete Compare and
// instructions before it.
bool CompleteCCUsers = !isCCLiveOut(MBB);
SmallVector<MachineInstr *, 4> CCUsers;
MachineBasicBlock::iterator MBBI = MBB->end();
while (MBBI != MBB->begin()) {
MachineInstr *MI = --MBBI;
if (CompleteCCUsers &&
MI->isCompare() &&
(optimizeCompareZero(MI, CCUsers) ||
fuseCompareAndBranch(MI, CCUsers))) {
++MBBI;
MI->removeFromParent();
Changed = true;
CCUsers.clear();
CompleteCCUsers = true;
continue;
}
if (MI->definesRegister(SystemZ::CC, TRI)) {
CCUsers.clear();
CompleteCCUsers = true;
} else if (MI->modifiesRegister(SystemZ::CC, TRI))
CompleteCCUsers = false;
if (CompleteCCUsers && MI->readsRegister(SystemZ::CC, TRI))
CCUsers.push_back(MI);
}
return Changed;
}
bool SystemZElimCompare::runOnMachineFunction(MachineFunction &F) {
TII = static_cast<const SystemZInstrInfo *>(F.getTarget().getInstrInfo());
TRI = &TII->getRegisterInfo();
bool Changed = false;
for (MachineFunction::iterator MFI = F.begin(), MFE = F.end();
MFI != MFE; ++MFI)
Changed |= processBlock(MFI);
return Changed;
}

View File

@ -7,44 +7,16 @@
//
//===----------------------------------------------------------------------===//
//
// This pass does three things:
// (1) try to remove compares if CC already contains the required information
// (2) fuse compares and branches into COMPARE AND BRANCH instructions
// (3) make sure that all branches are in range.
//
// We do (1) here rather than earlier because some transformations can
// change the set of available CC values and we generally want those
// transformations to have priority over (1). This is especially true in
// the commonest case where the CC value is used by a single in-range branch
// instruction, since (2) will then be able to fuse the compare and the
// branch instead.
//
// For example, two-address NILF can sometimes be converted into
// three-address RISBLG. NILF produces a CC value that indicates whether
// the low word is zero, but RISBLG does not modify CC at all. On the
// other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
// The CC value produced by NILL isn't useful for our purposes, but the
// value produced by RISBG can be used for any comparison with zero
// (not just equality). So there are some transformations that lose
// CC values (while still being worthwhile) and others that happen to make
// the CC result more useful than it was originally.
//
// We do (2) here rather than earlier because the fused form prevents
// predication. It also has to happen after (1).
//
// Doing (2) so late makes it more likely that a register will be reused
// between the compare and the branch, but it isn't clear whether preventing
// that would be a win or not.
//
// There are several ways in which (3) could be done. One aggressive
// approach is to assume that all branches are in range and successively
// replace those that turn out not to be in range with a longer form
// (branch relaxation). A simple implementation is to continually walk
// through the function relaxing branches until no more changes are
// needed and a fixed point is reached. However, in the pathological
// worst case, this implementation is quadratic in the number of blocks;
// relaxing branch N can make branch N-1 go out of range, which in turn
// can make branch N-2 go out of range, and so on.
// This pass makes sure that all branches are in range. There are several ways
// in which this could be done. One aggressive approach is to assume that all
// branches are in range and successively replace those that turn out not
// to be in range with a longer form (branch relaxation). A simple
// implementation is to continually walk through the function relaxing
// branches until no more changes are needed and a fixed point is reached.
// However, in the pathological worst case, this implementation is
// quadratic in the number of blocks; relaxing branch N can make branch N-1
// go out of range, which in turn can make branch N-2 go out of range,
// and so on.
//
// An alternative approach is to assume that all branches must be
// converted to their long forms, then reinstate the short forms of
@ -99,8 +71,6 @@ using namespace llvm;
STATISTIC(LongBranches, "Number of long branches.");
namespace {
typedef MachineBasicBlock::iterator Iter;
// Represents positional information about a basic block.
struct MBBInfo {
// The address that we currently assume the block has.
@ -174,8 +144,6 @@ namespace {
void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
bool AssumeRelaxed);
TerminatorInfo describeTerminator(MachineInstr *MI);
bool optimizeCompareZero(MachineInstr *PrevCCSetter, MachineInstr *Compare);
bool fuseCompareAndBranch(MachineInstr *Compare);
uint64_t initMBBInfo();
bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
bool mustRelaxABranch();
@ -273,226 +241,10 @@ TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr *MI) {
return Terminator;
}
// Return true if CC is live out of MBB.
static bool isCCLiveOut(MachineBasicBlock *MBB) {
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
if ((*SI)->isLiveIn(SystemZ::CC))
return true;
return false;
}
// Return true if CC is live after MBBI.
static bool isCCLiveAfter(MachineBasicBlock::iterator MBBI,
const TargetRegisterInfo *TRI) {
if (MBBI->killsRegister(SystemZ::CC, TRI))
return false;
MachineBasicBlock *MBB = MBBI->getParent();
MachineBasicBlock::iterator MBBE = MBB->end();
for (++MBBI; MBBI != MBBE; ++MBBI) {
if (MBBI->readsRegister(SystemZ::CC, TRI))
return true;
if (MBBI->definesRegister(SystemZ::CC, TRI))
return false;
}
return isCCLiveOut(MBB);
}
// Return true if all uses of the CC value produced by MBBI could make do
// with the CC values in ReusableCCMask. When returning true, point AlterMasks
// to the "CC valid" and "CC mask" operands for each condition.
static bool canRestrictCCMask(MachineBasicBlock::iterator MBBI,
unsigned ReusableCCMask,
SmallVectorImpl<MachineOperand *> &AlterMasks,
const TargetRegisterInfo *TRI) {
MachineBasicBlock *MBB = MBBI->getParent();
MachineBasicBlock::iterator MBBE = MBB->end();
for (++MBBI; MBBI != MBBE; ++MBBI) {
if (MBBI->readsRegister(SystemZ::CC, TRI)) {
// Fail if this isn't a use of CC that we understand.
unsigned MBBIFlags = MBBI->getDesc().TSFlags;
unsigned FirstOpNum;
if (MBBIFlags & SystemZII::CCMaskFirst)
FirstOpNum = 0;
else if (MBBIFlags & SystemZII::CCMaskLast)
FirstOpNum = MBBI->getNumExplicitOperands() - 2;
else
return false;
// Check whether the instruction predicate treats all CC values
// outside of ReusableCCMask in the same way. In that case it
// doesn't matter what those CC values mean.
unsigned CCValid = MBBI->getOperand(FirstOpNum).getImm();
unsigned CCMask = MBBI->getOperand(FirstOpNum + 1).getImm();
unsigned OutValid = ~ReusableCCMask & CCValid;
unsigned OutMask = ~ReusableCCMask & CCMask;
if (OutMask != 0 && OutMask != OutValid)
return false;
AlterMasks.push_back(&MBBI->getOperand(FirstOpNum));
AlterMasks.push_back(&MBBI->getOperand(FirstOpNum + 1));
// Succeed if this was the final use of the CC value.
if (MBBI->killsRegister(SystemZ::CC, TRI))
return true;
}
// Succeed if the instruction redefines CC.
if (MBBI->definesRegister(SystemZ::CC, TRI))
return true;
}
// Fail if there are other uses of CC that we didn't see.
return !isCCLiveOut(MBB);
}
// Try to make Compare redundant with PrevCCSetter, the previous setter of CC,
// by looking for cases where Compare compares the result of PrevCCSetter
// against zero. Return true on success and if Compare can therefore
// be deleted.
bool SystemZLongBranch::optimizeCompareZero(MachineInstr *PrevCCSetter,
MachineInstr *Compare) {
if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
return false;
// Check whether this is a comparison against zero.
if (Compare->getNumExplicitOperands() != 2 ||
!Compare->getOperand(1).isImm() ||
Compare->getOperand(1).getImm() != 0)
return false;
// See which compare-style condition codes are available after PrevCCSetter.
unsigned PrevFlags = PrevCCSetter->getDesc().TSFlags;
unsigned ReusableCCMask = 0;
if (PrevFlags & SystemZII::CCHasZero)
ReusableCCMask |= SystemZ::CCMASK_CMP_EQ;
// For unsigned comparisons with zero, only equality makes sense.
unsigned CompareFlags = Compare->getDesc().TSFlags;
if (!(CompareFlags & SystemZII::IsLogical) &&
(PrevFlags & SystemZII::CCHasOrder))
ReusableCCMask |= SystemZ::CCMASK_CMP_LT | SystemZ::CCMASK_CMP_GT;
if (ReusableCCMask == 0)
return false;
// Make sure that PrevCCSetter sets the value being compared.
unsigned SrcReg = Compare->getOperand(0).getReg();
unsigned SrcSubReg = Compare->getOperand(0).getSubReg();
if (!PrevCCSetter->getOperand(0).isReg() ||
!PrevCCSetter->getOperand(0).isDef() ||
PrevCCSetter->getOperand(0).getReg() != SrcReg ||
PrevCCSetter->getOperand(0).getSubReg() != SrcSubReg)
return false;
// Make sure that SrcReg survives until Compare.
MachineBasicBlock::iterator MBBI = PrevCCSetter, MBBE = Compare;
const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
for (++MBBI; MBBI != MBBE; ++MBBI)
if (MBBI->modifiesRegister(SrcReg, TRI))
return false;
// See whether all uses of Compare's CC value could make do with
// the values produced by PrevCCSetter.
SmallVector<MachineOperand *, 4> AlterMasks;
if (!canRestrictCCMask(Compare, ReusableCCMask, AlterMasks, TRI))
return false;
// Alter the CC masks that canRestrictCCMask says need to be altered.
unsigned CCValues = SystemZII::getCCValues(PrevFlags);
assert((ReusableCCMask & ~CCValues) == 0 && "Invalid CCValues");
for (unsigned I = 0, E = AlterMasks.size(); I != E; I += 2) {
AlterMasks[I]->setImm(CCValues);
unsigned CCMask = AlterMasks[I + 1]->getImm();
if (CCMask & ~ReusableCCMask)
AlterMasks[I + 1]->setImm((CCMask & ReusableCCMask) |
(CCValues & ~ReusableCCMask));
}
// CC is now live after PrevCCSetter.
int CCDef = PrevCCSetter->findRegisterDefOperandIdx(SystemZ::CC, false,
true, TRI);
assert(CCDef >= 0 && "Couldn't find CC set");
PrevCCSetter->getOperand(CCDef).setIsDead(false);
// Clear any intervening kills of CC.
MBBI = PrevCCSetter;
for (++MBBI; MBBI != MBBE; ++MBBI)
MBBI->clearRegisterKills(SystemZ::CC, TRI);
return true;
}
// Try to fuse compare instruction Compare into a later branch. Return
// true on success and if Compare is therefore redundant.
bool SystemZLongBranch::fuseCompareAndBranch(MachineInstr *Compare) {
if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
return false;
unsigned FusedOpcode = TII->getCompareAndBranch(Compare->getOpcode(),
Compare);
if (!FusedOpcode)
return false;
unsigned SrcReg = Compare->getOperand(0).getReg();
unsigned SrcReg2 = (Compare->getOperand(1).isReg() ?
Compare->getOperand(1).getReg() : 0);
const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
MachineBasicBlock *MBB = Compare->getParent();
MachineBasicBlock::iterator MBBI = Compare, MBBE = MBB->end();
for (++MBBI; MBBI != MBBE; ++MBBI) {
if (MBBI->getOpcode() == SystemZ::BRC && !isCCLiveAfter(MBBI, TRI)) {
// Read the branch mask and target.
MachineOperand CCMask(MBBI->getOperand(1));
MachineOperand Target(MBBI->getOperand(2));
assert((CCMask.getImm() & ~SystemZ::CCMASK_ICMP) == 0 &&
"Invalid condition-code mask for integer comparison");
// Clear out all current operands.
int CCUse = MBBI->findRegisterUseOperandIdx(SystemZ::CC, false, TRI);
assert(CCUse >= 0 && "BRC must use CC");
MBBI->RemoveOperand(CCUse);
MBBI->RemoveOperand(2);
MBBI->RemoveOperand(1);
MBBI->RemoveOperand(0);
// Rebuild MBBI as a fused compare and branch.
MBBI->setDesc(TII->get(FusedOpcode));
MachineInstrBuilder(*MBB->getParent(), MBBI)
.addOperand(Compare->getOperand(0))
.addOperand(Compare->getOperand(1))
.addOperand(CCMask)
.addOperand(Target);
// Clear any intervening kills of SrcReg and SrcReg2.
MBBI = Compare;
for (++MBBI; MBBI != MBBE; ++MBBI) {
MBBI->clearRegisterKills(SrcReg, TRI);
if (SrcReg2)
MBBI->clearRegisterKills(SrcReg2, TRI);
}
return true;
}
// Stop if we find another reference to CC before a branch.
if (MBBI->readsRegister(SystemZ::CC, TRI) ||
MBBI->modifiesRegister(SystemZ::CC, TRI))
return false;
// Stop if we find another assignment to the registers before the branch.
if (MBBI->modifiesRegister(SrcReg, TRI) ||
(SrcReg2 && MBBI->modifiesRegister(SrcReg2, TRI)))
return false;
}
return false;
}
// Fill MBBs and Terminators, setting the addresses on the assumption
// that no branches need relaxation. Return the size of the function under
// this assumption.
uint64_t SystemZLongBranch::initMBBInfo() {
const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
MF->RenumberBlocks();
unsigned NumBlocks = MF->size();
@ -513,20 +265,9 @@ uint64_t SystemZLongBranch::initMBBInfo() {
// Calculate the size of the fixed part of the block.
MachineBasicBlock::iterator MI = MBB->begin();
MachineBasicBlock::iterator End = MBB->end();
MachineInstr *PrevCCSetter = 0;
while (MI != End && !MI->isTerminator()) {
MachineInstr *Current = MI;
Block.Size += TII->getInstSizeInBytes(MI);
++MI;
if (Current->isCompare()) {
if ((PrevCCSetter && optimizeCompareZero(PrevCCSetter, Current)) ||
fuseCompareAndBranch(Current)) {
Current->removeFromParent();
continue;
}
}
if (Current->modifiesRegister(SystemZ::CC, TRI))
PrevCCSetter = Current;
Block.Size += TII->getInstSizeInBytes(Current);
}
skipNonTerminators(Position, Block);

View File

@ -65,6 +65,28 @@ bool SystemZPassConfig::addPreSched2() {
}
bool SystemZPassConfig::addPreEmitPass() {
// We eliminate comparisons here rather than earlier because some
// transformations can change the set of available CC values and we
// generally want those transformations to have priority. This is
// especially true in the commonest case where the result of the comparison
// is used by a single in-range branch instruction, since we will then
// be able to fuse the compare and the branch instead.
//
// For example, two-address NILF can sometimes be converted into
// three-address RISBLG. NILF produces a CC value that indicates whether
// the low word is zero, but RISBLG does not modify CC at all. On the
// other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
// The CC value produced by NILL isn't useful for our purposes, but the
// value produced by RISBG can be used for any comparison with zero
// (not just equality). So there are some transformations that lose
// CC values (while still being worthwhile) and others that happen to make
// the CC result more useful than it was originally.
//
// Doing it so late makes it more likely that a register will be reused
// between the comparison and the branch, but it isn't clear whether
// preventing that would be a win or not.
if (getOptLevel() != CodeGenOpt::None)
addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
return true;
}